Semiclassics for QCD vacuum structure via T^2 compactification

Yui Hayashi (YITP, Kyoto U.)

in collaboration with Yuya Tanizaki (YITP, Kyoto U.)

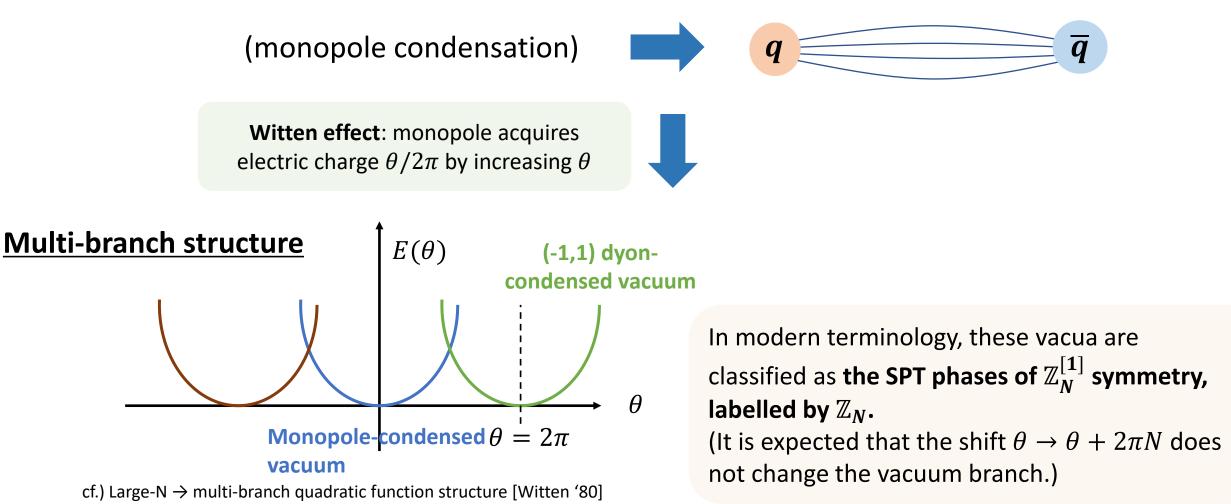
XVIth Quark Confinement and the Hadron Spectrum @ Cairns, Australia

August 19, 2024

Based on JHEP **08** (2024) 001 [arXiv:2402.04320]

Introduction: confinement and θ angle

A popular understanding of quark confinement: dual superconductor picture



Introduction: chiral Lagrangian

• Low-energy effective theory of QCD: $SU(N_f)$ Chiral Lagrangian

Light pseudoscalar mesons: Nambu-Goldstone bosons of (approximate) $SU(N_f)_{chiral}$ $\Rightarrow S[U] = \int f_{\pi}^2 |dU|^2 - \Lambda^3 tr(MU) + c.c.$

Chiral Lagrangian with η'

mass matrix from quark mass

Sometimes, one includes η' by considering $U(N_f)$ chiral Lagrangian and adds the instanton-induced η' mass term (Kobayashi-Maskawa-'t Hooft vertex).

$$\Rightarrow S[U] = \int f_{\pi}^2 |dU|^2 - \Lambda^3 \operatorname{tr} (MU) - \Delta \, \mathrm{e}^{-\mathrm{i}\theta} \, \det(U) + c.c.$$

Ambiguity with η' mass? cf.) log det(U) in large-N

(vague) main question: where is the YM vacuum label?

e.g.) Flavor-symmetric QCD has discrete anomaly at $\theta = \pi$ when $gcd(N, N_f) \neq 1$, so it would be natural that some N-dependence appears in its low-energy description.

Short summary

(vague) main question: where is the YM vacuum label (in chiral Lagrangian)?

Our suggestion (from 2d semiclassics): η' extends its periodicity by N, eating YM vacuum label

Method: Semiclassics via compactification

Motto: deforming SU(N) YM/QCD to **weakly-coupled** one with **keeping confinement**.

This work: We investigate QCD vacuum structure through semiclassical analysis on $\mathbb{R}^2 \times T^2$ with 't Hooft flux (+ baryon magnetic flux), assuming the adiabatic continuity.

