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4d ensembles of percolating center vortices and chains

Abelian projection and the SU(2) YM vacuum

(Ambjorn, Giedt & Greensite, 2000):

- In the lattice, center vortices attached to monopoles, forming chains,

account for 97% of the cases

4d Mixed ensemble of percolating center vortices and chains for SU(N)

(LEO, 2018)

elementary center vortex chain

- relevance of both percolating center vortices and chains to form a confining

flux tube
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4d ensembles of percolating center vortices and chains

Derrick’s theorem

monopoles give place to adjoint scalars

the Goldstone modes in a condensate of oriented loops:

- Abelian gauge fields (Rey, 1989)

percolating center vortices:

- SU(N) gauge fields related with non-Abelian d.o.f. and N-matching

effective SU(N) gauge fields and adjoint scalars → N-ality

Abelian profiles (LEO & Vercauteren, 2016) (LEO & Simões, 2019)
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4d ensembles of percolating center vortices and chains

- Abelian projected configurations in the wave functional formalism

(Junior, Reinhardt & LEO, 2022)
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4d Mixed ensembles in the wave functional formalism

- elementary center-vortex loops carrying fundamental magnetic weights

β1. . . . , βN , with N-matching: a = 2πβ · T ∂iχ+ . . .

Ψ(A) =
∑
{γ}

ψ{γ} δ(A− a({γ})) , Ai (x) , x ∈ R3

- the electric field (dual) representation

Ψ̃(E) =

∫
[DA] e i

∫
d3x (E ,A)Ψ(A)

- the ensemble integration → effective field representation (E = ∇× Λ)

Ψ̃(E) =

∫
DΦ e−S[Φ,Λ] , |D(Λ)Φ|2 +m2TrΦ†Φ+ Tr (Φ†Φ)2 + detΦ + c.c.

- we also included chains

- percolating phase: ψγ with negative tension, positive stiffness

and repulsive interactions → m2 < 0
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Reassessing the flux tube formation in the lattice

In both cases: asymptotic Casimir law ∝ k(N − k)

- flux tube

- domain wall

At the level of the partition function, SU(N) gauge fields proposed as a
generalization to (Rey, 1989)

The Abelian projected case was only done at the level of the wave
functional

Luis E. Oxman IF-UFF



Reassessing the flux tube formation in the lattice

In both cases: asymptotic Casimir law ∝ k(N − k)

- flux tube

- domain wall

At the level of the partition function, SU(N) gauge fields proposed as a
generalization to (Rey, 1989)

The Abelian projected case was only done at the level of the wave
functional

Luis E. Oxman IF-UFF



Reassessing the flux tube formation in the lattice

In both cases: asymptotic Casimir law ∝ k(N − k)

- flux tube

- domain wall

At the level of the partition function, SU(N) gauge fields proposed as a
generalization to (Rey, 1989)

The Abelian projected case was only done at the level of the wave
functional

Luis E. Oxman IF-UFF



Matrix representation of surfaces
(Weingarten, 1980)

Z0 =
∑
S

Nχ(S)e−σA(S) , A(S) = a2F , N ∈ N

- S is formed by F oriented plaquettes p (faces)

- A(S) and χ(S) are the area and the Euler characteristic of S

The Weingarten representation

Z0 =

∫
DV exp

(
γ
∑
p

TrV (p)− Q0[V ]

)
,

Q0[V ] =
∑
{x,y}

Q0(V (x , y)) , Q0(V ) = Tr
(
V †V

)
- V (x , y) is an N × N complex matrix (V (y , x) = V †(x , y))

- this ensemble can also be thought of as colored surfaces Sc,

with N possible colors at each vertex

Z0 =
∑
Sc

e−µ0A(Sc) =
∑
S

NV (S)e−µ0A(S)
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The Goldstone modes for percolating surfaces

- these are noninteracting surfaces

- the model is pathological: Z0 is divergent in a finite periodic lattice

However, the model

Z =
1

N

∫
DV exp

(
γ
∑
p

TrV (p)− Q[V ]

)
,

Q[V ] =
∑
{x,y}

Q(V (x , y)) , Q(V ) = Tr
(
ηV †V + λ(V †V )2

)
is stable when λ′ = λ− 3γ > 0 ∗

∗ Because of the Von Neumann trace inequality |Tr(AB)| ≤
∑N

i=1 σi (A)σi (B):

TrV (p) ≤
1

4
Tr((A†A)2 + (B†B)2 + (C†C)2 + (D†D)2) , V (p) = ABCD
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The Goldstone modes for percolating surfaces

- the tension is renormalized

e−µa2 = γα2

- repulsive interactions and stiffness at 180o

The noninteracting Weingarten model is not related to a field theory

However, consider the interacting Weingarten model when η < 0:

γ
∑
p

TrV (p)− Q[V ] = K [V ] + U[V ] ,

K [V ] = 3γ
∑
{x,y}

Tr(V †(x , y)V (x , y))2 − γ
∑
p

TrV (p) ≥ 0 ,

U[V ] = λ′
∑
{x,y}

Tr
(
(V †(x , y)V (x , y)− ϑ2I )2 − ϑ4I

)
≥ 0

- ϑ2 = −η/(2λ′)

- η < 0 is realized for a tension µ below a critical value µc
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The Goldstone modes for percolating surfaces

- when surfaces percolate and λ′ >> γ, deviations away from the minima
of the “potential” get suppressed because of a “mass” λ′ϑ2

V (x , y) ≈ ϑU(x , y) , U(x , y) ∈ U(N)

Z ≈ 1

N

∫
DU e−K [U] , K [U] ≈ γϑ2

∑
p

Tr(I − U(p))

- relying on the Weingarten representation, the Abelian condensate was

generalized to percolating surfaces with N possible colors at their vertices

- the important role played by the excluded volume effects was clarified
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Abelian projection vs. Local magnetic colors

- at the level of the 4d partition function, the center-element average is

Z [B] ∝
∫

DV exp
(
γ
∑
p

Tr
(
e iB(p)V (p)

)
− Q[V ]

))
, B(p) = 2πβe · T s(p)

Abelian projection:

- N elementary center vortices carrying global defining weights βi →
N complex variables Vi (x , y) that generate each type (Z [B] =

∏
i Z [bi ])

V =


V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · VN


- N-matching

Q[V ] → Q[V ]−
∑
{x,y}

ξ
(
detV (x , y) + c.c.

)
Local magnetic charge:

- N × N complex matrix V (x , y) → N “magnetic colors” at each vertex
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Abelian projection vs. Local magnetic colors

- The symmetry that is related with closed arrays:

V (x , y) → U(x)V (x , y)U†(y)

without N −matching ⇒
{

U(1)N

U(N)

with N −matching ⇒
{

U(1)N−1

SU(N)
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Mixed ensemble of center vortices and chains

Zmix[B] ∝
∫

DVDζ exp (−Wmix[V , ζ])

Wmix[V , ζ] = Wc.v.[V ] +Wm[ζ,V ]

Wm[ζ,V ] = −
∑
l

⟨ζ†R ζ⟩+
∑
x

∑
α

(
η̃ |ζα|2 + λ̃ |ζα|4

)

- this generates “holonomies” (L(C) = na)

e−µ̃(L(C1)+L(C2)+... ) Tr Γ(C1)Tr Γ(C2) . . .

monopole fields =

{
ζα → ϕα ∈ C , α = ij
ζα is complex adjoint
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Mixed ensemble of center vortices and chains

⟨ζ†R ζ⟩ =


∑

α ϕ̄α(x)Vi (x , y)Vj(y , x)ϕα(y)∑
α ζ

†
α(x)R(x , y) ζα(y)

R(x , y)|AB = Tr(V (x , y)TBV (y , x)TA)

- U(1)N−1 and SU(N) as long as

 ϕα(x) → e iθ(x)·αij ϕα(x) , αij = ωi − ωj

ζα(x) → U(x)ζα(x)U
−1(x)
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Percolating phase

i) center-vortex condensate

V (x , y) = ϑU(x , y) , U(x , y)U†(x , y) = I , detU(x , y) = 1

Wmix[U, ζ] ≈ γϑ2
∑
p

Tr
(
I − e iB(p)U(p)

)
+ϑ2

∑
x,µ

∑
α

(∆µζα)
†∆µζα +

∑
x

∑
α

(
a2m2|ζα|2 + λ̃ |ζα|4

)
+ . . . ,

∆µζ = U(x , x + µ)ζ(x + µ)U(x + µ, x)− ζ(x) , η̃ = 2d γ̃ + a2m2

ii) softer transition where monopoles condense (for small enough µ̃→ m2 < 0)

Luis E. Oxman IF-UFF



Percolating phase

i) center-vortex condensate

V (x , y) = ϑU(x , y) , U(x , y)U†(x , y) = I , detU(x , y) = 1

Wmix[U, ζ] ≈ γϑ2
∑
p

Tr
(
I − e iB(p)U(p)

)
+ϑ2

∑
x,µ

∑
α

(∆µζα)
†∆µζα +

∑
x

∑
α

(
a2m2|ζα|2 + λ̃ |ζα|4

)
+ . . . ,

∆µζ = U(x , x + µ)ζ(x + µ)U(x + µ, x)− ζ(x) , η̃ = 2d γ̃ + a2m2

ii) softer transition where monopoles condense (for small enough µ̃→ m2 < 0)

