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neutron stars and motivation



what is finite density?

neutron stars are celestial labs for dense (= lots of baryons in a small volume) strongly
interacting matter—far denser than anything terrestrial, and constantly running

Cooling neutron star [Nasa, PD]

Finite density n > 0 Excess conserved charge
←→ excess of stuff ←→ finite (number) density
←→ chemical potential µ > 0 ←→ noether current



why perturbation theory

(subjectively, because it’s interesting and fun!)

Perturbation theory works well at sufficiently large µ (several GeVs), but not at realistic NS
densities

Finite-density lattice QCD suffers from the sign problem→ unusable unlike at T > 0

Otoh, perturbation theory is theoretically ”clean”: No Linde problem, just need very
high-order calculations

Other options: Holography (Järvinen), functional approaches (Rennecke), many models ,...



improving the EoS

pQCD PoV: Decrease theoretical
uncertainty to shrink the Eos band

observation PoV: plenary
(Dexheimer) explained it much

better

Lofty end-goal: Incompatible
observations and theory
= New Physics
= Lots of grant money



N3LO pressure with perturbation
theory



thermal perturbation theory

Perturbation theory in Euclidean space at finite µ: Shift p0 by iµ

• New inherent scale
• Broken Lorentz invariance
• Many integration methods break

(cf. Finite T→ compactify time factor to a thermal circle, discretise p0 to Matsubara
modes 2nπT, (2n+ 1)πT)



perturbative pressure

In principle straightforward: Expand ln Z = ln
∫
DAψ̄ψe−S for small gs, pick up all bubble

graphs that contribute at a given order:
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Everything is fine for LO and NLO (even finite T, µ is trivial)



infrared issues at NNLO

Try to do the same with three-loop diagrams: Leftover IR divergence traceable back to
exactly one diagram
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Turns out the quark loop contributes equally to a bare line when the ”ring momentum” is
soft (O(gsµ)): Need to resum (gives a ”mass” to the diagram)
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hard thermal loops

(Freedman & McLerran 1977): Resummation with full self-energies and NNLO pressure of
cold dense matter by Freedman & McLerran—but too difficult to get to N3LO

Hard thermal loops (Braaten & Pisarski, 1992) are much simpler: Simplified propagator for
soft momenta = only region where resummation is really needed. Was not used for a long
time at finite µ!
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Divergences cancel and turn into lngs.



N3LO and sectors

N3LO realisation: Classify diagrams based on
number of soft (HTL-resummed) lines

Resum / re-expand lines to move between
sectors—at N3LO, there are hard, mixed, and
soft diagrams.

Key to understanding conceptual differences
between dense and hot perturbation theory!



soft contributions

Soft contributions by evaluating two-loop resummed diagrams (PRL 127 & PRD 104, 2021,
leading log in PRL 121, 2018)
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Lots of numerical and analytical work. Two-loop HTL diagrams can have double
divergences ∼ double logs, obtained directly from the leading divergence:
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mixed contributions
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Mixed contributions in 2023 (PRL 131 & JHEP 08) — lots of work to get there, including two
papers for just QED. Needed two-loop HTLs (see also Ekstedt, Carignano et al...). They are
known at finite T, µ in arbitrary gauge, still working on full NLO including resummed SE;
going into this would be a separate talk, but the end result gives the subleading log:
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state of the art

All logarithms known, like at finite T and µ = 0 (Kajantie et al. 2003)
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Estimated c0 from hard diagrams with very basic machine learning, but we should really
do the hard calculations properly

Unlike at finite T, contributions from soft scales don’t drive the breakdown of
perturbation theory!



hard contributions

Stay tuned for the next two talks!



what about dynamics?



neutron star collisions

Colliding neutron stars are dynamical systems: Static tricks don’t workt



extra scales...

For quiescent EoS, temperature and masses irrelevant. Not so much for collisions! Need
at least small (O(100) MeV) temperatures, and effects of the strange quark mass

Masses are particularly tough: Even one-loop massive thermal integrals don’t admit a
closed form... (Gorda & Säppi, PRD 105 2022): Expanding loop-integrals for small masses
m ∼ grµ

→ simple results for massive thermal equilibrium systems



electroweak process

Bulk viscosity ζ = how well a fluid resists deformation under compression

In NS mergers, primarily driven by the electroweak process u+ d←→ u+ s
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The rate of this process enters ζ , we take a very simple approximation:
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This is a serious limitation and should be improved (in numerous ways: pairing, QCD
corrections, EW corrections, proper T,ms,µu − µd,µs − µd-dependence ... — in progress)



bulk viscosity formula

If u+ d←→ d+ s is the only process, then

ζ = λ1
A21

ω2 + λ21C1
,

where A1, C1 are now static quantities determined directly from pressure — standard tricks
are usable again!



Holographic collaboration

A,B can also be determined from holography to get a complimentary viewpoint—turns
out this gives a nice robust results, and a simple formula for ζ from holographic ”D3–D7”.

ζ =
4λ1 µ6d (M2

s −M2
d)

2

K2dK2sω2 + π4λ21 (Kd + Ks)2
,

Kf = 3µ2f −M2
f ,

ζpeak =
2
π2ω

µ6d(M2
s −M2

d)
2

KdKs(Kd + Ks)
,

T2peak =
ω

π2Λ1

KdKs
Kd + Ks

10 4 10 3 10 2 10 1 100 101 102

T [MeV]

1023

1025

1027

1029

1031

[g
cm

1
s

1 ]

D3-D7

Nucl.

pQ
CD 40

n sat V-QCD 10nsat

5nsat
10nsat

5nsat
10nsat

5nsat
3nsat

1nsat

Brand new PRL 133 (2024), J. Cruz Rojas et al.



fin.

• Perturbation theory gives us a well-defined first-principles way to understand finite
density

• Need to understand soft gluons properly using hard thermal loops→ need to
understand HTL better

• Current state-of-the-art pressure is g6s lngs
• Starting to move towards full N3LO and transport quantities

Thanks to organisers and collaborators: J. Cruz Rojas (APCTP Pohang), T. Gorda (Frankfurt U.), C. Hoyos (Oviedo
U.), N. Jokela (U. of Helsinki), M. Järvinen (APCTP Pohang), A. Kurkela (Stavanger U.), J. Österman (U. of Helsinki), R.
Paatelainen (U. of Helsinki), P. Romatschke (U of Boulder, Colorado), P. Schicho (GU Frankfurt), K. Seppänen (U. of
Helsinki), A. Vuorinen (U. of Helsinki),
+ WIPs w/ a proper subset of the former and L. Fernandez (U. of Helsinki), M. Heikinheimo (U. of Helsinki) H.
Lempiäinen (U. of Helsinki), T. Ruosteoja (U. of Helsinki), K. Tuominen (U. of Helsinki)

And anyone who might have listened!
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