Main ansatz: adiabatic continuity conjecture size of compactified T² weak coupling want to know "adiabatic continuity" (confinement phase, w/o transition)

Empirically, this method successfully gives a reasonable picture for confining vacuum in SU(N) YM, SU(N) N=1 SYM, QCD(F), QCD(Sym), QCD(AS), QCD(BF) [Tanizaki-Ünsal '22 '23][Tanizaki-YH-Watanabe '23 '24]. (cf. [Yamazaki-Yonekura '17]) This work: expanding analysis for QCD(F).

SU(N) YM on $\mathbb{R}^2 \times T^2$ with 't Hooft flux

[Tanizaki-Ünsal '22,] (cf. [Yamazaki-Yonekura '17])

• 't Hooft flux for T^2 (or $\mathbb{Z}_N^{[1]}$ background)

A unit 't Hooft flux \Leftrightarrow choose $g_3(0)g_4(L)g_3^{\dagger}(L)g_4^{\dagger}(0) = e^{\frac{2\pi i}{N}}$.

 $(g_3(x_4), g_4(x_3)$: transition functions on T^2)

Up to gauge, we can take $g_3 = S$, $g_4 = C$ (shift and clock matrices of SU(N)).

Consequences from 't Hooft-twisted compactification

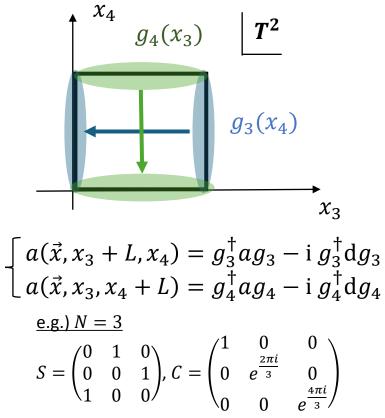
 \checkmark Center symmetry is kept at small T^2

Classically, $P_3 = S$ and $P_4 = C \Rightarrow \langle \operatorname{tr} P_3 \rangle = \langle \operatorname{tr} P_4 \rangle = 0$.

✓ Perturbatively gapped gluons: O(1/NL) KK mass

✓ Numerical evidence for center vortex/fractional instantons (as a local solution) [Gonzalez-Arroyo–Montero '98, Montero '99,]

Dilute gas of center vortices → Confinement, multi-branch vacuum structure

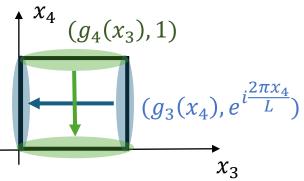


Setup for QCD [Tanizaki-Ünsal '22]

- In the presence of fundamental quarks, it is impossible to insert 't Hooft flux alone $(g_3(0)g_4(L)g_3^{\dagger}(L)g_4^{\dagger}(0) = e^{\frac{2\pi i}{N}}$ leads to an inconsistency).
- To avoid this problem, we also introduce **baryon magnetic flux** simultaneously: $\int_{T^2} dA_B = 2\pi. \text{ (e.g., we can take } A_B = \frac{2\pi}{L^2} x_3 dx_4 \text{)}$

Boundary conditions for quarks (in the gauge $g_3 = S$, $g_4 = C$):

$$\begin{cases} \psi(\vec{x}, x_3 + L, x_4) = e^{i\frac{2\pi x_4}{NL}} S^{\dagger}\psi(\vec{x}, x_3, x_4) \\ \psi(\vec{x}, x_3, x_4 + L) = C^{\dagger}\psi(\vec{x}, x_3, x_4) \end{cases}$$



• At small T^2 , there is one 2d Dirac "low-energy mode" (\Leftrightarrow without KK mass) per flavor. (obtained by solving zeromode equation)

Index theorem " $N \times \int_{T^2} dA_q = 1$ " $(U(1)_B = U(1)_q / \mathbb{Z}_N)$

Constructing 2d effective theory

 $N_f = 1$ case:

• Low-energy mode: one 2d Dirac fermion (\Leftrightarrow compact scalar φ)

Invariance under $\theta \rightarrow \theta + \alpha, \varphi \rightarrow \varphi + \alpha$

