Towards low-dimensionalization of four dimensional QCD

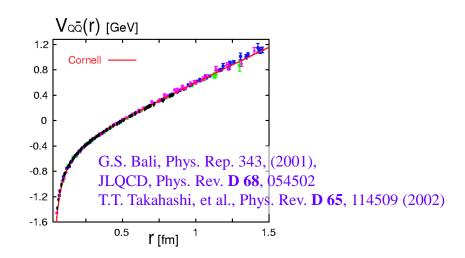
Department of Physics, Kyoto University Kei Tohme, Hideo Suganuma

> Based on Phys. Rev. **D 110**, 034505 (2024), hep-lat :2405.03172 (16 pages)

The XVIth Quark Confinement and the Hadron Spectrum Conference @Cairns, Australia (22nd Aug. 2024)

Motivation: Quark Confinement and Dimensional Reduction of 4D QCD

Quark confinement is characterized by a linear interquark potential and one-dimensional squeezing of color-electric fields.



one-dimensional squeezed color-electric flux

Inspired by low-dimensionalization of color-electric flux, we consider that there might be an aspect of dimensional reduction in non-perturbative 4D QCD.

We try to extract 2D picture from non-perturbative 4D QCD. To this end, we utilize gauge degrees of freedom.

Dimensional Reduction (DR) Gauge

We propose a new gauge fixing, "Dimensional Reduction (DR) gauge"

Dimensional Reduction GaugeThe gauge globally defined so as to minimize
$$R_{DR} \equiv \int d^4 s \sum_{\perp=x,y} \operatorname{Tr}[A_{\perp}(s)^2] \quad (\perp=x,y)$$
 $= \int d^4 s \operatorname{Tr}[A_x(s)^2 + A_y(s)^2]$

DR gauge can be defined in both Minkowski and Euclidean spacetime.

Local gauge fixing condition is

$$\partial_{\perp}A_{\perp}(s) \equiv \partial_{\chi}A_{\chi}(s) + \partial_{\gamma}A_{\gamma}(s) = 0.$$

DR-gauged QCD Action and Residual Gauge Symmetry

4D DR-gauged YM action :

$$S_{\rm DR} = \int d^4s \left[-\frac{1}{2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} + \frac{1}{2\alpha} \sum_{\perp = x,y} \operatorname{Tr} (\partial_{\perp} A_{\perp})^2 \right]$$

Gauge-fixing term

This action has a residual gauge symmetry for $\Omega(t, z)$:

$$\begin{aligned} A_{t,z}(s) &\to \Omega(t,z) \left(A_{t,z}(s) + \frac{1}{ig} \partial_{t,z} \right) \Omega^{\dagger}(t,z) \\ A_{\perp}(s) &\to \Omega(t,z) \left(A_{\perp}(s) + \frac{1}{ig} \partial_{\perp} \right) \Omega^{\dagger}(t,z) \\ &= \Omega(t,z) A_{\perp}(s) \Omega^{\dagger}(t,z) \end{aligned}$$

This residual gauge symmetry is the same as 2D QCD on the *t*-*z* plane.

tz-projection as removal of the \perp -directed gluon fields

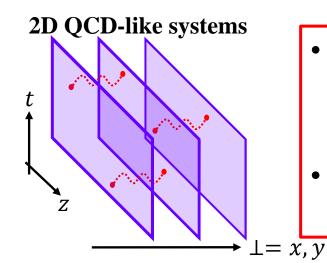
tz-projection : removal of the \perp -directed gluon fields, i.e.,

$$A_{\chi,y}(s) \to 0$$
.

Applying the *tz*-projection, 4D DR-gauged tree-level YM action becomes

$$S_{\rm DR}^{tz} = \int d^4s \left[\frac{{\rm Tr}G_{tz}^2}{{\rm 2D \ YM}} + \sum_{\perp=x,y} {\rm Tr}\{(\partial_{\perp}A_t)^2 - (\partial_{\perp}A_z)^2\} \right] \quad (\perp=x,y)$$

Interaction between neighboring 2D YM systems

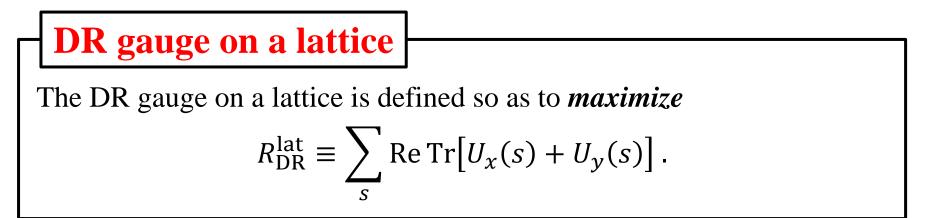


- 4D DR-gauged QCD action after *tz*-projection can be expressed as 2D QCD-like systems on *t*-*z* planes.
- These 2D systems are piled in the *x*, *y* directions and interact with neighboring planes.

Lattice formalism of DR gauge

On a lattice, gauge fields $A_{\mu}(s)$ are expressed as link variables $U_{\mu}(s)$, $U_{\mu}(s) = \exp[iagA_{\mu}(s)]$.

