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We try to extract 2D picture from non-perturbative 4D QCD.

To this end, we utilize gauge degrees of freedom.

Quark confinement is characterized by a linear interquark potential and 

one-dimensional squeezing of color-electric fields.

qq

one-dimensional squeezed

color-electric flux

Motivation: Quark Confinement and Dimensional Reduction of 4D QCD

Inspired by low-dimensionalization of color-electric flux, we consider that 

there might be an aspect of dimensional reduction in non-perturbative 4D QCD.

G.S. Bali, Phys. Rep. 343, (2001), 

JLQCD, Phys. Rev. D 68, 054502

T.T. Takahashi, et al., Phys. Rev. D 65, 114509 (2002)



We propose a new gauge fixing, “Dimensional Reduction (DR) gauge”

DR gauge can be defined in both Minkowski and Euclidean spacetime.

Local gauge fixing condition is

𝜕⊥𝐴⊥ 𝑠 ≡ 𝜕𝑥𝐴𝑥 𝑠 + 𝜕𝑦𝐴𝑦 𝑠 = 0 .

Dimensional Reduction (DR) Gauge

⊥= 𝑥, 𝑦

⊥= 𝑥, 𝑦
𝑧

𝑡

The gauge globally defined so as to minimize

𝑅DR ≡ න𝑑4𝑠 

⊥=𝑥,𝑦

Tr 𝐴⊥ 𝑠 2

= න𝑑4𝑠 Tr 𝐴𝑥 𝑠 2 + 𝐴𝑦 𝑠 2

Dimensional Reduction Gauge

𝑠 = 𝑡, 𝑧; 𝑥, 𝑦

⊥



This action has a residual gauge symmetry for Ω 𝑡, 𝑧 :

𝐴𝑡,𝑧 𝑠 → Ω 𝑡, 𝑧 𝐴𝑡,𝑧 𝑠 +
1

𝑖𝑔
𝜕𝑡,𝑧 Ω† 𝑡, 𝑧

𝐴⊥ 𝑠 → Ω 𝑡, 𝑧 𝐴⊥ 𝑠 +
1

𝑖𝑔
𝜕⊥ Ω† 𝑡, 𝑧

= Ω 𝑡, 𝑧 𝐴⊥ 𝑠 Ω† 𝑡, 𝑧

4D DR-gauged YM action：

𝑆DR = න𝑑4𝑠 −
1

2
Tr𝐺𝜇𝜈𝐺

𝜇𝜈 +
1

2𝛼


⊥=𝑥,𝑦

Tr 𝜕⊥𝐴⊥
2

Gauge-fixing term

DR-gauged QCD Action and Residual Gauge Symmetry

This residual gauge symmetry is the same as 

2D QCD on the 𝑡-𝑧 plane.



Applying the 𝑡𝑧-projection, 4D DR-gauged tree-level YM action becomes

𝑆DR
𝑡𝑧 = න𝑑4𝑠 Tr𝐺𝑡𝑧

2 + 

⊥=𝑥,𝑦

Tr 𝜕⊥𝐴𝑡
2 − 𝜕⊥𝐴𝑧

2

𝒕𝒛-projection as removal of the ⊥-directed gluon fields 

𝒕𝒛-projection : removal of the ⊥-directed gluon fields, i.e.,  

𝐴𝑥,𝑦 𝑠 → 0 .

2D YM
Interaction between neighboring 2D YM systems

⊥= 𝑥, 𝑦

𝑡

2D QCD-like systems

𝑧

• 4D DR-gauged QCD action after 𝑡𝑧-projection 

can be expressed as 2D QCD-like systems 

on 𝑡-𝑧 planes.

• These 2D systems are piled in the 𝑥, 𝑦 directions 

and interact with neighboring planes. 

⊥= 𝑥, 𝑦



The DR gauge on a lattice is defined so as to maximize

𝑅DR
lat ≡

𝑠

ReTr 𝑈𝑥 𝑠 + 𝑈𝑦 𝑠 .

Lattice formalism of DR gauge

On a lattice, gauge fields 𝐴𝜇(𝑠) are expressed as link variables 𝑈𝜇 𝑠 ,

𝑈𝜇 s = exp 𝑖𝑎𝑔𝐴𝜇(s) .

（𝑎 : lattice spacing，𝑔 : gauge coupling）

Note: gauge fixing is performed for each gauge configuration generated in LQCD MC.

