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QCD and θ term
Strong interaction is described by QCD:

SQCD =
∫
d4

1

2
tr
�
GμνGμν

�
+
∑
ƒ

qƒ
�
γμDμ +mƒ

�
qƒ

Gauge principle and renormalizability almost uniquely
determine the action.

The only possible extension to QCD is the θ term：

θQ, Q =
∫
d4

g2

32π2
εμνρσ tr

�
GμνGρσ

�
Unlike SQCD, Q is antisymmetric under the CP transformation.
=⇒
The real parameter θ determines the degree of CP symmetry
breaking in QCD.
The CP symmetry is strictly preserved in QCD for some reason:

|θ| ≲ 3 × 10−12 Abel et al., ’20
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Interesting properties of the θ term

θQ, Q =
∫
d4

g2

32π2
εμνρσ tr

�
GμνGρσ

�
θ term is total derivative =⇒ purely quantum effects
Q takes an integer =⇒ θ has 2π periodicity
θ = π is the most distinct point from our vacuum θ = 0.
CP transformation: θ→ −θ
=⇒ CP symmetry is not explicitly broken at θ = π.

θ term is interesting, but...� �
By examining the quantum effects of the θ term, we can
gain insights into the quantum aspects of the system
and deepen the understanding of our vacuum θ = 0.
However, investigating the effects of the θ term is difficult
by the Monte Carlo method due to the sign problem.� �
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Monte Carlo method and sign problem

Ô
�
T = tr

�
Ôexp

�−Ĥ/T�� � tr�exp�−Ĥ/T��
= (Eliminate operator by inserting completeness relations)

=
∫
DφOexp(−SE)

�∫
Dφ exp(−SE)

An imaginary term like π∂τφ appears in the exponential. In the
case of the scalar theory

− π∂τφ + 1
2
π2 =

1

2
(π − ∂τφ)2
integrated out

+
1

2
(∂τφ)2 =⇒ SE ∈ R

The expectation value can be approximated by sampling
configurations with the probability exp(−SE).

Sign problem� �
If SE has an imaginary part (e.g., at finite θ), exp(−SE) can-
not be a probability. Monte Carlo method is not applicable.� �
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Purpose of this talk
Purpose of this talk� �
Investigate the confining properties of the Schwinger model
(QED in 1 + 1 dims) at finite temperature and θ using the
Monte Carlo method.� �
SE[Aμ, ψ, ψ]g,m,θ =

∫
d2

�
1

4
FμνFμν + ψ( /∂ + g /A +m)ψ

�
+ θQ,

Q :=
∫
d2

g

4π
εμνFμν =

∫
d2

g

2π
E ∈ Z.

Similarities with QCD
Chiral anomaly: ∂μj

μ
5 =

g
πE

Confinement (discussed later)
θ term → sign problem

Properties originating from low dimensionality
Gauge coupling has mass dimension.
Equivalent bosonized form (We exploit this feature)
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Lattice bosonized
Schwinger model
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Bosonization Coleman, ’75, Mandelstam, ’75

Hamiltonian of the Schwinger model� �
H =

∫
d

�
− ψ†

�
∂ − gA1�γ5ψ + g2

2

�
E

g
+

θ

2π

�2
+mψψ

�
Gauss law: ∂E/g = ψ†ψ� �

The Dirac fermion in 1 + 1 dimensions can be described by the
scalar field:

−ψ∂γ1ψ = 1
2
π2 +

1

2
(∂φ)2,

ψψ = − e
γ

2π
μNμ cos

�
2
p
πφ
�
, μ : regularization scale

After bosonization, the Gauss law can be solved locally

∂E/g = ψ†ψ = ∂φ/
p
π

=⇒
E/g = φ/

p
π

5 /13



Bosonized Schwinger model
Bosonized Schwinger model Coleman, Jackiw, and Susskind, ’75� �
H =

∫
d

1

2
π2 +

1

2
(∂φ) +

g2

2π

�
φ +

θ

2
p
π

�2
− eγmg

2π3/2
Ng/
p
π cos

�
2
p
πφ
�
, φ/

p
π = E/g� �

Nμ denotes normal ordering with respect to the creation and
annihilation operators defined as

φ() =:
∫ ∞

−∞
dk

2π

�
1

2
Æ
k2 + μ2

�1/2�
(k, μ)e− k + †(k, μ)ek

�
,

π() =: − 
∫ ∞

−∞
dk

2π

Æk2 + μ2

2

1/2�(k, μ)e− k − †(k, μ)ek�
For the path-integral rep. at m 6= 0, Nμ must be removed.
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Removing normal ordering Coleman, ’75; Bender et al., ’85