(a : lattice spacing, g : gauge coupling)



Note: gauge fixing is performed for each gauge configuration generated in LQCD MC.

Lattice formalism of *tz*-projection

 $P_{tz}(s)$

On a lattice, *tz*-projection is defined as

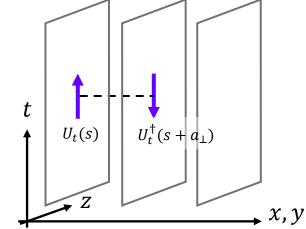
$$U_{\perp}(s) \rightarrow 1$$
. $(U_{\perp}(s) = \exp[iagA_{\perp}(s)])$

The *tz*-projection on a lattice changes the standard plaquette action as

x, *y*

$$S_{tz-DR}^{\text{lat}} = \beta \sum_{s} \left[\left\{ 1 - \frac{1}{N_c} \operatorname{ReTr}P_{tz}(s) \right\} + \sum_{\mu=t,z} \left\{ 1 - \frac{1}{N_c} \sum_{\perp=x,y} \operatorname{ReTr}[U_{\mu}(s)U_{\mu}^{\dagger}(s+a_{\perp})] \right\} \right]$$

$$(P_{tz}: \text{ Plaquette})$$
Ensemble of 2D YM systems
Interactions between neighboring planes



Short summary of DR gauge

Dimensional Reduction (DR) gauge :

• The DR gauge is globally defined so as to *minimize*

$$R_{\rm DR} \equiv \int d^4 s \, \sum_{\perp=x,y} {\rm Tr}[A_{\perp}(s)^2]$$

On a lattice, defined so as to *maximize*

$$R_{\text{DR}}^{\text{lat}} \equiv \sum_{s} \text{Re} \operatorname{Tr} [U_x(s) + U_y(s)].$$

- 4D DR-gauged QCD action has a residual gauge symmetry for $\Omega(t, z)$, and the symmetry is same as the gauge symmetry of 2D QCD on a *t*-*z* plane.
- After *tz*-projection, **4D DR-gauged QCD can be expressed as 2D QCD-like systems** on *t*-*z* planes.
- These 2D systems are piled in the *x* and *y* directions and interact with neighbors.

Short summary of DR gauge

Dimensional Reduction (DR) gauge :

• The DR gauge is globally defined so as to *minimize*

$$R_{\rm DR} \equiv \int d^4s \, \sum_{\perp=x,y} {\rm Tr}[A_{\perp}(s)^2]$$

On a lattice, defined so as to *maximize*

$$R_{\text{DR}}^{\text{lat}} \equiv \sum_{s} \text{Re} \operatorname{Tr} [U_x(s) + U_y(s)].$$

- 4D DR-gauged QCD action has a residual gauge symmetry for $\Omega(t, z)$, and the symmetry is same as the gauge symmetry of 2D QCD on a *t*-*z* plane.
- After *tz*-projection, **4D DR-gauged QCD can be expressed as 2D QCD-like systems** on *t-z* planes.
- These 2D systems are piled in the *x* and *y* directions and interact with neighbors.

Next step: Lattice QCD analysis of DR gauge

Numerical Lattice QCD calculation

To investigate the non-perturbative properties of DR-gauged QCD, we perform SU(3) lattice QCD simulations at the quenched level.

Settings:

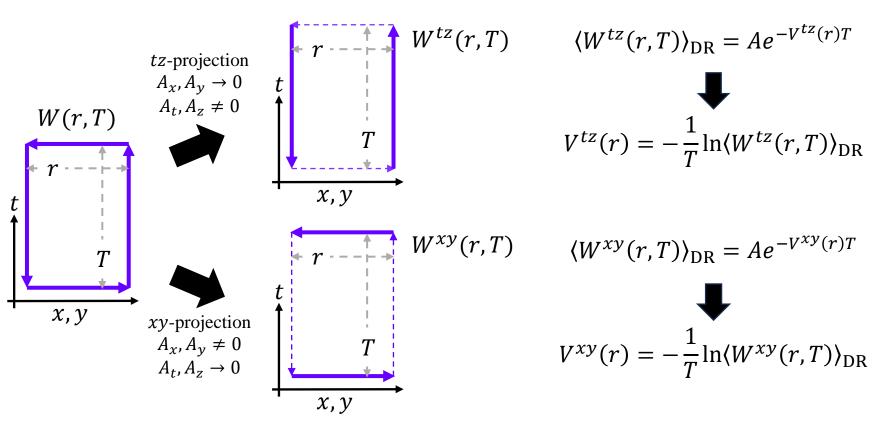
- Generation of gauge configurations
 - Gauge action: Standard plaquette action ($\beta = 6.0 \Leftrightarrow a \simeq 0.1 \text{ fm}$)
 - Lattice size: 24⁴
 - Configurations: 800 configurations

(picked up every 1,000 sweeps after 20,000 sweeps for thermalization)

- Gauge-fixing (Numerical maximization of R_{DR}^{lat})
 - Gauge fixing is performed for each gauge configuration generated in LQCD.
 - Iterative maximization algorithm (similar in Landau or Coulomb gauge).
 - Over-Relaxation method with OR parameter 1.6.