DR gauge on a lattice



Lattice formalism of 𝒕𝒛-projection

On a lattice, 𝑡𝑧-projection is defined as

𝑈⊥ s → 1 . 𝑈⊥ s = exp 𝑖𝑎𝑔𝐴⊥ s

The 𝑡𝑧-projection on a lattice changes the standard plaquette action as

𝑆𝑡𝑧−DR
lat = 𝛽

𝑠

1 −
1

𝑁𝑐
ReTr𝑃𝑡𝑧 𝑠 + 

𝜇=𝑡,𝑧

1 −
1

𝑁𝑐


⊥=𝑥,𝑦

ReTr 𝑈𝜇 𝑠 𝑈𝜇
† 𝑠 + 𝑎⊥

𝑈𝑡(𝑠)

𝑥, 𝑦𝑧

𝑡

𝑥, 𝑦
𝑧

𝑡

Ensemble of 2D YM systems Interactions between neighboring planes 

𝑃𝑡𝑧(𝑠)
𝑈𝑡
†(𝑠 + 𝑎⊥)

(𝑃𝑡𝑧: Plaquette)



Dimensional Reduction (DR) gauge :

Short summary of DR gauge

• The DR gauge is globally defined so as to minimize

𝑅DR ≡ න𝑑4𝑠 

⊥=𝑥,𝑦

Tr 𝐴⊥ 𝑠 2

• 4D DR-gauged QCD action has a residual gauge symmetry for 𝛀 𝒕, 𝒛 , and the 

symmetry is same as the gauge symmetry of 2D QCD on a 𝑡-𝑧 plane.

• After 𝑡𝑧-projection, 4D DR-gauged QCD can be expressed as 2D QCD-like systems 

on 𝒕-𝒛 planes.

• These 2D systems are piled in the 𝒙 and 𝒚 directions and interact with neighbors.

On a lattice, defined so as to maximize

𝑅DR
lat ≡

𝑠

Re Tr 𝑈𝑥 𝑠 + 𝑈𝑦 𝑠 .



Dimensional Reduction (DR) gauge :

Short summary of DR gauge

• The DR gauge is globally defined so as to minimize

𝑅DR ≡ න𝑑4𝑠 

⊥=𝑥,𝑦

Tr 𝐴⊥ 𝑠 2

• 4D DR-gauged QCD action has a residual gauge symmetry for 𝛀 𝒕, 𝒛 , and the 

symmetry is same as the gauge symmetry of 2D QCD on a 𝑡-𝑧 plane.

• After 𝑡𝑧-projection, 4D DR-gauged QCD can be expressed as 2D QCD-like systems 

on 𝒕-𝒛 planes.

• These 2D systems are piled in the 𝒙 and 𝒚 directions and interact with neighbors.

On a lattice, defined so as to maximize

𝑅DR
lat ≡

𝑠

Re Tr 𝑈𝑥 𝑠 + 𝑈𝑦 𝑠 .

Next step: Lattice QCD analysis of DR gauge



To investigate the non-perturbative properties of DR-gauged QCD, we perform 

SU(3) lattice QCD simulations at the quenched level.

Numerical Lattice QCD calculation

Settings:

• Generation of gauge configurations

- Gauge action: Standard plaquette action (𝛽 = 6.0↔ 𝑎 ≃ 0.1 fm)

- Lattice size: 244

- Configurations: 800 configurations 

(picked up every 1,000 sweeps after 20,000 sweeps for thermalization) 

• Gauge-fixing (Numerical maximization of 𝑅DR
lat )

- Gauge fixing is performed for each gauge configuration generated in LQCD.

- Iterative maximization algorithm (similar in Landau or Coulomb gauge).

- Over-Relaxation method with OR parameter 1.6.