Using Wick’s theorem,

Nμ exp
�
2
p
πφ
�
= exp(2πΔ( = 0;μ))exp

�
2
p
πφ
�

Δ(;μ) : Feynman propagator for the scalar field of mass μ
Continuum� �
Feynman propagator regularized with a UV cutoff Λ:

Δ(;μ; Λ) := Δ(;μ) − Δ(; Λ) = 1

2π
ln
Λ

μ
+ O(2)

=⇒ Nμ exp
�
2
p
πφ()

�
= (Λ /μ)exp

�
2
p
πφ()

�
� �

Lattice� �
Ng/
p
π exp

�
2
p
πφ

�
= C(g)exp

�
2
p
πφ

�
C(g) := exp

�
2πΔltt

�
0;g/
p
π; 1/

�	 ' 10/g� �
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Lattice bosonized Schwinger model

Euclidean action of the lattice bosonized Schwinger model

SE =
Lτ−1∑
τ=0

L−1∑
=0

1

2
(∂τφ,τ)2 +

1

2
(∂φ,τ)2 +

(g)2

2π

�
φ,τ +

θ

2
p
π

�2
− eγ

2π3/2
m

g
(g)2C(g)(' 10/g) cos�2pπφ,τ� ∈ R

Advantages� �
Monte Carlo simulation without encountering the sign
problem
Low-cost Configuration generation using the heat-bath
algorithm
Chiral anomaly is exactly preserved on a lattice.
First convergence to the continuum limit (next slide)� �
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Analytical chiral condensate at m = 0 Ohata, ’23¬
ψψ

¶
ltt
= − eγ

2π3/2
gC(g)



cos

�
2
p
πφ
��
free,L,Lτ

= − eγ

2π3/2
gexp

�−2π�Δltt(g)L,Lτ − Δltt(g)	�.

VEV of the chiral condensate is reproduced at any g.
⇐⇒ Chiral anomaly is exactly preserved on a lattice.
Fast convergence to the continuum limit even at T 6= 0 9 /13



Confinement at finite
temperature and θ

H. Ohata,
“Monte Carlo study of Schwinger model without the sign problem,”

JHEP 12, 007 (2023), arXiv:2303.05481.
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Extracting String tension Coleman, Jackiw, and Susskind, ’75

H =
∫
d

g2

2

�
E

g
+

θ

2π

�2
+ · · ·

θ is an external electric field:
Eex

g
=

θ

2π

equivalent if 

String tension can be obtained from the difference in the free
energy densities (after taking L→∞)

σ(qp, θ) = ƒ (2πqp + θ) − ƒ (θ)

=
−1

LLτ2
ln

*
exp

− (g)2p
π

∑
,τ

qp

�
φ,τ +

θ + πqp

2
p
π

�+
θ

Integer charge is screened by the creation of a dynamical
charge pair due to the 2π periodicity of θ.
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String tension of probe charge qp ∈ [0,1]
g = 0.2, L × Lτ = 112 × 56

applying an external electric field

Semiclassical estimate:

σ/g2 =


1
2q

2
p, qp ∈

�
0, 12

�
, θ = 0,

1
2

�
1 − qp�2, qp ∈

�
1
2 ,1

�
, θ = 0,

− 12qp
�
1 − qp�, qp ∈ [0,1], θ = π.

See Misumi et al., ’19; Honda et al., ’22 for explanation of negative string tension for

integer probe charge in the charge-N (N > 1) Schwinger models in terms of the ZN

1-form symmetry
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String tension σ in (T, θ) plane
Using reweighing method, (T, θ) plane can be covered densely
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At low temperature, as θ = 0→ π,
confining→deconfining→inversely confining
At high temperature, always deconfining 12 /13



Summary and outlook
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Summary and outlook

Summary� �
The Schwinger model with the θ term can be simulated
by the Monte Carlo method using bosonization.
The lattice bosonized Schwinger model was verified
through the comparison with previous results.
Confining properties in the Schwinger model at finite
temperature and θ were quantitatively revealed.� �

Please refer to H. Ohata, PTEP 2024, 013B02 (2024), arXiv:2311.04738

for the determination of the phase diagram at θ = π in the
temperature and fermion mass plane.

Outlook� �
Application to finite density system
Application to more nontrivial models� �
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Previous studies
The Schwinger model at finite θ has been studied mainly by
three methods.

