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congregation of correlators



theoretical motivations

What can we compute in a thermal (near-)equilibrium QFT?

Correlators / N-point functions! 1

• Usual Yang–Mills suspects: ⟨AA⟩, ⟨AAA⟩, ⟨AAAA⟩...
• Correlators involving Fµν (⟨FF⟩...) are also interesting: Field strength is a very
”tangible” concept from a classical pov

• Can also split ⟨FF⟩ into ⟨EE⟩ and ⟨BB⟩

1And the free energy



computation methods

Weak-coupling expansion: For large enough temperatures T, expand everything for small
coupling gs. Precise (near-)analytic control, but only works at large temperatures.

• Imaginary-time: Compactify time-axis and discretise p0, calculate in Euclidean space,
and analytically continue to get transport and other near-equilibrium quantities

• Real-time: Complexify time-axis, double field content but obtain time-dependent
quantities directly

Euclidean calculations allow direct comparison with lattice simulations! Also very neatly
defined: No contour ambiguity, countably many distinct correlators.



EFTs and physical motivation

What do we actually use these correlators for?

⟨EE⟩ in fundamental representation: Heavy quark effective theory, enters as a diffusion
transport coefficient to a Langevin equation

⟨EE⟩ in adjoint representation: appears in the matching coefficients of potential
nonrelativistic QCD, generates transport coefficients responsible for quarkonium
diffusion and mass shifts

⟨BB⟩ is subleading for small velocities (Lorentz force!) but possibly interesting when
corrections become important



explicit construction

Wilson lines needed to connect distinct spacetime points in a gauge-invariant way

Fundamental correlator (imaginary-time NLO in Burnier & al. [JHEP 08 (2010) 094])

⟨EWEW⟩F ≡ ⟨Tr [Ei(0)U(0, t)Ei(t)U(t, 1/T)]⟩

(Only) three linearly independent gauge-invariant adjoint correlators with two E-fields in
imaginary-time:

⟨EE⟩U ≡
⟨
Eia(0)Wab(0, t)Eib(t)

⟩
,

⟨EE⟩L ≡
⟨
Eib(0)Eia(t)Wab(t, 1/T)

⟩
,

⟨EE⟩S ≡
⟨
Eabi (0)Wbc(0, t)Ecdi (t)Wda(t, 1/T)

⟩
,

Real-time correlators considered by eg. Binder & al. [JHEP01 (2022) 137] — ”true” time
dependence but contour ambiguity, no direct lattice contact.



spectral function and transport coefficients

Insight on near-equilibrium quantities from imaginary time by looking at the spectral
function ρ:

ρ⟨EE⟩(ω) = ImFt [⟨EE⟩(t)] (ωn) |ωn→−iω+η

ρ gives the momentum diffusion coefficient κ ∝ limω→0+ ρ(ω)/ω.

For the fundamental correlator, mass shift γ ∝
∫ β

0 dt⟨EE⟩F [Eller & al., Phys. Rev. D 99,
094042 (2019)]. What does this integral mean in the adjoint for the different correlators?

General definitions in terms of real-time correlators. Any way to avoid analytic
continuation?



lots of loops



leading-order result

At leading order, all EE-correlators coincide (up to Casimir scaling):
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.



NLO diagrams

Straightforward (if messy): Draw all diagrams w/ E-field and Wilson line insertions and
standard Feynman rule.

Eleven topologies shared by all correlators at NLO

E E E E E E E E E E E E E E E E

E E E E E E

Two additional topologies for the symmetric/fundamental correlator

E E E E



applying IBPs

Integration-by-part (IBP) is a standard method at T = 0, recently applicable also at T > 0
(see Schröder et al., [JHEP 12 (2022) and 02 (2024)])

Major result: All two-loop integrals with an ”additive mass” are factorisable→ spatial part
of the sum-integral can be factorised. For In(m) ≡

∫
p(p

2 +m2)−n,

∫
pq

1
(p20 + p2)(q20 + q2) [(p0 + q0)2 + (p+ q)2]

= − d− 2
2 (d− 3)

[
I1 (p0) I1 (p0 + q0)

p0 (p0 + q0)
+

I1 (q0) I1 (p0 + q0)
q0 (p0 + q0)

− I1 (p0) I1 (q0)
p0q0

]
,

Trivialises most of the NLO computation: Almost everything is a product of En
ms.



zero-modes

Bosonic zero-modes p0 = 0 special: integrals become massless, scaleless, and
IR-sensitive

Scaleless → simple, since ∑∫ f(0,p) ≡ 0 and IBPs let us factorise almost everything, right?