Wilson loop and interquark potential after tz-projection in DR gauge

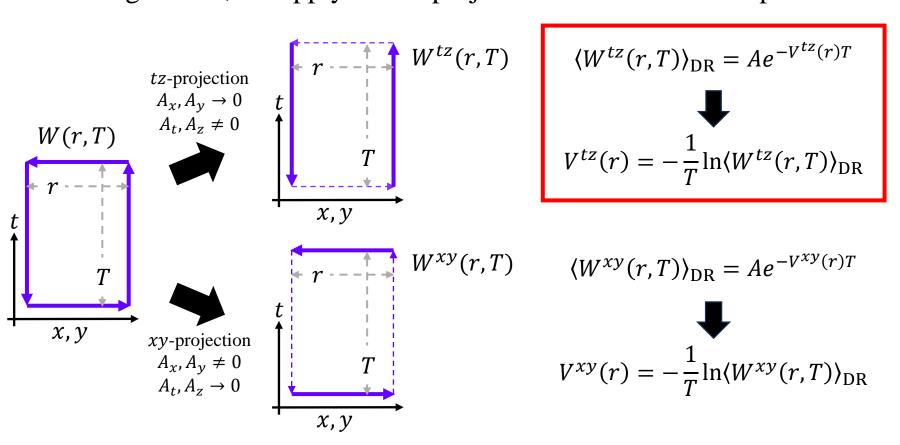
How dominant are A_t and A_z in low-energy phenomena? To investigate this, we apply the *tz*-projection to the Wilson loop.



Note: These projected Wilson loops are residual gauge invariant.

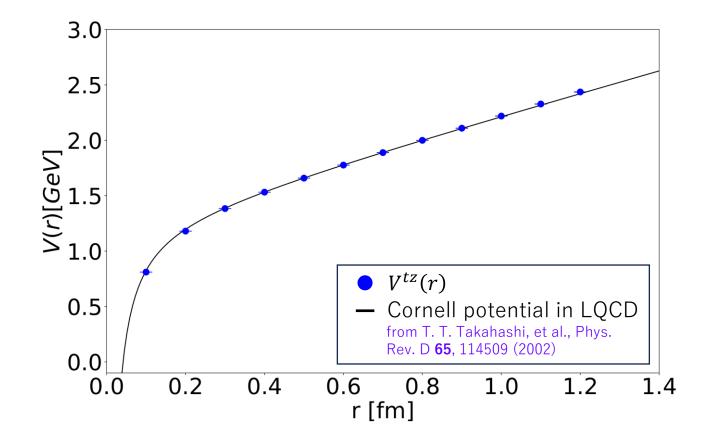
Wilson loop and interquark potential after tz-projection in DR gauge

How dominant are A_t and A_z in low-energy phenomena? To investigate this, we apply the *tz*-projection to the Wilson loop.



Note: These projected Wilson loops are residual gauge invariant.

Interquark potential from the tz-projected Wilson loop in DR gauge

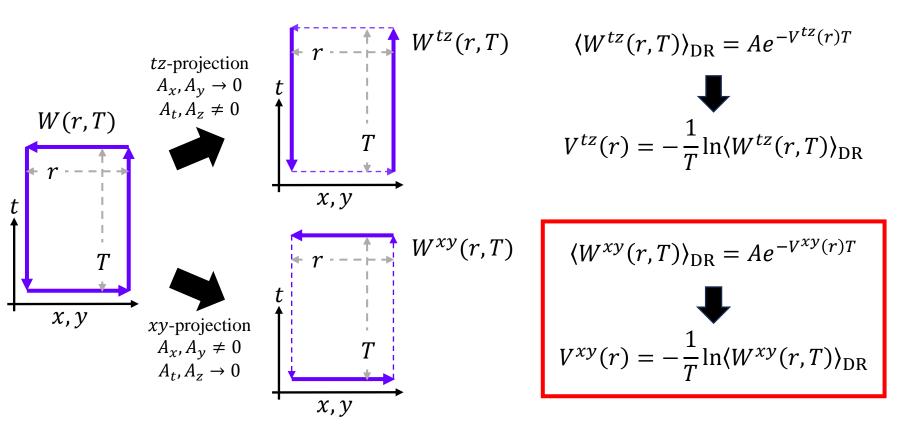


The *tz*-projected interquark potential $V^{tz}(r)$ is in good agreement with the Cornell potential. \rightarrow The interquark potential is well reproduced with $A_t(s)$ and $A_z(s)$ in the DR gauge.

How about xy-projected case?

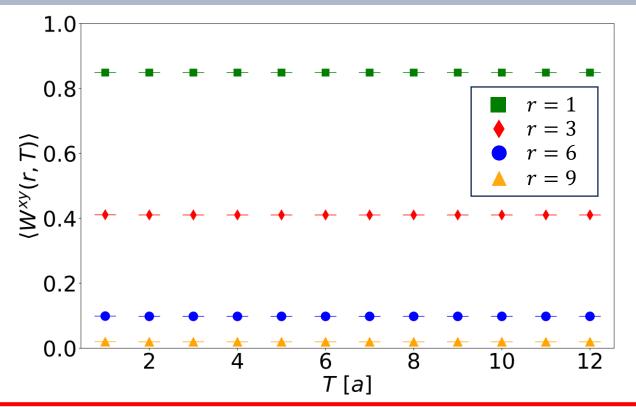
How dominant are A_t and A_z in low-energy phenomena?