𝑥, 𝑦

𝑡

𝑇

𝑟
𝑥, 𝑦

𝑡

𝑇

𝑟

𝑥, 𝑦

𝑡

𝑇

𝑟

𝑊(𝑟, 𝑇)

𝑊𝑡𝑧 𝑟, 𝑇 DR = 𝐴𝑒−𝑉
𝑡𝑧 𝑟 𝑇

𝑉𝑡𝑧 𝑟 = −
1

𝑇
ln 𝑊𝑡𝑧 𝑟, 𝑇 DR

𝑊𝑥𝑦 𝑟, 𝑇 DR = 𝐴𝑒−𝑉
𝑥𝑦 𝑟 𝑇

𝑉𝑥𝑦 𝑟 = −
1

𝑇
ln 𝑊𝑥𝑦 𝑟, 𝑇 DR

𝑊𝑡𝑧(𝑟, 𝑇)

𝑊𝑥𝑦(𝑟, 𝑇)

𝑡𝑧-projection

𝐴𝑥, 𝐴𝑦 → 0

𝐴𝑡 , 𝐴𝑧 ≠ 0

𝑥𝑦-projection

𝐴𝑥, 𝐴𝑦 ≠ 0

𝐴𝑡, 𝐴𝑧 → 0

How dominant are 𝑨𝒕 and 𝑨𝒛 in low-energy phenomena?

To investigate this, we apply the 𝑡𝑧-projection to the Wilson loop.

Wilson loop and interquark potential after 𝒕𝒛-projection in DR gauge 

Note: These projected Wilson loops are residual gauge invariant.



𝑥, 𝑦

𝑡

𝑇

𝑟
𝑥, 𝑦

𝑡

𝑇

𝑟

𝑥, 𝑦

𝑡

𝑇

𝑟

𝑊(𝑟, 𝑇)

𝑊𝑡𝑧 𝑟, 𝑇 DR = 𝐴𝑒−𝑉
𝑡𝑧 𝑟 𝑇

𝑉𝑡𝑧 𝑟 = −
1

𝑇
ln 𝑊𝑡𝑧 𝑟, 𝑇 DR

𝑊𝑥𝑦 𝑟, 𝑇 DR = 𝐴𝑒−𝑉
𝑥𝑦 𝑟 𝑇

𝑉𝑥𝑦 𝑟 = −
1

𝑇
ln 𝑊𝑥𝑦 𝑟, 𝑇 DR

𝑊𝑡𝑧(𝑟, 𝑇)

𝑊𝑥𝑦(𝑟, 𝑇)

𝑡𝑧-projection

𝐴𝑥, 𝐴𝑦 → 0

𝐴𝑡 , 𝐴𝑧 ≠ 0

𝑥𝑦-projection

𝐴𝑥, 𝐴𝑦 ≠ 0

𝐴𝑡, 𝐴𝑧 → 0

How dominant are 𝑨𝒕 and 𝑨𝒛 in low-energy phenomena?

To investigate this, we apply the 𝑡𝑧-projection to the Wilson loop.

Wilson loop and interquark potential after 𝒕𝒛-projection in DR gauge 

Note: These projected Wilson loops are residual gauge invariant.



𝑉𝑡𝑧 𝑟

Cornell potential in LQCD
from T. T. Takahashi, et al., Phys. 
Rev. D 65, 114509 (2002)  

Interquark potential from the 𝒕𝒛-projected Wilson loop in DR gauge 

The 𝑡𝑧-projected interquark potential 𝑉𝑡𝑧 𝑟 is in good agreement with the Cornell potential.

→The interquark potential is well reproduced with 𝐴𝑡 s and 𝐴𝑧 s in the DR gauge.



𝑥, 𝑦

𝑡

𝑇

𝑟
𝑥, 𝑦

𝑡

𝑇

𝑟

𝑥, 𝑦

𝑡

𝑇

𝑟

𝑊(𝑟, 𝑇)

𝑊𝑡𝑧 𝑟, 𝑇 DR = 𝐴𝑒−𝑉
𝑡𝑧 𝑟 𝑇

𝑉𝑡𝑧 𝑟 = −
1

𝑇
ln 𝑊𝑡𝑧 𝑟, 𝑇 DR

𝑊𝑥𝑦 𝑟, 𝑇 DR = 𝐴𝑒−𝑉
𝑥𝑦 𝑟 𝑇

𝑉𝑥𝑦 𝑟 = −
1

𝑇
ln 𝑊𝑥𝑦 𝑟, 𝑇 DR

𝑊𝑡𝑧(𝑟, 𝑇)

𝑊𝑥𝑦(𝑟, 𝑇)

𝑡𝑧-projection

𝐴𝑥, 𝐴𝑦 → 0

𝐴𝑡 , 𝐴𝑧 ≠ 0

𝑥𝑦-projection

𝐴𝑥, 𝐴𝑦 ≠ 0

𝐴𝑡, 𝐴𝑧 → 0

How dominant are 𝑨𝒕 and 𝑨𝒛 in low-energy phenomena?