Tensor network in the Hamiltonian formalism
Apply the tensor network method to the 2L dimensional
spin Hamiltonian formulation of the Schwinger model
Byrnes et al., 02; Banuls et al., ’13; Buyens et al., ’14; many other works

Quantum algorithm (mostly in the Hamiltonian formalism)
Apply the quantum algorithm to the spin Hamiltonian
For example, obtain the ground state via adiabatic state
preparation
Kuhn et al., 14; Chakraborty et al., ’22; Honda et al., ’22; many other works

Tensor network in the path-integral formalism
Evaluate the path-integral deterministically using the
Grassmann tensor renormalization group
Shimizu and Kuramashi, ’14; Shimizu and Kuramashi, ’14; Akiyama et al., ’24
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Spin representation of Schwinger model
Hamiltonian of the Schwinger model� �

H =
∫
d

�
− ψ†�∂ − gA1�γ5ψ + g2

2

�
E

g
+

θ

2π

�2
+mψψ

�
Gauss law: ∂E/g = ψ†ψ� �

staggered fermion + Gauss law + Jordan-Wiger transformation
=⇒ 2L dimensional spin Hamiltonian

Tensor Network,
m/g = 0.125,0.25,0.3,0.5

Buyens et al., ’17
Quantum computing, m/g = 0.1

Chakraborty et al., ’22
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The origin of sign problem at finite θ
Hamiltonian of the Schwinger model� �

H =
∫
d

�
− ψ†

�
∂ − gA1�γ5ψ + 1

2

�
E +

gθ

2π

�2
+mψψ

�
Gauss law: ∂E/g = ψ†ψ� �

SE =
∫
d2 − E∂τA1 + 1

2

�
E +

gθ

2π

�2
+ · · ·

=
∫
d2

1

2

�
E +

�
gθ

2π
− ∂τA1

��2
integrated out

+
1

2

�
∂τA1 + 

gθ

2π

�2
+ · · ·

=
∫
d2

1

2

�
∂τA1

�2
+ 

gθ

2π
∂τA1

purely imaginary

+ · · ·

After bosonization, the Gauss law can be solved locally,
and SE remains real.
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Generating Monte Carlo configurations
Heat bath algorithm� �
Start with an initial field configuration

�
φ,τ

	
1 focus on φ,τ at some site (, τ)
2 update φ,τ while fixing the rest (heat bath)
3 repeat 1 and 2 for all sites

Repeating the sweep many times, the field configuration�
φ,τ

	
starts to distribute with P

��
φ,τ

	�
∝ exp

�−SE��φ,τ	��.� �
P(φ,τ) ∝ exp

−2(g)
 
φ,τ − φ,τ

(g)

!2
× exp

�
eγ

2π3/2
(m/g)(g)2C(g) cos

�
2
p
πφ,τ − θ��,

φ,τ :=(φ,τ+1 + φ,τ−1 + φ+1,τ + φ−1,τ)/4, (g) := 1 + (g)2/4π.
Generate a Gaussian random number, apply the rejection sampling
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Chiral anomaly in the bosonized form
Bosonized form of the chiral current:

jμ5 = ψγ5γμψ =

¨ 1p
π
π, μ = 0,

− 1p
π
∂φ, μ = 1.

Bosonized form of the Schwinger model at m = θ = 0

H =
∫
d

1

2
π2 +

1

2
(∂φ)2 +

g2

2π
φ2.

Time evolution

π̇ = − δH
δφ
= ∂2φ −

g2

π
φ,

The conservation law of the chiral current is broken as

∂μj
μ
5 =

1p
π

�
π̇ − ∂2φ

�
=
g

π
E.

This relation holds also on a lattice with no O() correction.
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Chiral symmetry in Schwinger model

At m = 0, the action has the chiral symmetry

U(1)V × U(1)A × SU(Nƒ )V × SU(Nƒ )A.

U(1)A is explicitly broken by the chiral anomaly.

Spontaneous continuous symmetry breaking is prohibited in
1 + 1 dims model (except the Higgs mechanism). Coleman, ’73

Nƒ ≥ 2¬
ψψ

¶ 6= 0 =⇒ spontaneous SU(Nƒ )A symmetry breaking,
which contradicts Coleman’s theorem.
Nƒ = 1
We don’t have SU(Nƒ )A symmetry from the beginning.
=⇒¬
ψψ

¶ 6= does not contradict Coleman’s theorem.
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