- Center-vortex vertex: $Ke^{-\frac{8\pi^2}{Ng^2}+i\theta/N}$ " $e^{-i\phi/N}$ " from $U(1)_{chiral}$ spurious symmetry
- Dilute gas approximation

$$\longrightarrow S[\varphi] = \int \frac{1}{8\pi} |d\varphi|^2 - m\mu \cos\varphi - 2Ke^{-\frac{8\pi^2}{Ng^2}} \cos\left(\frac{\varphi - \theta - 2\pi k}{N}\right)$$

 φ "eats" the vacuum label $k \in \mathbb{Z}_N$ and extends its periodicity to $\varphi \sim \varphi + 2\pi N$.

residual gauge $SU(N) \rightarrow \mathbb{Z}_N$

 $N_f \ge 2$ case: the non-abelian bosonization gives the 2d analog of $U(N_f)$ chiral Lagrangian with $\eta' \sim \eta' + 2\pi N \& (\det U)^{1/N}$ -type η' mass.

Results

- 2d effective theory on \mathbb{R}^2
 - = 2d analog of chiral Lagrangian + periodicity-extended η'

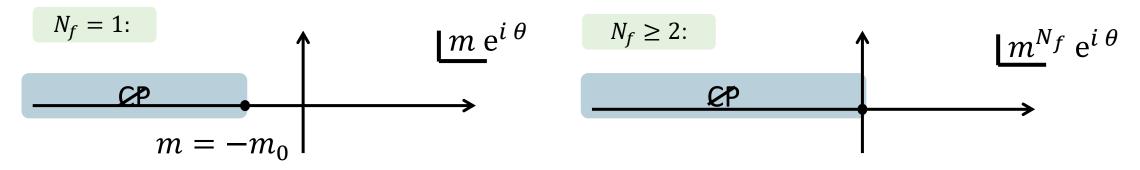
+ corresponding η' mass term $(\det U)^{1/N}$

 $\eta' \sim \eta' + 2 \pi$ $\Rightarrow \eta' \sim \eta' + 2 \pi N$

finite-N version

of log-det vertex

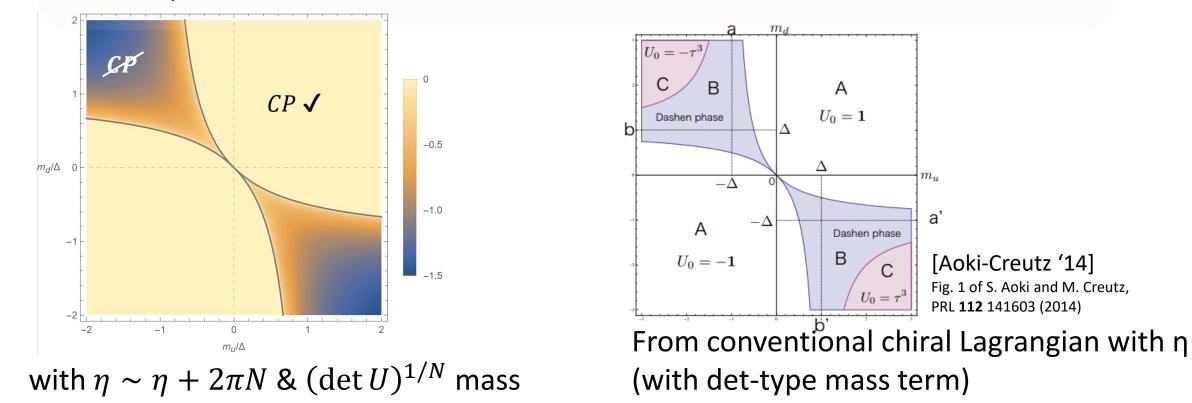
• This 2d effective theory explains the expected vacuum structure of QCD (phase diagram on $m^{N_f} e^{i\theta}$):



• η' extends its periodicity by absorbing the \mathbb{Z}_N vacuum label; also for 4d chiral Lagrangian, this prescription improves the global aspects.

Application: Dashen phase on (m_u, m_d) plane

Phase diagram of (1+1)-flavor QCD on (m_u, m_d) plane: The conventional U(2) chiral Lagrangian with det-type η mass has an artificial CP-restored phase ("phase C"). The periodicity extension of η eliminates the artificial phase.