To investigate this, we apply the *tz*-projection to the Wilson loop.



Note: These projected Wilson loops are residual gauge invariant.

The xy-projected Wilson loop in DR gauge



The *xy*-projected Wilson loop $\langle W^{xy}(r,T) \rangle_{\text{DR}}$ is independent of *T*. Thus, the *xy*-projected interquark potential becomes zero, $V^{xy}(r) = -\lim_{T \to \infty} \frac{1}{T} \ln \langle W^{xy}(r,T) \rangle_{\text{DR}} = 0$.

Short summary of projected Wilson loops in DR gauge

In DR gauge,

• *tz*-projection

The *tz*-projected interquark potential $V^{tz}(r)$ is in good agreement with the Cornell potential.

 \rightarrow The interquark potential is well reproduced with $A_t(s)$ and $A_z(s)$.

• xy-projection

The *xy*-projected Wilson loop $\langle W^{xy}(r,T) \rangle_{DR}$ is independent of *T*. \rightarrow The *xy*-projected interquark potential becomes zero, $V^{xy}(r) = 0$.

In DR gauge,

- $A_t(s)$ and $A_z(s)$ play a dominant role in quark confinement.
- $A_x(s)$ and $A_y(s)$ are inactive in the infrared region.

Short summary of projected Wilson loops in DR gauge

In DR gauge,

• *tz*-projection

The *tz*-projected interquark potential $V^{tz}(r)$ is in good agreement with the Cornell potential.

 \rightarrow The interquark potential is well reproduced with $A_t(s)$ and $A_z(s)$.

• xy-projection

The *xy*-projected Wilson loop $\langle W^{xy}(r,T) \rangle_{DR}$ is independent of *T*. \rightarrow The *xy*-projected interquark potential becomes zero, $V^{xy}(r) = 0$.

In DR gauge,

- $A_t(s)$ and $A_z(s)$ play a dominant role in quark confinement.
- $A_x(s)$ and $A_y(s)$ are inactive in the infrared region.

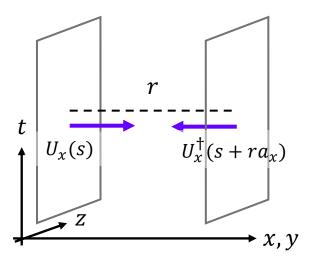
Why are $A_x(s)$ and $A_y(s)$ inactive in the infrared region in the DR gauge?

Spatial correlation and spatial mass of $A_x(s)$ and $A_y(s)$

Why are $A_x(s)$ and $A_y(s)$ inactive in the infrared region in the DR gauge?

The spatial correlation of two link-variables:

$$F(r) \equiv \frac{1}{N_c} \left\langle \operatorname{Tr} U_x(0) U_x^{\dagger}(ra_x) \right\rangle_{\mathrm{DR}}$$
$$= \frac{a^2}{\beta} \left\langle A_x^a(0) A_x^a(ra_x) \right\rangle_{\mathrm{DR}} + \left\{ 1 - \frac{a^2}{\beta} \left\langle A_x^a(0)^2 \right\rangle_{\mathrm{DR}} \right\} + O(a^3)$$



Spatial correlation and spatial mass of $A_x(s)$ and $A_y(s)$

Why are $A_x(s)$ and $A_y(s)$ inactive in the infrared region in the DR gauge?

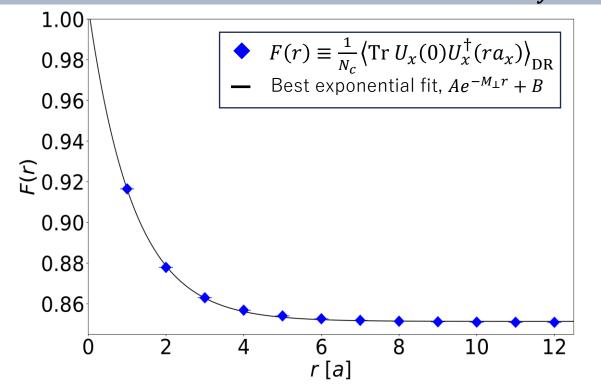
The spatial correlation of two link-variables:

 $U_x(s)$

$$F(r) \equiv \frac{1}{N_c} \left\langle \operatorname{Tr} U_x(0) U_x^{\dagger}(ra_x) \right\rangle_{\mathrm{DR}}$$

= $\frac{a^2}{\beta} \langle A_x^a(0) A_x^a(ra_x) \rangle_{\mathrm{DR}} + \left\{ 1 - \frac{a^2}{\beta} \langle A_x^a(0)^2 \rangle_{\mathrm{DR}} \right\} + O(a^3)$
Gluon propagator constant
in DR gauge
Estimate the spatial "mass" of $A_x(s)$ and $A_y(s)$ from
the infrared behavior of $F(r)$.