To investigate this, we apply the 𝑡𝑧-projection to the Wilson loop.

How about 𝒙𝒚-projected case? 

Note: These projected Wilson loops are residual gauge invariant.



𝑟 = 3

𝑟 = 9
𝑟 = 6

𝑟 = 1

• 𝑈𝑇 の Wilson loop への寄与The 𝒙𝒚-projected Wilson loop in DR gauge 

The 𝑥𝑦-projected Wilson loop 𝑊𝑥𝑦 𝑟, 𝑇 DR is independent of 𝑇.
Thus, the 𝑥𝑦-projected interquark potential becomes zero,

𝑉𝑥𝑦 𝑟 = − lim
𝑇→∞

1

𝑇
ln 𝑊𝑥𝑦 𝑟, 𝑇 DR = 0 .



Short summary of projected Wilson loops in DR gauge 

• 𝒕𝒛-projection

The 𝑡𝑧-projected interquark potential 𝑉𝑡𝑧 𝑟 is in good agreement 

with the Cornell potential.

→ The interquark potential is well reproduced with 𝐴𝑡 s and 𝐴𝑧 s .

In DR gauge, 

• 𝒙𝒚-projection

The 𝑥𝑦-projected Wilson loop 𝑊𝑥𝑦 𝑟, 𝑇 DR is independent of 𝑇.

→ The 𝑥𝑦-projected interquark potential becomes zero, 𝑉𝑥𝑦 𝑟 = 0 .

In DR gauge, 

• 𝐴𝑡 s and 𝐴𝑧 s play a dominant role in quark confinement.

• 𝐴𝑥(𝑠) and 𝐴𝑦(𝑠) are inactive in the infrared region.



Short summary of projected Wilson loops in DR gauge 

• 𝒕𝒛-projection

The 𝑡𝑧-projected interquark potential 𝑉𝑡𝑧 𝑟 is in good agreement 

with the Cornell potential.

→ The interquark potential is well reproduced with 𝐴𝑡 s and 𝐴𝑧 s .

In DR gauge, 

• 𝒙𝒚-projection

The 𝑥𝑦-projected Wilson loop 𝑊𝑥𝑦 𝑟, 𝑇 DR is independent of 𝑇.

→ The 𝑥𝑦-projected interquark potential becomes zero, 𝑉𝑥𝑦 𝑟 = 0 .

In DR gauge, 

• 𝐴𝑡 s and 𝐴𝑧 s play a dominant role in quark confinement.

• 𝐴𝑥(𝑠) and 𝐴𝑦(𝑠) are inactive in the infrared region.

Why are 𝑨𝒙 𝒔 and 𝑨𝒚 𝒔 inactive in the infrared region in the DR gauge?



Why are 𝑨𝒙 𝒔 and 𝑨𝒚 𝒔 inactive in the infrared region in the DR gauge?

𝐹 𝑟 ≡
1

𝑁𝑐
Tr 𝑈𝑥 0 𝑈𝑥

† 𝑟𝑎𝑥
DR

=
𝑎2

𝛽
𝐴𝑥
𝑎 0 𝐴𝑥

𝑎 𝑟𝑎𝑥 DR + 1 −
𝑎2

𝛽
𝐴𝑥
𝑎 0 2

DR + 𝑂(𝑎3)

Spatial correlation and spatial mass of 𝑨𝒙 𝒔 and 𝑨𝒚 𝒔

The spatial correlation of two link-variables:

𝑈𝑥(𝑠) 𝑈𝑥
†(𝑠 + 𝑟𝑎𝑥)

𝑟

𝑥, 𝑦
𝑧

𝑡



Why are 𝑨𝒙 𝒔 and 𝑨𝒚 𝒔 inactive in the infrared region in the DR gauge?