Luis E. Oxman IF-UFF



Percolating phase

i) center-vortex condensate

V (x , y) = ϑU(x , y) , U(x , y)U†(x , y) = I , detU(x , y) = 1

Wmix[U, ζ] ≈ γϑ2
∑
p

Tr
(
I − e iB(p)U(p)

)
+ϑ2

∑
x,µ

∑
α

(∆µζα)
†∆µζα +

∑
x

∑
α

(
a2m2|ζα|2 + λ̃ |ζα|4

)
+ . . . ,

∆µζ = U(x , x + µ)ζ(x + µ)U(x + µ, x)− ζ(x) , η̃ = 2d γ̃ + a2m2

ii) softer transition where monopoles condense (for small enough µ̃→ m2 < 0)

Luis E. Oxman IF-UFF



Abelian projection vs. Local magnetic colors

The Abelian projected model is embedded in the non-Abelian one:

U =


U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · UN

 ,
∏
i

Ui = 1 , ζα = ϕαEα
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Abelian projection vs. Local magnetic colors

In both cases

- Wilson loop average at asymptotic distances was modeled in the lattice:

⟨WD(Ce)⟩ = N
∑
ω

e−S(ω) 1

D
Tr
[
D
(
e i

2π
N I
)]L(ω,Ce)

- percolating center vortices → gauge fields

- chains → include scalar monopole fields

N-ality: the frustration is blind to the specific βe, it only depends on k.

(D(e i
2π
N I ) = e i

2πk
N ID)

e iB(s) , B(p) = 2πβe · T s(p)

As the continuum is approached:

- the lowest lattice action must cancel the frustration

- in the whole lattice, there are different possibilities, which are expected

to depend on specific weights with N-ality k
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Abelian projection vs. Local magnetic colors

In both cases, as the continuum is approached:

- Derrick’s theorem → flux tubes

The non-Abelian description can Abelianize (for some observables)

- a pair of monopole worldlines carrying different weights might also repel

- this could compete with matching α1 + α2 + · · · = 0 at a point

- a monopole condensate can be formed such that the saddle-point is
(Junior, LEO & Simões, 2023)

ζα(x) = ϕα(x)S(x)EαS
†(x) , S ∈ SU(N)
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Abelian projection vs. Local magnetic colors

for any D(·) with N-ality k, the lowest lattice action is expected to be

governed by βe = βk−A (Junior, LEO & Simões, 2020)

- βk−A rotates k(N − k) monopole fields ϕα → Casimir law

(among the possibilities: Lucini, Teper & Wenger, 2004)

- k-independent widths (k ̸= 0) (Lucini & Teper, 2001)
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Figure: D. Leinweber, Visualizations of Quantum Chromodynamics, University of
Adelaide © 2003, 2004 (left) - Interpolation of Abelian-like flux vs. SU(3) lattice
simulation, Cea, Cosmai, Cuteria & Papa (2017) (right) - see also Yanagihara, Iritani,
Kitazawa, Asakawa, Hatsuda (2019), Yanagihara, Kitazawa (2019).
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Conclusions

SU(3)
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Conclusions

Relevant role layed by monopoles:

the probability to link depends on solid angles and the effect only depends
on the N-ality of D(·)

- Double Wilson-loops/tetraquarks are expected to be correctly described

This is in contrast with monopole ensembles, where:

the flux depends on solid angles but the effect depends on specific weights

- It is forbidden to change the weights

Luis E. Oxman IF-UFF



Conclusions

Relevant role layed by monopoles:

the probability to link depends on solid angles and the effect only depends
on the N-ality of D(·)

- Double Wilson-loops/tetraquarks are expected to be correctly described

This is in contrast with monopole ensembles, where:

the flux depends on solid angles but the effect depends on specific weights

- It is forbidden to change the weights

Luis E. Oxman IF-UFF



Conclusions

In the non-Abelian description

- N-ality is simply encoded in the continuum:

M = Ad(SU(N)), Π1(M) = Z(N)

Intermediate distances (Del Debbio, Faber, Greensite & Olejnik, 1996)

- Abelian projection cannot describe the adjoint Wilson loop:

WD(Ce) =
1

D
TrD

(
P
{
e i

∫
Ce

dxµ Aµ(x)
})

=
1

D

∑
ωD

e i
∫
d4x Fµν ·ωDsµν ,

(ωD are the weights of D(·))
- center-vortex thickness and non-Abelian variables → Casimir scaling

- these variables are similar to the non-Abelian d.o.f. of colored surfaces

in the N × N matrix model

possibility to include the effect of thickness and understand the transition

from the asymptotic to intermediate confining regions
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