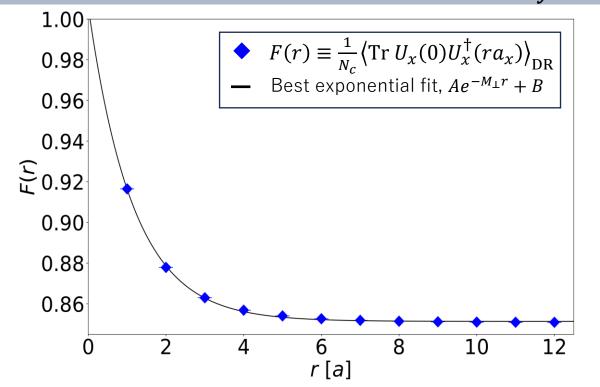
Spatial correlation and spatial mass of $A_x(s)$ and $A_y(s)$



The spatial link correlation is well reproduced with $F(r) \simeq Ae^{-M_{\perp}r} + B$ and the fit parameters are

 $A \simeq 0.155,$ $M_{\perp} \simeq 0.87 a^{-1} \simeq 1.71$ GeV, $B \simeq 0.851$.

Spatial correlation and spatial mass of $A_x(s)$ and $A_y(s)$



The spatial link correlation is well reproduced with $F(r) \simeq Ae^{-M_{\perp}r} + B$ and the fit parameters are $A \simeq 0.155$, $M_{\perp} \simeq 0.87a^{-1} \simeq 1.71$ GeV, This results implies that the large mass of $A_x(s)$ and $A_y(s)$ becomes them inactive in

 $B \simeq 0.851$.

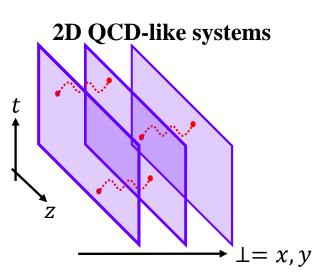
the infrared region.

Signs of low-dimensionalization of 4D QCD in DR gauge

In DR gauge,

- $A_t(s)$ and $A_z(s)$ play a dominant role in quark confinement.
- $A_x(s)$ and $A_y(s)$ are inactive in the infrared region.
- The large mass of $A_x(s)$ and $A_y(s)$ seems to make them infrared inactive.

We try to consider a possibility that low-energy phenomena are described in 2D degrees of freedom, $A_t(s)$ and $A_z(s)$, in DR-gauged QCD.

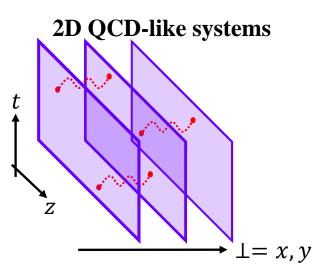


Signs of low-dimensionalization of 4D QCD in DR gauge

In DR gauge,

- $A_t(s)$ and $A_z(s)$ play a dominant role in quark confinement.
- $A_x(s)$ and $A_y(s)$ are inactive in the infrared region.
- The large mass of $A_x(s)$ and $A_y(s)$ seems to make them infrared inactive.

We try to consider a possibility that low-energy phenomena are described in 2D degrees of freedom, $A_t(s)$ and $A_z(s)$, in DR-gauged QCD.



DR-gauged YM action has a neighboring interaction between 2D systems.

We investigate a correlations produced by this interaction in LQCD.

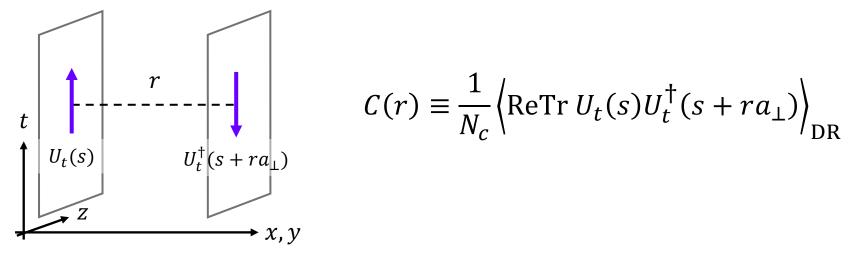
Neighboring interaction and spatial correlation of temporal-links

The *tz*-projected lattice action has a local interaction

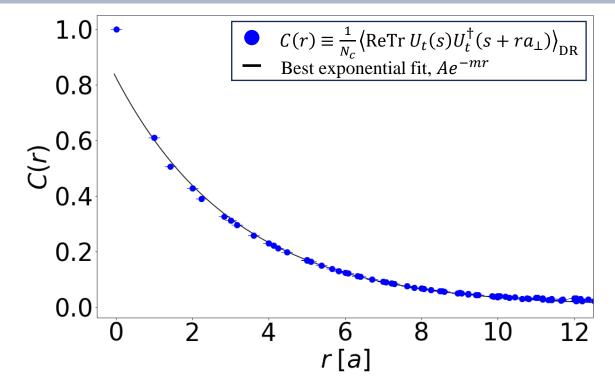
$$\beta \sum_{s} \sum_{\mu=t,z} \left\{ 1 - \frac{1}{N_c} \sum_{\perp=x,y} \operatorname{ReTr} \left[U_{\mu}(s) U_{\mu}^{\dagger}(s+a_{\perp}) \right] \right\}.$$

This interaction provides a distant correlation between *t*-*z* planes in the *x* and *y* directions.