No! Only shifts of three-momenta are allowed (∑∫ PK f(P+ K)g(P) = ∑∫
PK f(K)g(P) only for

the non-zero modes, even though
∫
pk f(p+ k)g(p) =

∫
pk f(k)g(p) always)

Properly factorisable diagrams still vanish for the zero-modes, but everything with a
three-point vertex does not—extra contributions, but simpler structure:

Za
nml(t) ≡

∑∫
P

∫
q

pa0eip0t
(p+ q)2n(p20 + p2)m(p20 + q2)l

,



more limitations of IBP

Even when the factorisation works, the remaining sums can become coupled. Simpler to
compute integrals than sums → rewind back a few steps

At NLO, problem appears in exactly one unique integral:

IRX ≡ i
2

∫ t

0
dt′

∑∫
PQ

′′ eip0(t−t′)q0eiq0t

(P+ Q)2 Q2
+

1
2
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PQ

′′ eip0t
P2Q2

=
i
2

∫ t

0
dt′E 1

1 (t′) E0
1 (t− t′)− t

2 iTZ
1
011(t) +

1
2E

0
1 (t) E0

1 (0) .

The ”Wilson loop integral” makes the p0-weight negative and the IBP-sum integral
nonfactorisable, and divergent to boot

Divergent at the domain edges, but divergences can be subtracted and converted to
dimreg by expanding the integral appropriately ...

... In the end closed form O(1). O(ε) is a slightly messy but doable numerical integral



gauge-invariance

Everything computed in the Rξ-gauge: for nonzero modes, gauge-dependence cancels
algebraically

The cancellation is quite delicate, and depends on the choice of the correlator, but in
principle straightforward

For zero-modes, cancellation is not algebraic: Gauge-dependence is merely pushed to
higher-orders (and presumably cancelled by contributions there), but the physical
d = 3-correlator is gauge-invariant



plenty of PRELIMINARY plots



NLO correlator
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⟨EWE⟩ vs. ⟨EWE+ EEW⟩/2

Plot at T = 2.0GeV, PMS scale, Nf = Nc = 3 (includes HTL)



asymmetry

Adjoint correlator is asymmetric (band shows RG variation)

Confirmed by lattice simulations. Immediately leads to eg. non-odd terms in a spectral
function



perturbative asymmetry

Naïvely, bosonic loop integrals should be symmetric over the thermal circle:

∑∫
P1...PL

eip10t . . . eipL0t
Pa11 . . .PaLL

=
∑∫
P1...PL

eip10(1/T−t) . . . eipL0(1/T−t)

Pa11 . . .PaLL

And fermionic terms don’t help, because fermionic lines are always internal...

But zero-modes of Wilson lines explicitly probe the length of the Wilson line (ie, t) and
differ for the EWE and EEW: LO asymmetry from the zero-mode of the triangle diagram

(⟨EE⟩U(t)− ⟨EE⟩L(β − t))/2 = dANcg4stTε−1Z1
011(t) + O(ε,g6s)

Disappears in the symmetric (and fundamental) correlator thanks to an interplay
between overall coefficients of EWE and EWE



proceeding to NNLO

For now, results like transport coefficients are little more than double-checks— already
known, just checking the Euclidean derivation and the analytic continuation

Symbolic automation lets us manage the messy higher orders, and modern IBP methods
help with computing sum-integrals

Zero-modes are particularly interesting: Relevant for evaluating κ to higher orders as well
as improving convergence by computing corrections to asymmetry.



extra: HTL corrections

In the infrared, massless bosons require resummation. At NLO, first resummed
contribution appears in the form of the HTL-resummed loop

E E − E E H ≈ dAg2sm2
E

4 T2 csc2(πTt)
[(

4πT
m2

E

)
− 1

]

Won’t go into details, since this is just the Casimir-scaled version of the fundamental
result

Nothing drastic happens yet—no leftover IR divergences—but very interesting at NNLO



bonus plot: temperature variation

RG-variation of the full result has a misleadingly drastic dip because of the
antisymmetric part and the delicateness of IRX numerics—to be improved



bonus plot: Nf-variation

Increasing Nf ameloriates the dip



bonus plot: vs lattice

At stupendously high T (10000Tc), agreement with Nf = 0 lattice... up to a mystery
coefficient
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bonus plot: sym vs lattice

Extra-preliminary, but the symmetric correlator also seems to work — huge errors in
comparison, though?
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