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Spectral `Functions`

2 22

Euclidean Correlation Function
● From lattice QCD

Known `Kernel` Function
● Here Laplace transform

Spectral Density
● Contains information we 

want!
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Spectral Functions
Systematics

• Effect of finite volume

• Uncertainty in Euclidean correlator

• Finite number of samples in Euclidean correlator

33
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Systematics

• Unphysical (heavy) quark mass
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Bottomonium spectra 

● Heavy-quark bound states dissociation 
in deconfined medium
○ Contributes to suppression of 

quarkonium yield in heavy ion 
collisions

● Suppression pattern may provide a 
thermometer for quark-gluon plasma
○ Which bound states dissociate 

first?
● Lattice QCD aims to provide first 

principles non-perturbative data
● Information contained in spectral 

function 

55

Figure modified by Stottler of CUSB data: 
http://hdl.handle.net/10919/109723

http://hdl.handle.net/10919/109723
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Bottomonium spectrum @ zero 
temperature

6

Preliminary

● Easily computable
○ via lattice NRQCD
○ statistically well-behaved due to 

scale separation

6

● NRQCD action for bottom quarks
○ Incorporating O(v4) corrections
○ Tree-level matching coefficients
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FASTSUM Approach

● Anisotropic lattices
○ Temporal spacing is ~3.5x finer 

than spatial
○ Allows fine temperature 

dependence to be elucidated
○ Many points aid inverse problem 

methods
● Multiple quark (pion) masses to 

examine non-physical pion mass 
systematic effect

● T ∈ [~0, 760] MeV
● See also Skullerud Wed. 15:30
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Maximum Entropy Method

Bayes theorem:

𝑃 ȁ𝑝 𝐷𝐼 =
𝑃 ȁ𝐷 𝑝𝐼 𝑃 ȁ𝑝 𝐼

𝑃 ȁ𝐷 𝐼

Parameterise prior probability

𝜌 ȁ𝑝 𝐼 ∝ 𝑒𝑎𝑆 𝑝 => 𝑝 ȁ𝑝 𝐷𝐼 ∝ e−𝐿 𝐷,𝑝 +𝑎𝑆 𝑝

L is standard likelihood (𝜒2)

Spectral function in terms of default model 𝑚 𝜔

𝑝 𝑤 = 𝑚 𝑤 exp 

𝑘=1

𝑁𝑏

𝑏𝑘𝑢𝑘 𝑤

S is the Shannon-Jaynes entropy & solve via SVD

Bayesian approach to spectral function reconstruction

88
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MEM - Zero Temperature
Generation 2 only

1010

(1S)

(2S)
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MEM - Finite Temperature (hot!)
Generation 2 only
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Generation 2 only
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MEM - Zero Temperature
Generation 2 & 2L
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MEM - Zero Temperature
Generation 2 & 2L
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(4S)
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MEM - Zero Temperature
Generation 2 & 2L
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(2S)
(4S)
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MEM - Finite Temperature (hot!)
Generation 2 only
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MEM - Finite Temperature (hot!)
Generation 2 and 2L
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FASTSUM Approach

● Aim to examine systematics 
○ Number of data points
○ Quark (pion) mass

● More data points
○ Generation 3!
○ Same parameters as Gen 2
○ Twice number temporal data 

points
● Pion mass

○ Generation 2P will have physical 
pion mass

New Ensembles

1818
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Upsilon (1S) - MEM
As a function of temperature

1919
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Spectral Representation

Model spectral function          using a delta-
function of the ground state.

Construct single ratio

And hence double ratio

Describes the `change` in spectral function

of NRQCD correlator

2020
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Single & Double Ratio

● Single Ratio shows how similar to zero-
temperature

○ Excited states still present

○ Constant if          is a delta-function

● Double Ratio

○ Removes excited state effect

○ Differences from one show difference 
in correlator

21Lattice 2024, University of Liverpool Anisotropic NRQCD 21

Preliminary

21Confinement 2024, Cairns T ≠ 0 Spectral Properties 21



Lattice 2024, University of Liverpool Anisotropic NRQCDConfinement 2024, Cairns T ≠ 0 Spectral Properties

Double Ratio
Differences from one show difference in correlator

22Lattice 2024, University of Liverpool Anisotropic NRQCD 22

Preliminary Preliminary

22Confinement 2024, Cairns T ≠ 0 Spectral Properties 22
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Mass Spectrum Results

● Double Ratio 
informs trust in 
standard (multi-) 
exponential fits

● Model averaging 
techniques used to 
give robust 
determination of 
energy.