𝐹 𝑟 ≡
1

𝑁𝑐
Tr 𝑈𝑥 0 𝑈𝑥

† 𝑟𝑎𝑥
DR

=
𝑎2

𝛽
𝐴𝑥
𝑎 0 𝐴𝑥

𝑎 𝑟𝑎𝑥 DR + 1 −
𝑎2

𝛽
𝐴𝑥
𝑎 0 2

DR + 𝑂(𝑎3)

Spatial correlation and spatial mass of 𝑨𝒙 𝒔 and 𝑨𝒚 𝒔

The spatial correlation of two link-variables:

constantGluon propagator 

in DR gauge

Estimate the spatial “mass” of 𝐴𝑥 𝑠 and 𝐴𝑦 𝑠 from 

the infrared behavior of 𝐹 𝑟 .𝑈𝑥(𝑠) 𝑈𝑥
†(𝑠 + 𝑟𝑎𝑥)

𝑟

𝑥, 𝑦
𝑧

𝑡



𝐹 𝑟 ≡
1

𝑁𝑐
Tr 𝑈𝑥 0 𝑈𝑥

† 𝑟𝑎𝑥 DR

Best exponential fit, 𝐴𝑒−𝑀⊥𝑟 + 𝐵

𝐴 ≃ 0.155,
𝑀⊥ ≃ 0.87𝑎−1 ≃ 𝟏. 𝟕𝟏 GeV,
𝐵 ≃ 0.851 .

Spatial correlation and spatial mass of 𝑨𝒙 𝒔 and 𝑨𝒚 𝒔

The spatial link correlation is well reproduced with 𝐹 𝑟 ≃ 𝐴𝑒−𝑀⊥𝑟 + 𝐵
and the fit parameters are



𝐹 𝑟 ≡
1

𝑁𝑐
Tr 𝑈𝑥 0 𝑈𝑥

† 𝑟𝑎𝑥 DR

Best exponential fit, 𝐴𝑒−𝑀⊥𝑟 + 𝐵

𝐴 ≃ 0.155,
𝑀⊥ ≃ 0.87𝑎−1 ≃ 𝟏. 𝟕𝟏 GeV,
𝐵 ≃ 0.851 .

Spatial correlation and spatial mass of 𝑨𝒙 𝒔 and 𝑨𝒚 𝒔

This results implies that the large mass  of 

𝐴𝑥 𝑠 and 𝐴𝑦 𝑠 becomes them inactive in 

the infrared region.

The spatial link correlation is well reproduced with 𝐹 𝑟 ≃ 𝐴𝑒−𝑀⊥𝑟 + 𝐵
and the fit parameters are



We try to consider a possibility that low-energy phenomena are described 

in 2D degrees of freedom, 𝐴𝑡 s and 𝐴𝑧 s , in DR-gauged QCD.

Signs of low-dimensionalization of 4D QCD in DR gauge

In DR gauge, 

• 𝐴𝑡 s and 𝐴𝑧 s play a dominant role in quark confinement.

• 𝐴𝑥(𝑠) and 𝐴𝑦(𝑠) are inactive in the infrared region.

• The large mass of 𝐴𝑥(𝑠) and 𝐴𝑦(𝑠) seems to make them infrared inactive.

⊥= 𝑥, 𝑦

𝑡

2D QCD-like systems

𝑧



We try to consider a possibility that low-energy phenomena are described 

in 2D degrees of freedom, 𝐴𝑡 s and 𝐴𝑧 s , in DR-gauged QCD.

Signs of low-dimensionalization of 4D QCD in DR gauge

In DR gauge, 

• 𝐴𝑡 s and 𝐴𝑧 s play a dominant role in quark confinement.

• 𝐴𝑥(𝑠) and 𝐴𝑦(𝑠) are inactive in the infrared region.

• The large mass of 𝐴𝑥(𝑠) and 𝐴𝑦(𝑠) seems to make them infrared inactive.

⊥= 𝑥, 𝑦

𝑡

2D QCD-like systems

𝑧

DR-gauged YM action has a neighboring 

interaction between 2D systems.

We investigate a correlations produced by 

this interaction in LQCD.



𝑈𝑡(𝑠) 𝑈𝑡
†(𝑠 + 𝑟𝑎⊥)

𝑟

𝑥, 𝑦
𝑧

𝑡
𝐶 𝑟 ≡

1

𝑁𝑐
ReTr 𝑈𝑡 𝑠 𝑈𝑡

† 𝑠 + 𝑟𝑎⊥
DR

Neighboring interaction and spatial correlation of temporal-links

We calculate the spatial correlation between two temporal-links.

