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QCD and 6 term

Strong interaction is described by QCD:

1 —
Saco = | d*x 5tr(GuGyn) + D00+ mr)ay
f
Gauge principle and renormalizability almost uniquely
determine the action.

The only possible extension to QCD is the 6 term :
g2

i6Q, Q= J d*x Guvpa tr(G/.lvaO)

Unlike Sqcp, Q is antlsymmetrlc under the CP transformation.
=

The real parameter 6 determines the degree of CP symmetry
breaking in QCD.

The CP symmetry is strictly preserved in QCD for some reason:

|6 $3x 10712  Abeletal, 20
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Interesting properties of the 6 term

g2
32m?

m O term is total derivative = purely quantum effects

m Q takes an integer = 6 has 2m periodicity
6 = m is the most distinct point from our vacuum 6 = 0.

m CP transformation: 6 — —6
= CP symmetry is not explicitly broken at 6 = .

~ 6 term is interesting, but... ~

By examining the quantum effects of the 6 term, we can

gain insights into the quantum aspects of the system

and deepen the understanding of our vacuum 6 = 0.

However, investigating the effects of the 6 term is difficult

by the Monte Carlo method due to the sign problem. )
\-
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Monte Carlo method and sign problem

(0), = tr(O exp(—HA/T)) [ tr(exp(—H/T))
= (Eliminate operator by inserting completeness relations)

= f D¢ O exp(—SE)/f D¢ exp(—Sk)

An imaginary term like imo.¢ appears in the exponential. In the
case of the scalar theory
) 1, 1 ) , 1 5
—imo¢ + En = E(n—taTrp) + E(BT(P) = S €eR
integrated out

The expectation value can be approximated by sampling
configurations with the probability exp(—Sg).

Sign problem

If Se has an imaginary part (e.g., at finite 0), exp(—Sg) can-
not be a probability. Monte Carlo method is not applicable.
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Purpose of this talk

Purpose of this talk

Investigate the confining properties of the Schwinger model
(QED in 1 + 1 dims) at finite temperature and 6 using the
Monte Carlo method.

_ 1 _
SE[Au ¥, ¥lg.m,e = f d?x [ZF”VF“V +Y(F+gh+ m)tp] +i60Q,

g g
= | d’x—e€,  F= | d*x—E € Z.
@ J am MY f 21

Similarities with QCD
m Chiral anomaly: au/5 E
m Confinement (dlscussed later)
m O term — sign problem
Properties originating from low dimensionality
m Gauge coupling has mass dimension.

m Equivalent bosonized form (We exploit this feature)
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Lattice bosonized
Schwinger model



Bosonization coleman, '75, Mandelstam, '75

Hamiltonian of the Schwinger model

gz E (2] 2 —
_ it _inAl)A/5 — -4+ —
H= Ja(ij[ w (ax (gA )W, ¢+ 2 (:g +.27T) +-rnu7w]

Gauss law: axE/g = ¢Ty

The Dirac fermion in 1 + 1 dimensions can be described by the
scalar field:

_ 1, 1
—(/Jlax'YllP = _T[2 + _(ax(p) ’
2 2
_ eY
Yy = _2_,,4/\/,1 cos(24/mp), u:regularization scale
i

After bosonization, the Gauss law can be solved locally

IxE/g =Ty = oxp/¥T
—3

E/g=¢/v/T
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Bosonized Schwinger model

-~ Bosonized Schwinger model Coleman, Jackiw, and Susskind, ‘75 —

_ (4 1, 1a g2 6 \?
—f XET[ +§( X¢)+ﬂ(¢+m)

erg
~ o =35 No//ncos(2vne), ¢/Vm=E/g

N\ J
N, denotes normal ordering with respect to the creation and
annihilation operators defined as

¢(x) =: J —[—] (a(k, we=** + af(k, wekx),
—o0 2T 24/k? + 2

1/2

(Cl(k, M)e—ikx _ a‘l‘(k’ u)eikx)

[ dk | VK2 + u?
n(x)=:—tf — | —

—oo 2T 2

For the path-integral rep. at m # 0, N, must be removed.
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Removing normal ordering coleman, '75; Bender et al., ‘85

Using Wick’s theorem,
Nyexp(i2v/mg) = exp(2nA(x = 0; u)) exp(i2 V1g)

A(x; u) : Feynman propagator for the scalar field of mass u
~ Continuum ~

Feynman propagator regularized with a UV cutoff A:

1 A
ACX; s N) = A u) — A A) = — In— + O(x?)
2T U

= N exp(2/mp(x)) = (A/u) exp(2/TP(x))

-

-
~ Lattice ~
Ny vmexp(i2/Tpx) = C(ag) exp(i2 vVTpx)

C(ag) := exp{2mAiatt(0; g/ vm; 1/a)} ~ 10/ag
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Lattice bosonized Schwinger model

Euclidean action of the lattice bosonized Schwinger model

Lmlle=ly (a 9)2 6\’
E E - 2 4 .
Se= L1 Z (3T¢x T) + (ax¢x )"+ (¢x T+ Zﬁ)

e

= 532 E(GQ)ZC(GQ)(z 10/ag) cos(2/ gy 1) €R

-~ Advantages ~
m Monte Carlo simulation without encountering the sign
problem

m Low-cost Configuration generation using the heat-bath
algorithm

m Chiral anomaly is exactly preserved on a lattice.
m First convergence to the continuum limit (next slide)

.
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Analytical chiral condensate at m = 0 onata, 23

_ e’
<¢¢’>|Qtt =- 273/2 gC(ag) <COS(2 1/ﬁ¢»free,Lx,LT

eY
= _ZHTQ exp[—2m{Aatt(@9)L,, 1. — Diart(@g)}]-

chiral condensates at m=0, Lyag=22.4

0.00F ® ag=0.025
_ [ ® ag=0.100 ||
0.02¢ ‘ ag =0.800
—0.04F 1 v ag=1.600 H
ag =2.800
o —0.06 - — continuum (Sachs and Wipf, '92)
k) [
S -0.08
E3

6
(Trg)~t

VEV of the chiral condensate is reproduced at any ag.
< Chiral anomaly is exactly preserved on a lattice.
Fast convergence to the continuum limit even at T # 0
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Confinement at finite
temperature and 6

H. Ohata,
“Monte Carlo study of Schwinger model without the sign problem,”

JHEP 12, 007 (2023), arXiv:2303.05481.
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EXtraCting Strlng tension coleman, Jackiw, and Susskind, ‘75

E=qpg
2 2
[ Z(E iy A

2\g 2m

@is an external electric field: . .
equivalent if 6 = 2mqp
Eex C]

e e e e e e e e

String tension can be obtained from the difference in the free
energy densities (after taking Lya — o)

o(gp, 8) =f(2ngp + 8) —f(6)

-1 (ag)? 0 + mqp
=l In<exp{ qu(%T S )]>
0

Integer charge is screened by the creation of a dynamical
charge pair due to the 2m periodicity of 6.
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String tension of probe charge g, € [0, 1]

ag=0.2, Ly x Ly =112 x 56 e qpe[0,1/2],6=0 e gp€[1/2,1],6=0

string tension vs probe charge at m/g = 0.5 E=apg E=Q1-ap)g
frapg > @ —g - OREE

o=FE2%/2 o=E2%/2

applying an external electric field
Eex =9/2

e gp€[0,1/2],0=m e gpell/2,1],0=m

0.00 0.25 oqio 0.75 1.|00 o= (E— Eex)2/2 _ ng/z o= (E— Eex)z/z _ ng/z
Semiclassical estimate:

295 ape€[0,1] 6=0,

2
0/9*=13(1-a)",  a@pe[3.1] 6=0,
~30o(1~ap). gpel0,1], 6=

See Misumi et al., '19; Honda et al., '22 for explanation of negative string tension for

integer probe charge in the charge-N (N > 1) Schwinger models in terms of the Zy

1-form symmetry
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String tension o in (T, 0) plane

Using reweighing method, (T, ) plane can be covered densely

string tension at g, = 0.3, m/g=0.25

0.04
0.02 1
0.00
—0.02

—0.041

m At low temperature, as 6 =0 — 1,
confining—deconfining—inversely confining
m At high temperature, always deconfining 12/13



Summary and outlook
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Summary and outlook

/Summary ~

m The Schwinger model with the 6 term can be simulated
by the Monte Carlo method using bosonization.

m The lattice bosonized Schwinger model was verified
through the comparison with previous results.

m Confining properties in the Schwinger model at finite
temperature and 6 were quantitatively revealed.

N\ J

Please refer to H. Ohata, PTEP 2024, 013B02 (2024), arXiv:2311.04738
for the determination of the phase diagram at 6 = m in the
temperature and fermion mass plane.