Summary

describing a confining vacuum by dilute gas of **center vortices** [Tanizaki-Ünsal '22]

We study QCD through semiclassics on $\mathbb{R}^2 \times T^2$ with 't Hooft flux & $U(1)_B$ magnetic flux Our results: $\eta' \sim \eta' + 2 \pi$

• 2d effective theory on \mathbb{R}^2

= 2d analog of chiral Lagrangian + periodicity-extended η'

+ corresponding η' mass term $(\det U)^{1/N}$

Center-vortex induced mass

 $\Rightarrow \eta' \sim \eta' + 2 \pi N$

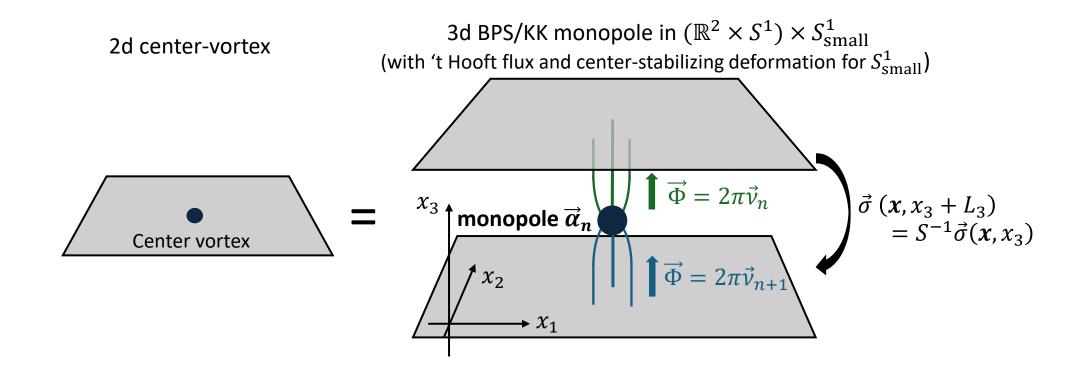
- This 2d effective theory explains the expected vacuum structure of QCD (phase diagram on $m^{N_f} e^{i\theta}$).
- The periodicity extension of η' = inclusion of YM vacuum label

Also for 4d chiral Lagrangian with η' , the periodicity extension improves global aspects (particularly, smooth connection to quenched limit).

Backups

Digression: 2d center vortex/fractional instanton

The **2d center vortex** can be understood as **BPS/KK monopole** in 3d semiclassics (w/ center-stabilizing deformation [Unsal-Yaffe '08]) [YH-Tanizaki '24] (cf. [Güvendik-Schäfer-Unsal; Wandler '24])



Semiclassics on $\mathbb{R}^2 \times T^2$ in SU(N) YM [Tanizaki-Ünsal '22]

• Dilute gas of center vortices

The center-vortex and anti-center-vortex vertices are:

$$Ke^{-\frac{8\pi^2}{Ng^2}+i\theta/N}$$
, $Ke^{-\frac{8\pi^2}{Ng^2}-i\theta/N}$

For calculating partition function, we compactify \mathbb{R}^2 without 't Hooft flux. \Rightarrow total topological charge is constrained $Q_{top} \in \mathbb{Z}$

with a dimensionful constant K.

Then, the dilute gas approximation yields, (only configurations with $Q_{top} \in \mathbb{Z}$ are admitted)

$$Z_{YM} = \sum_{n,\overline{n} \ge 0} \frac{1}{n! \,\overline{n}!} \delta_{n-\overline{n} \in \mathbb{NZ}} \left(VKe^{-\frac{8\pi^2}{Ng^2} + i\frac{\theta}{N}} \right)^n \left(VKe^{-\frac{8\pi^2}{Ng^2} - i\frac{\theta}{N}} \right)^{\overline{n}}$$

$$= \sum_{k \in \mathbb{Z}_N} \exp\left[-V \left(-2Ke^{-\frac{8\pi^2}{Ng^2}} \cos\left(\frac{\theta - 2\pi k}{N}\right) \right) \right]$$

$$N \text{ semiclassical vacua}$$

$$Energy \text{ density of k-th vacuum} \xrightarrow{} \text{multibranch structure!}$$

$$Energy \text{ density of k-th vacuum} \text{ [monopole]}$$

One can also derive area-law falloff of the Wilson loop from the dilute gas of center vortices.