Subtract zero-temperature 

23

Preliminary
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Mass Spectrum Results
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Mass Spectrum Results

● Double Ratio 
informs trust in 
standard (multi-) 
exponential fits

● Model averaging 
techniques used to 
give robust 
determination of 
energy.
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Dominant contribution to 
uncertainty is zero-
temperature mass subtraction

PreliminarySubtract zero-temperature        
or 

25
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Upsilon (1S) Mass - Exponential Cfn Fits
As a function of temperature

2626

● Good qualitative 
agreement 
between MEM & 
(Multi-)Exponential 
fits

● Results suggest
small decrease in
mass as
temperature
increases
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Charm Baryons

● Charm hadrons also important probes 
of the QGP

● Charm baryons are experimentally 
accessible (i.e.                1807.01919)

● This extends our previous work on 
light and strange baryons

● Examine:
○ Mass change due to 

temperature
○ `Parity Doubling` (Chiral 

Symmetry Restoration)

At finite temperature: 2308.12207

2727



Lattice 2024, University of Liverpool Anisotropic NRQCDConfinement 2024, Cairns T ≠ 0 Spectral Properties

Ratios -𝛴𝑐 𝑢𝑑𝑐
A very similar approach to that used for the NRQCD Bottomonia already

2828

Positive Parity Negative Parity
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Mass as function of temperature
Drawing from ratio analysis for insight into fits

3030
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Mass as function of temperature
Drawing from ratio analysis for insight into fits
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Parity Doubling

3232

𝑅 𝜏 =
𝐺+ 𝜏 − 𝐺− 𝜏

𝐺+ 𝜏 + 𝐺− 𝜏

𝑅 𝜏𝑛 =

൘σ𝑛

ൗ1 2𝑁𝜏−1𝑅 𝜏𝑛
𝜎𝑅
2 𝜏𝑛

ൗσ𝑛

𝑁 ൗ1 2𝜏−1 1 𝜎𝑅
2 ҧ𝑐𝑛

● Parity Doubling

● +ve and –ve states become
degenerate

● Linked to chiral symmetry 
restoration

● Examine via summed difference 
Ratio

● Expect near 1 when non-
degenerate

● Expect near 0 when 
degenerate
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Parity Doubling
Summed Difference Ratio

3333

Inflection point is near T_c
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Parity Doubling
Inflection points

3434
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Summary
• Presented Bayesian (MEM) spectral function results from two ensembles

• Showed how this may be improving systematics

• Discussed how future ensembles will also improve systematics

• Used Double-Model Ratio method to examine change in spectral function 
and used (multi-)Exponential fits to determine the mass as temperature 
increases

• For both charm baryons and bottomonia

• Bottomonia suggests small decrease in mass

• Some charm hadrons remain stable past T_c

• Discussed parity doubling for charm baryons

35 3535
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EXTRA SLIDES

36
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Ensemble Details
Generation 2L FASTSUM

Action details:
● Gauge: Symanzik-improved, tree-level tadpole 
● Fermion: Wilson-clover, tree-level tadpole, stout-links
● Same parameters as HadSpec Collaboration
● Approx. 1000 configurations at each temperature

37

N_T 128 64 56 48 40 36 32 28 24 20 16

Temperature (MeV) 47 95 109 127 152 169 190 217 253 304 380

# Wall Sources 16 16 16 20 24 24 32 28 24 20 16

● NRQCD action for bottom quarks
○ Incorporating O(v4) corrections
○ Tree-level matching coefficients
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Excited State spectroscopy

● Build correlation matrix of two point functions

● Solve generalised eigenvalue problems

● Construct Projected Correlator

Generalised EigenValue Problem - GEVP

3838
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GEVP - Operator Basis

39

Four widths of Gaussian and `excited` operator

39
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Improved state isolation
N_t = 36, 

4040
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`Moments`

If         is Gaussian with width      and mean E, 
second log-derivative is

This is the difference between 2nd and 1st 
non-central moments of a Gaussian

`Time-Derivative Moments`

41

Model/Mock Correlator Data

41
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`Moments`

● Excited states shift form
● Fit with function

● Easier at higher 
temperatures as       
becomes larger

● This is an upper bound 
only

Point-Point

42

Preliminary

42
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`Moments`

● Apply `moments` method to GEVP 
projected correlators

● GEVP essential for access to excited 
states for moments

● Method is fairly robust against noise
○ Constant       term helps
○ Exponential terms not well 

constrained
○ More statistics ongoing

GEVP

43

Preliminary

43
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`Moments`
GEVP

44

Preliminary
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`Moments`
GEVP
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Preliminary
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`Moments`
GEVP
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Preliminary

46



Lattice 2024, University of Liverpool Anisotropic NRQCDConfinement 2024, Cairns T ≠ 0 Spectral Properties

`Moments`
GEVP
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Preliminary
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`Moments`

● Bayesian 
Reconstruction 
method

● Moments method 
for ground & excited 
states

● Encouraging 
similarity between 
methods

● Excited state is 
broader than ground 
state

Comparison

48

Preliminary

48
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Summary

● Presented results for the mass of       and  
excited states using a basis of 

‘smeared’ operators
○ At zero and finite temperature

● (Re-)introduced `moments` method to 
examine ‘widths’ of ground state 
(Gaussian) spectral functions

● Applied `moments` to GEVP projected 
correlators

● GEVP of smeared operators was 
successful in allowing use of the 
`moments` method for excited states

● Systematics of method not fully 
explored for this study (GEVP 
correlators)

4949
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Eigenvectors

● Related to overlap of each ‘operator’ 
with each state

● Examine eigenvectors to see how they 
change as temperature increases

– Plots have the largest contribution is normalised 
to one, and negative contributions are ‘hashed’

5050
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Eigenvectors

5151
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Eigenvectors
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