We calculate the spatial correlation between two temporal-links.



Neighboring interaction and spatial correlation of temporal-links



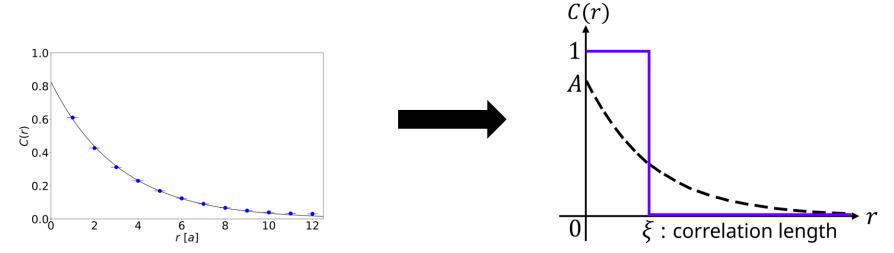
This correlation is well reproduced with **exponential function** $C(r) \simeq Ae^{-mr}$ and the exponent *m* has a value of

$$m \simeq 0.32 a^{-1} \simeq 0.64 \text{ GeV}$$
. $(A \simeq 0.83)$

Thus, the correlation length $\xi \equiv 1/m \simeq 0.3$ fm.

To get a rough picture of low-dimensionalization of 4D QCD

For an analytical modeling of the tz-projected 4D YM theory, we make a crude approximation of the exponential correlation C(r).



That is, we make a replacement of

$$C(r) = \frac{1}{N_c} \left\langle \operatorname{ReTr} U_t(s) U_t^{\dagger}(s + ra_{\perp}) \right\rangle_{DR} \to \theta(\xi - r) = \begin{cases} 1 & (r < \xi) \\ 0 & (r > \xi) \end{cases}$$

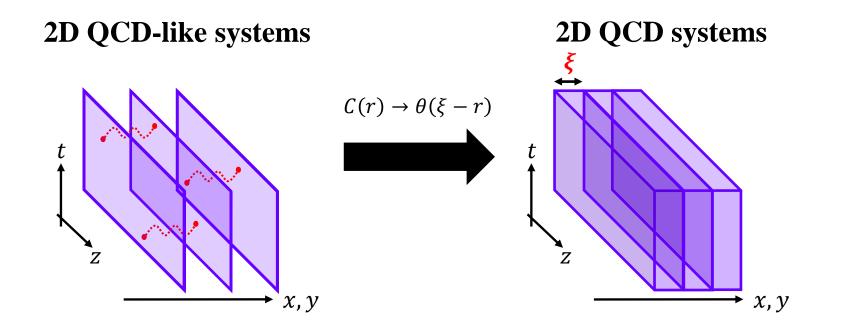
Under this approximation,

 $r < \xi : U_t(s)$ and $U_t(s + ra_{\perp})$ are same.

 $r > \xi : U_t(s)$ and $U_t(s + ra_{\perp})$ have no correlation in the x and y directions.

Crude approximation of temporal-link-correlation

Under the crude approximation, $C(r) \rightarrow \theta(\xi - r)$, DR-gauged 4D QCD can be regarded as **an ensemble of 2D QCD systems on** *t*-*z* **layers, which have the width** ξ **and are piled in the** *x* **and** *y* **directions**. These layers are independent and **do not interact each other**.



Demonstration: interquark potential in a *t*-*z* **layer**

These 2D layers can be labeled by two integers (m, n) instead of (x, y). **Tree-level action of 4D DR-gauged QCD**:

$$S_{\mathrm{DR}}^{tz} \simeq \sum_{M=(m,n)} \xi^2 \int dt dz \operatorname{Tr} \{ G_{tz}(t,z;m\xi,n\xi)^2 \} = \sum_{M} \int dt dz \frac{1}{2} \operatorname{Tr} \{ \mathcal{G}_{\mu\nu}^M(t,z)^2 \}$$

$$\underset{A_{\mu}(t,z;m\xi,n\xi) \to \mathcal{A}_{\mu}^M(t,z) \equiv \xi A_{\mu}(t,z;m\xi,n\xi)}{\operatorname{Rescaling with the correlation length } \xi :$$

$$\underset{A_{\mu}(t,z;m\xi,n\xi) \to \mathcal{A}_{\mu}^M(t,z) \equiv \delta_{\mu}\mathcal{A}_{\nu}^M - \delta_{\nu}\mathcal{A}_{\mu}^M + i\mathfrak{g}_{2\mathrm{D}}[\mathcal{A}_{\mu}^M,\mathcal{A}_{\nu}^M]}$$