The 𝑡𝑧-projected lattice action has a local interaction

𝛽

𝑠



𝜇=𝑡,𝑧

1 −
1

𝑁𝑐


⊥=𝑥,𝑦

ReTr 𝑈𝜇 𝑠 𝑈𝜇
† 𝑠 + 𝑎⊥ .

This interaction provides a distant correlation between 𝒕-𝒛 planes 

in the 𝒙 and 𝒚 directions.



This correlation is well reproduced with exponential function 𝑪 𝒓 ≃ 𝑨𝒆−𝒎𝒓

and the exponent 𝑚 has a value of

𝒎 ≃ 𝟎. 𝟑𝟐𝒂−𝟏 ≃ 𝟎. 𝟔𝟒 𝐆𝐞𝐕 . 𝐴 ≃ 0.83

Neighboring interaction and spatial correlation of temporal-links

Thus, the correlation length 𝝃 ≡ 𝟏/𝒎 ≃ 𝟎. 𝟑 𝐟𝐦. 

𝐶 𝑟 ≡
1

𝑁𝑐
ReTr 𝑈𝑡 𝑠 𝑈𝑡

† 𝑠 + 𝑟𝑎⊥ DR

Best exponential fit, 𝐴𝑒−𝑚𝑟



To get a rough picture of low-dimensionalization of 4D QCD

For an analytical modeling of the 𝑡𝑧-projected 4D YM theory, 
we make a crude approximation of the exponential correlation 𝑪(𝒓).

That is, we make a replacement of

𝑪 𝒓 =
𝟏

𝑵𝒄
𝐑𝐞𝐓𝐫 𝑼𝒕 𝒔 𝑼𝒕

† 𝒔 + 𝒓𝒂⊥ 𝑫𝑹
→ 𝜽 𝝃 − 𝒓 = ቊ

𝟏 𝒓 < 𝝃
𝟎 (𝒓 > 𝝃)

Under this approximation,

𝑟 < 𝜉 : 𝑈𝑡 𝑠 and 𝑈𝑡 𝑠 + 𝑟𝑎⊥ are same.

𝑟 > 𝜉 : 𝑈𝑡 𝑠 and 𝑈𝑡 𝑠 + 𝑟𝑎⊥ have no correlation in the 𝑥 and 𝑦 directions.



Crude approximation of temporal-link-correlation

Under the crude approximation, 𝐶 𝑟 → 𝜃 𝜉 − 𝑟 , DR-gauged 4D QCD can 

be regarded as an ensemble of 2D QCD systems on 𝒕-𝒛 layers, which 

have the width 𝝃 and are piled in the 𝒙 and 𝒚 directions.

These layers are independent and do not interact each other.

𝑥, 𝑦

𝑡

2D QCD-like systems

𝑧

𝑥, 𝑦

𝑡

2D QCD systems

𝑧

𝝃

𝐶 𝑟 → 𝜃 𝜉 − 𝑟



Demonstration: interquark potential in a 𝒕-𝒛 layer

These 2D layers can be labeled by two integers 𝑚, 𝑛 instead of 𝑥, 𝑦 .

Tree-level action of 4D DR-gauged QCD:

𝑆DR
𝑡𝑧 ≃ 

𝑀= 𝑚,𝑛

𝜉2න𝑑𝑡𝑑𝑧 Tr 𝐺𝑡𝑧 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉 2 =

𝑀

න𝑑𝑡𝑑𝑧
1

2
Tr 𝒢𝜇𝜈

𝑀 𝑡, 𝑧 2

Rescaling with the correlation length 𝜉 :

𝐴𝜇 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉 → 𝒜𝜇
𝑀 𝑡, 𝑧 ≡ 𝜉𝐴𝜇 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉

𝐺𝑡𝑧 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉 → 𝒢𝜇𝜈
𝑀 𝑡, 𝑧 ≡ 𝜕𝜇𝒜𝜈

𝑀 − 𝜕𝜈𝒜𝜇
𝑀 + 𝑖𝔤2D 𝒜𝜇

𝑀, 𝒜𝜈
𝑀

Relation between 4D and 2D QCD coupling: 𝖌𝟐𝐃 ≡ 𝒈/𝝃



Demonstration: interquark potential in a 𝒕-𝒛 layer

These 2D layers can be labeled by two integers 𝑚, 𝑛 instead of 𝑥, 𝑦 .