Technicality: \mathbb{Z}_N gauging and vacuum label

- Problem: Center-vortex vertex: $Ke^{-\frac{8\pi^2}{Ng^2}+i\theta/N}$ " $e^{-i\varphi/N}$ " looks ill-defined/non-genuine.
- Keypoint: **residual** \mathbb{Z}_N gauge after adjoint higgsing by Polyakov loops : $SU(N) \to \mathbb{Z}_N$.
- The residual \mathbb{Z}_N gauge is vector-like to fermion ψ . It couples to φ magnetically $\frac{i}{2\pi} \int a_{\mathbb{Z}_N} \wedge d\varphi$ (#fermions) = (#kinks).

Integrating out $a_{\mathbb{Z}_N} \Rightarrow \text{constraint} \int d\varphi \in 2\pi N \mathbb{Z}$

 $e^{-i \varphi/N}$ becomes well-defined.

 \Rightarrow It is possible to regard $\varphi \in \mathbb{R}/2\pi N\mathbb{Z}$.

• In the lift from 2π -periodic field to $2\pi N$ -periodic field, there is \mathbb{Z}_N ambiguity: $\varphi \rightarrow \varphi + 2\pi k$. This 1-to-N correspondence absorbs the vacuum label k. In summary,

$$\int Da_{\mathbb{Z}_N} \sum_{k \in \mathbb{Z}_N} \int_{\varphi \sim \varphi + 2\pi} D\varphi \dots \Rightarrow \int_{\varphi \sim \varphi + 2\pi N} D\varphi \dots$$

2d version of chiral Lagrangian

• For $N_f > 1$, we use the non-Abelian bosonization: looks like **chiral Lagrangian with** $\eta'!$ [$U \in U(N_f)$ with $2\pi N$ -periodic (det U)] $S[U] = \int \frac{1}{8\pi} |dU|^2 - m\mu \operatorname{tr}(U) - K e^{-\frac{8\pi^2}{Ng^2}} e^{-i\theta/N} (\det U)^{1/N} + c.c. + S^{3d}_{WZW}[U]$

quark-mass deformation (if present)

Center-vortex-induced η' mass term "finite-N version of log-det vertex"

Up to gapped **q'**, this 2d effective theory

Coupling to $U(1)_B$ background

$$= T^{2} \text{ compactification with } U(1)_{B} \text{ flux of 4d } SU(N_{f}) \text{ chiral Lagrangian}$$
$$dA_{B} \wedge \left(\frac{1}{24\pi^{2}} \operatorname{tr} (U^{-1} \mathrm{d}U)^{3}\right) \Rightarrow \int_{M_{3}} \left(\frac{1}{12\pi} \operatorname{tr} (U^{-1} \mathrm{d}U)^{3}\right) = S_{WZW}^{3d}[U]$$

Vacuum structure from 2d effective theory

The 2d effective theory explains the vacuum structure, just by finding potential minima:

iΩ

• $N_f = 1$ case: the effective potential for $2\pi N$ -periodic φ is,

Discrete anomaly

Baryon-color-flavor anomaly:

Flavor-symmetric QCD with N_f quarks at $\theta = \pi$ has mixed anomaly between $\frac{SU(N_f) \times U(1)_q}{\mathbb{Z}_N}$ and CP if gcd $(N, N_f) \neq 1$. [Gaiotto-Komargodski-Seiberg '17]

- For gcd $(N, N_f) = 1$, the variables (k, φ) in the $SU(N_f)$ symmetric ansatz can be combined into single $2\pi N$ -periodic one $\varphi: N_f \varphi + 2\pi k \Rightarrow N_f \varphi \pmod{2\pi N}$. Like the mass deformation in $N_f = 1$ case, a suitable symmetric deformation can single out a unique gapped vacuum (the absence of anomaly).
- For gcd $(N, N_f) \neq 1$, the $\mathbb{Z}_{\text{gcd}(N,N_f)}$ discrete label cannot be absorbed. (Intuitively, quark fluctuation only bridges k-th vacuum and $(k + N_f)$ -th vacuum, so it cannot split the degeneracy of CP-broken vacua: k = 0 and k = 1.)
- 4d chiral Lagrangian with periodicity-extended η' reproduces this discrete anomaly.

(A more essential point is that the coupling $\int \eta' dA_B \wedge dA_B$ becomes well-defined thanks to the periodicity extension.)