Relation between 4D and 2D QCD coupling: $g_{2D} \equiv g/\xi$

Demonstration: interquark potential in a *t*-*z* layer

These 2D layers can be labeled by two integers (m, n) instead of (x, y). **Tree-level action of 4D DR-gauged QCD:**

$$S_{\text{DR}}^{tz} \simeq \sum_{M=(m,n)} \xi^2 \int dt dz \operatorname{Tr} \{ G_{tz}(t,z;m\xi,n\xi)^2 \} = \sum_{M} \int dt dz \frac{1}{2} \operatorname{Tr} \{ \mathcal{G}_{\mu\nu}^M(t,z)^2 \}$$

Rescaling with the correlation length ξ :
 $A_{\mu}(t,z;m\xi,n\xi) \to \mathcal{A}_{\mu}^M(t,z) \equiv \xi A_{\mu}(t,z;m\xi,n\xi)$

 $G_{tz}(t,z;m\xi,n\xi) \to \mathcal{G}^{M}_{\mu\nu}(t,z) \equiv \partial_{\mu}\mathcal{A}^{M}_{\nu} - \partial_{\nu}\mathcal{A}^{M}_{\mu} + i\mathfrak{g}_{2\mathrm{D}}\big[\mathcal{A}^{M}_{\mu},\mathcal{A}^{M}_{\nu}\big]$

Relation between 4D and 2D QCD coupling: $g_{2D} \equiv g/\xi$

The tree-level interquark potential for quarks in a t-z layer is calculated as

$$V_{\text{tree}}(r) = \frac{g_{2D}^2}{2} \cdot \frac{4}{3}r = \frac{g^2}{\xi^2} \cdot \frac{2}{3}r = \sigma_{2D}r.$$

For $\beta = 2N_c/g^2 = 6.0$ (g = 1.0), because of $\xi \simeq 0.3$ fm, we find $\sigma_{2D} \simeq 1.37$ GeV/fm (c.f. $\sigma_{4D} \simeq 0.89 \text{ GeV/fm}$)

The scale of "reduced" 2D QCD is determined by the correlation length ξ .

Summary

We proposed a new gauge fixing of "Dimensional Reduction (DR)" gauge and investigated the properties of DR gauge.

As a result, we have found that, in DR gauge,

- 1. Interquark potential is reproduced only with $A_t(s)$ and $A_z(s)$, and they play a dominant role in quark confinement.
- 2. Two-gauge components, $A_x(s)$ and $A_y(s)$ are infrared inactive, which seems to be caused by their large spatial "mass".
- 3. The spatial correlation of $U_t(s)$ and $U_t(s + ra_{\perp})$ decreases exponentially as $C(r) \propto e^{-mr}$ with $m \simeq 0.64$ GeV.
- 4. Using a crude approximation of $C(r) \rightarrow \theta(\xi r)$, 4D DR-gauged QCD theory can be regarded as an ensemble of 2D QCD systems.

For details, please see our PRD paper, Phys. Rev. D 110, 034505 (2024).

Future works

- 1. We are performing this subject with multi beta to investigate scaling properties.
- 2. Improvement of modeling to include the exponential correlation C(r) properly.
- 3. Including quark degrees of freedom.
 - Chiral symmetry breaking Note: quarks are not bounded in each 2D layer but spread over 4D spacetime.
 - Hadron spectroscopy (e.g., N- Δ splitting)

Back Up

Local property of link-variables in DR gauge

Distance between a link variables $U_{\mu}(s) = e^{iagA_{\mu}(s)}$ and a unit matrix I:

$$d(U_{\mu},I)^{2} = \frac{1}{2N_{c}} \operatorname{Tr}\left[\left(U_{\mu}-I\right)^{\dagger}\left(U_{\mu}-I\right)\right]$$

gauge	$\langle d(U_{\mu},I)^2 \rangle$	$(\beta = 6.0, 24^4)$
No fixing	1.000	
$DR(\mu = t, z)$	1.000	
$DR(\perp=x,y)$	0.076	

The amplitudes of two components A_x and A_y are strongly suppressed by the DR gauge fixing.

The reason of unity values of $\langle d(U_{\mu}, I)^2 \rangle$

Distance between a link variables $U_{\mu}(s) = e^{iagA_{\mu}(s)}$ and a unit matrix I:

$$d(U_{\mu}, I)^{2} = \frac{1}{2N_{c}} \operatorname{Tr}\left[\left(U_{\mu} - I\right)^{\dagger}\left(U_{\mu} - I\right)\right]$$
$$= \frac{1}{N_{c}} \operatorname{Tr}\left[I - \operatorname{Re}U_{\mu}\right]$$

Then, the VEV of
$$d(U_{\mu}, I)^2$$
 becomes
 $\left\langle d(U_{\mu}, I)^2 \right\rangle = \int \mathcal{D}U_{\mu} \frac{1}{N_c} \operatorname{Tr}[I - \operatorname{Re}U_{\mu}]$
 $= \int \mathcal{D}U_{\mu} \left\{ 1 - \frac{1}{N_c} \operatorname{Re}\operatorname{Tr}U_{\mu} \right\}$
 $= 1$ This term is no

This term is not gauge invariant and disappears because of Elitzur's theorem.