Outlook
m Application to finite density system
m Application to more nontrivial models
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Previous studies

The Schwinger model at finite 6 has been studied mainly by
three methods.
m Tensor network in the Hamiltonian formalism
Apply the tensor network method to the 2tx dimensional
spin Hamiltonian formulation of the Schwinger model
Byrnes et al., 02; Banuls et al., '13; Buyens et al., '14; many other works

® Quantum algorithm (mostly in the Hamiltonian formalism)
Apply the quantum algorithm to the spin Hamiltonian
For example, obtain the ground state via adiabatic state
preparation
Kuhn et al., 14; Chakraborty et al., '22; Honda et al., '22; many other works

m Tensor network in the path-integral formalism
Evaluate the path-integral deterministically using the
Grassmann tensor renormalization group
Shimizu and Kuramashi, '14; Shimizu and Kuramashi, '14; Akiyama et al., '24
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Spin representation of Schwinger model

Hamiltonian of the Schwinger model

g2(E 6\* _
_ _itla —inal s e 2 (S 2
H_de[ gt (ox—igA )y y + 2(g+2n) +mt/1¢1}

Gauss law: axE/g = ¢ty

staggered fermion + Gauss law + Jordan-Wiger transformation
= 2Lx dimensional spin Hamiltonian
Tensor Network,

m/g =0.125,0.25,0.3,0.5 Quantum computing, m/g =0.1
Buyens et al., 17 Chakraborty et al., '22

0.4 -0.10
-0.12
0.3 -0.14
= -0.16
02 = -0.18

-0.20 ]

0.1
-0.22
0 0.0 0.1 0.2 0.3 0.4 0.5
0 025 05 075 1 012
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The origin of sign problem at finite 6

Hamiltonian of the Schwinger model

1 g6\>  _
_ ot . 1)4,5 _ -
H_fdx[ ipT(ox—igAt)y ¢+2(E+2n) +mww]

Gauss law: axE/g = yTy

1 02
Sg= d2X—[E81-A1+—(E+ g—) 4o
2 2T

1 0 2 1 02
= dzx—{E+(g——iaTA1)} +—(aTA1+ig—) +ee
2 2m 2 21

integrated out
1 2 go
= dZX—(aTAl) + l_aTAl + .-
2 21
purely imaginary
After bosonization, the Gauss law can be solved locally,
and Sg remains real.
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Generating Monte Carlo configurations

~ Heat bath algorithm ~

Start with an initial field configuration {¢x, <}
focus on ¢y  at some site (x, T)
update ¢x r while fixing the rest (heat bath)
repeat [l] and B for all sites

Repeating the sweep many times, the field configuration
{¢x.<} starts to distribute with P({¢x }) x exp(=Se({¢x,7})).
J

- 2
S e G )

eV
>—572(M/9)(ag)*C(ag) cos(2VMgx,r — 6)},

Oy ¢ =(Px, 141 + Ox,1—1 + O+ 1,7 + Px—1,7)/4,1(ag) := 1 + (ag)?/4m.

Generate a Gaussian random number, apply the rejection sampling
13/13
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Chiral anomaly in the bosonized form

Bosonized form of the chiral current:
1

— =T, H=0,
/’§=¢v5v“¢={ﬁla _;
_ﬁ X¢l H= 1.
Bosonized form of the Schwinger modelat m=6=0
1 1 g2
H= | dx =12+ —(8x9)* + — 2.
J > 2( x®) 2n¢
Time evolution
) oH _ 2 ¢ ¢
M=——= _—
o0
The conservation law of the chiral current is broken as
1 g
M . 24)
6“15 = /—ﬁ(ﬂ— ax¢) = —E.

This relation holds also on a lattice with no O(a) correction.
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Chiral symmetry in Schwinger model

At m = 0, the action has the chiral symmetry
U(1)v x U(1)a x SU(Nf)v x SU(Nf)a.
U(1)a is explicitly broken by the chiral anomaly.

Spontaneous continuous symmetry breaking is prohibited in
1+ 1 dims model (except the Higgs mechanism). coleman, '73

mNg>2

<wl/1> # 0 => spontaneous SU(Nf)a symmetry breaking,
which contradicts Coleman’s theorem.

[ | Nf =1
We don’t have SU(N¢)a symmetry from the beginning.

<Etp> # does not contradict Coleman’s theorem.
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