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Polyakov loop expectation value under a critical
temperature Tc ≈ .81ΛMS , and a non-zero
expectation value for T > Tc .

We see this as a validation and proof of concept
for applying the BGFM to non-abelian theories.
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Simple Example:

I =
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HS→

I ≈
∫

d∆

∫
dxe−N[(A+m2+i∆)x2]+ 1

4λ
∆2

(7)

i∆ acts like an additional ”effective mass” coming
from the x4 term

x can be integrated out: It’s Gaussian!
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Gap Equation from Laplace’s Method

Left with some integral that looks like:

∫
d∆e−Nf (∆)

In the large N limit:∫
d∆e−Nf (∆) ≈ e−Nf (∆̄)

∆̄ minimizes f (∆)

The minimization condition: d
d∆ f (∆) = 0 is the gap

equation!

In QM f (∆) stems from a Hermitian operator.

If Minimization gives a non-trivial state...

“Gapped Hamiltonian”

“gap equation” comes from BCS theory.

Energy gap in the electronic spectrum of a
superconductor.
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superconductor.





Results

What to do next?

Calculate Pure Yang-Mills in d = 3 + 1 at T = 0

How?

Apply a HS transformation to a background field
expansion of Z

This gives:

Z = e
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where:
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θGhost = −(D2)ac

The effective action is gauge invariant.
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Results
Zeta-function regularization, and running coupling
renormalization allows for an exact continuum limit
calculation.

The beta function matches the one-loop result for
perturbative YM.

dg(µ)

d ln(µ)
=

−11g3(µ)

48π2
, (9)
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Results
Independent gap equations are given for the
background and auxiliary fields.

Functional dependence on ∆: -lnZ (∆,B)
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Results
Free-energy density at ∆̄: − lnZ (B, ∆̄)
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Results

Vacuum Pressure:

lnZ

βV
= 6× 0.0592377Λ4

YM. (12)

The scalar glueball mass is read off as:

ma
Glue =

√
B̄λa∆̄ = 2.52789ΛYM. (13)

Lattice calculations give:

ma
Glue ≈ 3 ∼ 4ΛQCD
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Defining the Background Operators
From spliting the gauge field:

Fa
µν = F a

µν + Dac
µ acν(x)− Dac

ν acµ(x) + f abcabµ(x)a
c
ν(x)
(14)

where:
Dac
µ = ∂µδ

ac + f abcBb
µ(x) (15)

Square Fa
µν to get:

Z =

∫
B

∫
DaDc̄Dce

−
∫
x

1

4g2
0
(F a

µν)
2−S0−SI

(16)

With:

S0 =

∫
x

1

2
aaµ

[
− (D2)acδµν + 2F c

µν f
abc
]
acν (17)

SI =

∫
x
g0(Dµa

a
ν)f

abcabµa
c
ν +

g2
0

4
(f abcabµa

c
ν)

2. (18)
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Gauge Fixing and Local Gauge Invariance

Gauge Fixing condition:

Dac
µ acµ(x) = 0

After gauge fixing S0 is invariant to:

aaµ(x) → aaµ(x)− f abcβb(x)acµ(x)

Ba
µ(x) → Ba

µ(x) + Ba
µ(x)Dµβ

a(x)

ca(x) → ca(x)− f abcβb(x)cc(x).

(19)

The effective action remains invariant to this
transformation after applying a HS transformation.
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The Eigenspectrum of S0

Dac
µ = ∂µδ

ac +
i

2
AacFµνxν (20)

where A is the hermitian matrix consisting of the
sum generators in the adjoint representation.

Then:

−(D2)ac =− (∂2
0)δ

ac − (∂2
1)δ

ac + i(AB)ac
(
x1∂0 − x0∂1

)
+

1

4
(A2B2)ac

(
x20 + x21

)
− (∂2

2)δ
ac − (∂2

3)δ
ac + i(AB)ac

(
x3∂2 − x2∂3

)
+

1

4
(A2B2)ac

(
x22 + x23

)
.

(21)
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The Eigenspectrum of S0 Continued..