Comparison of DR gauge and Maximally Abelian gauge

DR gauge

Definition:

$$R_{\rm DR} \equiv \int d^4s \sum_{\perp=x,y} {\rm Tr}[A_{\perp}(s)^2]$$

- Residual gauge symmetry of 2D QCD.
- The amplitudes of $A_{\perp}(s)$ strongly suppressed.
- t and z components $A_{t,z}(s)$ play a dominant role for confinement.
- x and y components A_{x,y}(s) are inactive in the low-energy region? This is because of the large mass of A_{x,y}(s).

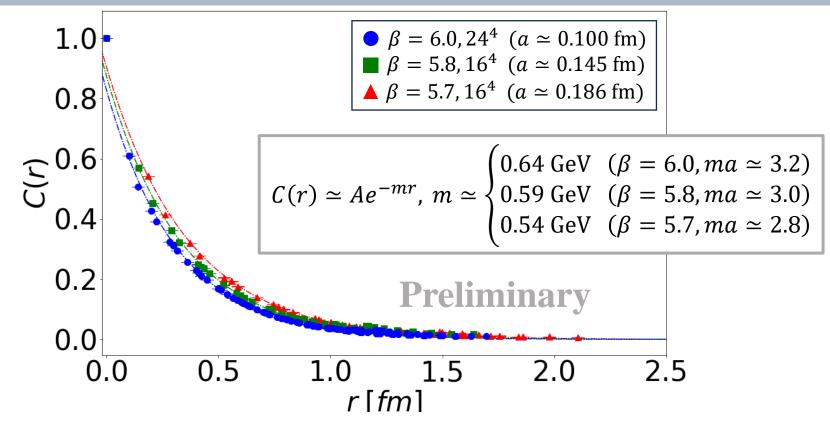
Maximally Abelian gauge

Definition:

$$R_{\rm MA} \equiv \int d^4s \, \sum_{\mu} \sum_{\alpha} A^{\alpha}_{\mu}(s) A^{-\alpha}_{\mu}(s)$$

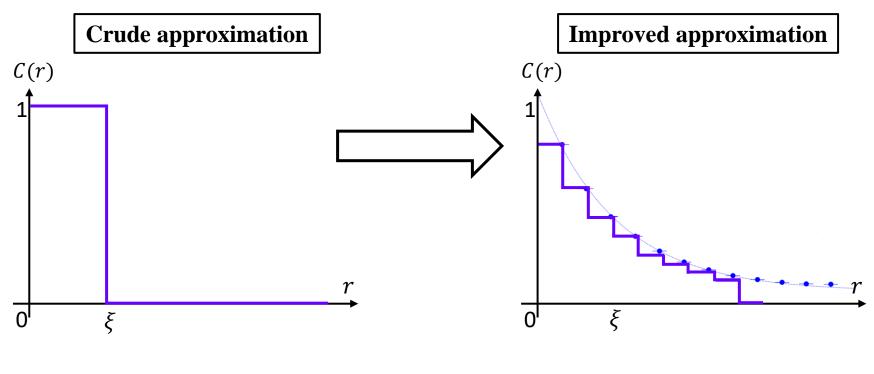
- Residual gauge symmetry of U(1)^{Nc⁻¹}.
- The amplitudes of $A^{\alpha}_{\mu}(s)$ is strongly suppressed.
- Abelian components $A^i_{\mu}(s)$ play a dominant role for confinement.
- Off-diagonal components A^α_μ(s) are inactive in the low-energy region. This is because of the large mass of A^α_μ(s).

Multi beta calculation of correlation of two temporal-links



The exponent *m* may increase as β increase. Can we understand this behavior in physical viewpoint?

A way to improve the crude approximation



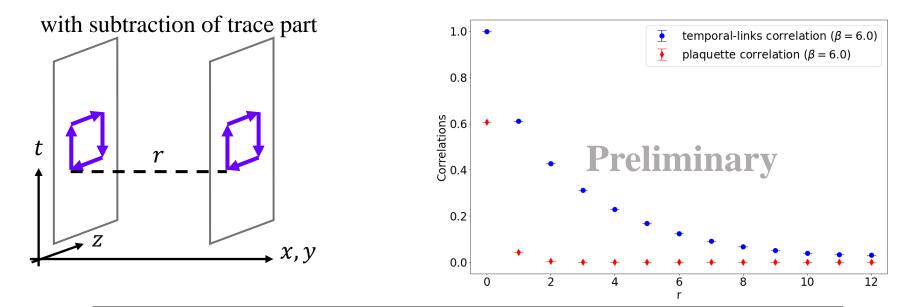
 $C(r) = \theta(\xi - r) \qquad \qquad C(r) = \sum_{n} A_n \,\theta(\xi_n - r) ?$

Will improved approximations allow for a more realistic consideration of the impact of correlations?

Correlation between two plaquettes

We consider the spatial (x, y-directed) correlation of two temporal-links.

How about the spatial correlation of two plaquettes (which are on t-z planes)?



The correlation decrease more rapidly.

The data is good agreement with two functions,

- Yukawa function Ae^{-mr}/r , $(m \simeq 3.0 \text{ GeV})$
- modified Bessel function of 2^{nd} kind $AK_{3/2}(mr)$. $(m \simeq 3.3 \text{ GeV})$