Tree-level action of 4D DR-gauged QCD:

𝑆DR
𝑡𝑧 ≃ 

𝑀= 𝑚,𝑛

𝜉2න𝑑𝑡𝑑𝑧 Tr 𝐺𝑡𝑧 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉 2 =

𝑀

න𝑑𝑡𝑑𝑧
1

2
Tr 𝒢𝜇𝜈

𝑀 𝑡, 𝑧 2

Rescaling with the correlation length 𝜉 :

𝐴𝜇 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉 → 𝒜𝜇
𝑀 𝑡, 𝑧 ≡ 𝜉𝐴𝜇 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉

𝐺𝑡𝑧 𝑡, 𝑧;𝑚𝜉, 𝑛𝜉 → 𝒢𝜇𝜈
𝑀 𝑡, 𝑧 ≡ 𝜕𝜇𝒜𝜈

𝑀 − 𝜕𝜈𝒜𝜇
𝑀 + 𝑖𝔤2D 𝒜𝜇

𝑀, 𝒜𝜈
𝑀

The tree-level interquark potential for quarks in a 𝑡-𝑧 layer is calculated as

𝑽𝐭𝐫𝐞𝐞 𝒓 =
𝖌𝟐𝐃
𝟐

𝟐
⋅
𝟒

𝟑
𝒓 =

𝒈𝟐

𝝃𝟐
⋅
𝟐

𝟑
𝒓 = 𝝈𝟐𝐃𝒓 .

For 𝛽 = 2𝑁𝑐/𝑔
2 = 6.0 𝑔 = 1.0 , because of 𝜉 ≃ 0.3 fm, we find 𝜎2D ≃ 1.37 GeV/fm

The scale of “reduced” 2D QCD is determined by the correlation length 𝝃 .

Relation between 4D and 2D QCD coupling: 𝖌𝟐𝐃 ≡ 𝒈/𝝃

(c.f. 𝜎4D ≃ 0.89 GeV/fm)



We proposed a new gauge fixing of “Dimensional Reduction (DR)” gauge and 

investigated the properties of DR gauge.

As a result, we have found that, in DR gauge,

Summary

1. Interquark potential is reproduced only with 𝑨𝒕(𝒔) and 𝑨𝒛(𝒔),  
and they play a dominant role in quark confinement.

2. Two-gauge components, 𝑨𝒙(𝒔) and 𝑨𝒚(𝒔) are infrared inactive, 

which seems to be caused by their large spatial “mass ”.

3. The spatial correlation of 𝑼𝒕(𝒔) and 𝑼𝒕(𝒔 + 𝒓𝒂⊥) decreases 

exponentially as 𝑪 𝒓 ∝ 𝒆−𝒎𝒓 with 𝒎 ≃ 𝟎. 𝟔𝟒 𝐆𝐞𝐕.

4. Using a crude approximation of 𝐶 𝑟 → 𝜃 𝜉 − 𝑟 , 4D DR-gauged 

QCD theory can be regarded as an ensemble of 2D QCD systems.

For details, please see our PRD paper, Phys. Rev. D 110, 034505 (2024).



Future works

1. We are performing this subject with multi beta to investigate scaling 

properties.

2. Improvement of modeling to include the exponential correlation 𝐶(𝑟)
properly.

3. Including quark degrees of freedom.

- Chiral symmetry breaking 
Note: quarks are not bounded in each 2D layer

but spread over 4D spacetime.

- Hadron spectroscopy (e.g., 𝑁-Δ splitting)



Back Up



Distance between a link variables 𝑈𝜇 𝑠 = 𝑒𝑖𝑎𝑔𝐴𝜇 𝑠 and a unit matrix 𝐼：

𝑑 𝑈𝜇 , 𝐼
2
=

1

2𝑁𝑐
Tr 𝑈𝜇 − 𝐼

†
𝑈𝜇 − 𝐼

gauge ⟨𝑑(𝑈𝜇, 𝐼)
2⟩

No fixing 1.000

DR ( 𝜇 = 𝑡, 𝑧 ) 1.000

DR ( ⊥= 𝑥, 𝑦 ) 0.076

The amplitudes of two components 𝑨𝒙 and 𝑨𝒚 are 

strongly suppressed by the DR gauge fixing.