In the diagonal basis of A these zero eigenvalues

Let A′ be a six-by-six diagonal matrix containing
the non-zero eigenvalues of A

Now use:

cµ =

[
∂µ 1

(BA′)
1
2

+
1

2
(BA′)

1
2 x̂µ

]

c†µ =

[
− ∂µ 1

(BA′)
1
2

+
1

2
(BA′)

1
2 x̂µ

]
.

(22)

− (D2)′ =BA′
[(
c†0 + ic†1

)(
c0 − ic1

)
+ 1
]
+

BA′
[(
c†2 + ic†3

)(
c2 − ic3

)
+ 1
]
,

(23)
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The Eigenspectrum of S0 Continued..

For zero eigenvalues of A contributions of D2

vanish in dim-reg or zeta-reg.

The remaining contributions are quantum harmonic
oscillators

Eigenspectrum of S0:

(Λ+
a )m,n = (2n + 1)Bλa + (2m + 1)Bλa + 2Bλa

(Λ−
a )m,n = (2n + 1)Bλa + (2m + 1)Bλa − 2Bλa,

(24)
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Evaluating the Path Integral

HS transformation is applied to Z of the form∫ ∞

−∞
Dσ

∫ ∞

0
DξRe[e i

∫
x ξ

a
µν(σ

a
µν−f abcabµa

c
ν)] = 1, (25)

under the ansatz that ξaµν is diagonal in Lorentz
space.

Some elbow grease gives:

Z =

∫
DaDcDc̄ Re

[
exp[−

∫
x

1

4g2
0

(F̄ ab
µν )

2 +
(B∆a

µν)
2

g2
0

+ aaµ
[
− (D2)acδµν + 2AacFµν

+∆BAacδµν
]
acν + c̄a

[
(−(Dµ)

2)ac
]
cc ]
]
B̄,∆̄

.

(26)
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Heat Kernels

ln det θ = −
[ d
ds

1

Γ[s]

∫ ∞

0
dττ s−1Kθ

]
s=0

, (27)

where
Kθ = Trabµν

∑
n,m

e−τθ/µ2
(28)

KGhost =
∑
l

βV
(Bλl)2

16π2

[
1

sinh2(Bλlτ
µ2 )

]
&

KR0
Glue =

∑
l

βV
(Bλl)2

4π2

(
e
− τBλl∆

µ2

)[
2 +

1

sinh2(Bλlτ
µ2 )

]
.

(29)
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lndetθ’s
Ghosts:

ln det θGhost = −
∑
l

βV
(Bλl)2

48π2

[
ln

(
Bλl

µ2

)
+ ln

(
2e

A12

)]
.

(30)

Glues:

− 1

2
ln det[θR0

Glue] =
∑
l

βV (Bλl)2

8π2
×

d

ds

[
1

Γ(s)

(
2

∫ ∞

0
dττ s−1e

−τ Bλl∆
µ2

+

∫ ∞

0
dτ

2∑
n=0

τn−1(−Bλl∆
µ2 )n

n!

1

sinh2
(
Bλlτ
µ2

)
+

∫ ∞

0
dτ

∞∑
n=3

τn−1(−Bλl∆
µ2 )n

n!

1

sinh2
(
Bλlτ
µ2

))]
s=0

.
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Evaluating the Path Integral
The equation:

lnZ

βV
= −(Bλl)2

g2
0

− (Bλl)2

48π2

[
11 ln

(
Bλl

µ2

)
+ C + f (∆) + g(∆,B, µ)

]∣∣∣∣∣
B̄∆̄

(32)

where

C = ln
( e

2A12

)
g(∆,B, µ) = 3∆2 ln

(
Bλl

µ2

)
+ 12 ln(∆)

f (∆) = −∆
(
ln
(
64π6

)
− 3∆ ln(2)

)
+ 12∆ ln

(
Γ

[
∆+ 2

2

])
− 24ζ(1,0)

(
−1,

∆+ 2

2

)
.

(33)
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Renormalization

Use:
1

g2(µ)
=

1

g2
0

+
1

48π2
g(∆,B, µ) (34)

Gives:

lnZ

βV
= −

∑
a

(Bλl)2

48π2

[
11 ln

(
Bλl

Λ2
YM

)
+ C + f (∆)

]
B̄,∆̄

.

(35)

Solve the gap equations and get results!
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