Local property of link-variables in DR gauge

𝛽 = 6.0, 244



Distance between a link variables 𝑈𝜇 𝑠 = 𝑒𝑖𝑎𝑔𝐴𝜇 𝑠 and a unit matrix 𝐼：

𝑑 𝑈𝜇 , 𝐼
2
=

1

2𝑁𝑐
Tr 𝑈𝜇 − 𝐼

†
𝑈𝜇 − 𝐼

=
1

𝑁𝑐
Tr 𝐼 − Re𝑈𝜇

The reason of unity values of ⟨𝒅(𝑼𝝁, 𝑰)
𝟐⟩

Then, the VEV of 𝑑 𝑈𝜇 , 𝐼
2

becomes

𝑑 𝑈𝜇 , 𝐼
2
= න𝒟𝑈𝜇

1

𝑁𝑐
Tr 𝐼 − Re𝑈𝜇

= න𝒟𝑈𝜇 1 −
1

𝑁𝑐
ReTr𝑈𝜇

= 1 This term is not gauge invariant and 

disappears because of Elitzur’s theorem.



Maximally Abelian gauge

• The amplitudes of 𝐴𝜇
𝛼 𝑠 is strongly 

suppressed.

• Residual gauge symmetry of 

U 1 Nc−1.

• Abelian components 𝐴𝜇
𝑖 𝑠 play a 

dominant role for confinement.

• Off-diagonal components 𝐴𝜇
𝛼 𝑠 are 

inactive in the low-energy region.

This is because of the large mass of 

𝐴𝜇
𝛼 𝑠 .

Definition:

𝑅MA ≡ න𝑑4𝑠 

𝜇



𝛼

𝐴𝜇
𝛼 𝑠 𝐴𝜇

−𝛼 (𝑠)

Comparison of DR gauge and Maximally Abelian gauge

DR gauge

Definition:

𝑅DR ≡ න𝑑4𝑠 

⊥=𝑥,𝑦

Tr 𝐴⊥ 𝑠 2

• Residual gauge symmetry of 

2D QCD.

• The amplitudes of 𝐴⊥ 𝑠 strongly 

suppressed.

• 𝑡 and 𝑧 components 𝐴𝑡,𝑧 𝑠 play a 

dominant role for confinement. 

• 𝑥 and 𝑦 components 𝐴𝑥,𝑦 𝑠 are 

inactive in the low-energy region?

This is because of the large mass of 

𝐴𝑥,𝑦 𝑠 .



Multi beta calculation of correlation of two temporal-links

The exponent 𝑚 may increase as 𝛽 increase.

Can we understand this behavior in physical viewpoint? 

𝐶 𝑟 ≃ 𝐴𝑒−𝑚𝑟, 𝑚 ≃ ൞

0.64 GeV 𝛽 = 6.0,𝑚𝑎 ≃ 3.2

0.59 GeV 𝛽 = 5.8,𝑚𝑎 ≃ 3.0

0.54 GeV 𝛽 = 5.7,𝑚𝑎 ≃ 2.8

𝛽 = 5.7, 164 (𝑎 ≃ 0.186 fm)

𝛽 = 6.0, 244 (𝑎 ≃ 0.100 fm)
𝛽 = 5.8, 164 (𝑎 ≃ 0.145 fm)

Preliminary



A way to improve the crude approximation 

𝑟

𝐶(𝑟)

0 𝜉

1

Crude approximation

𝐶 𝑟 = 𝜃(𝜉 − 𝑟)

Improved approximation

𝐶 𝑟 = σ𝑛𝐴𝑛 𝜃(𝜉𝑛 − 𝑟) ?

𝑟

𝐶(𝑟)

0 𝜉

1

Will improved approximations allow for a more realistic 

consideration of the impact of correlations?



Correlation between two plaquettes

𝑥, 𝑦
𝑧

𝑡

We consider the spatial (𝑥, 𝑦-directed) correlation of two temporal-links.

How about the spatial correlation of two plaquettes (which are on 𝑡-𝑧 planes)?

𝑟 Preliminary

The correlation decrease more rapidly.

The data is good agreement with two functions,

• Yukawa function 𝐴𝑒−𝑚𝑟/𝑟 ,

• modified Bessel function of 2nd kind 𝐴𝐾3/2(𝑚𝑟) .

𝑚 ≃ 3.0 GeV

𝑚 ≃ 3.3 GeV

with subtraction of trace part


