β decay as a probe of new physics Confinement 2024 Cairns, Australia, August 19 - 24, 2024

André Walker-Loud

The XVIth Quark Confinement and the Hadron Spectrum Conference

β decay as a probe of new physics Confinement 2024 Cairns, Australia, August 19 - 24, 2024

Berkelev

BERKELEY LA

André Walker-Loud

β decay as a probe of new physics Confinement 2024 Cairns, Australia, August 19 - 24, 2024

Berkelev

André Walker-Loud

rrrrr

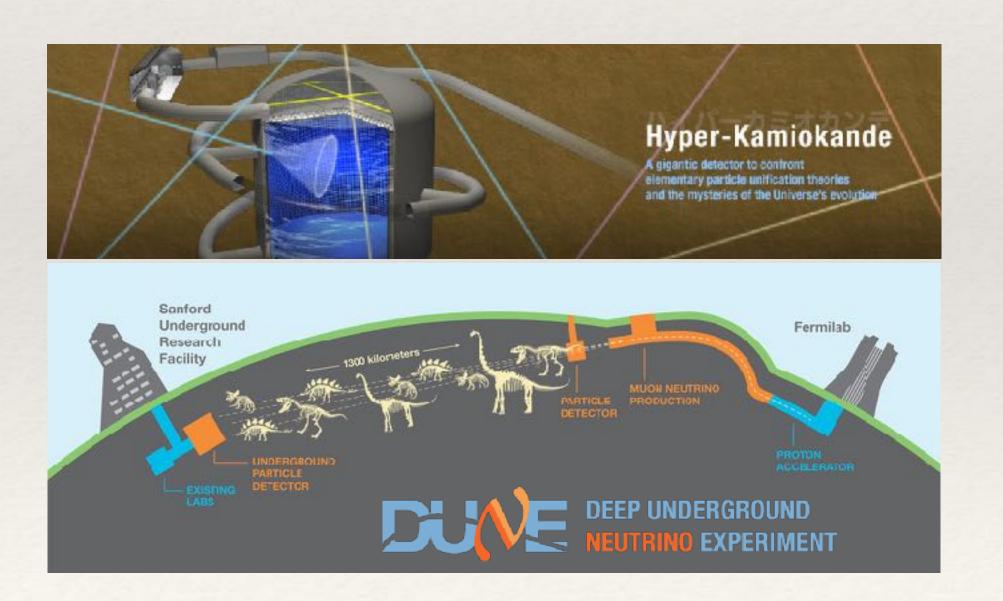
BERKELEY LAS

Searches for New Physics in Low Energy Nuclear Physics Environments

- competitive constraints to collider searches:
- Precision comparison with experiment
- neutron, nuclear β -decay
- Kaon β -decay

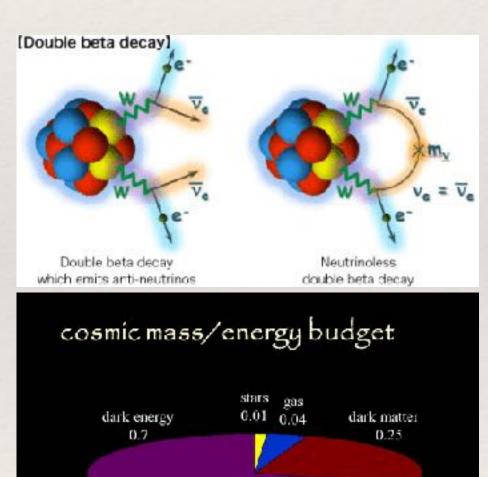


Nuclear Physics is the "background" - long-baseline neutrino-nucleus scattering

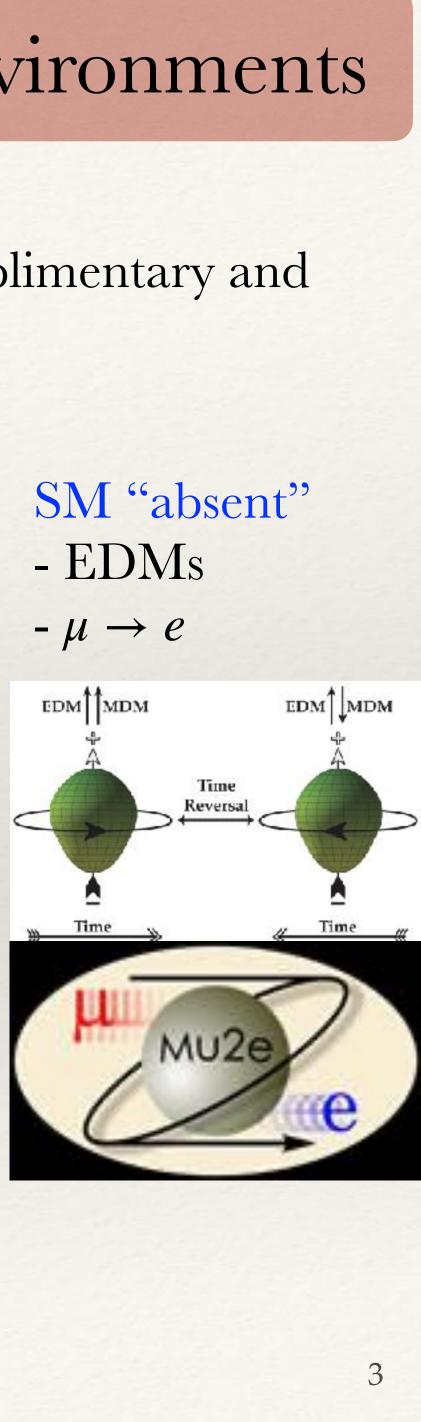


D Search for BSM (Beyond the Standard Model) physics in low-energy environments offers complimentary and

SM Forbidden $-0\nu\beta\beta$ - Dark Matter



 $\Omega_{\text{mass+energy}} = 1$ (or very close)



β -decay — precision tests of the Standard Model (SM)

 $\Box \text{ The generic } \beta \text{-decay rate is given by} \\ \Gamma_k = \left(G_F^{(\mu)} \right)^2 \times |V_{ij}|^2 \times |M_{\text{had}}|^2 \times \left(1 + \delta_{\text{RC}} \right) \times F_{\text{kin}}$

Fermi's decay constant measured with µ-decay non-perturbative hadronic matrix elements

Quark mixing matrix elementsrac V_{CKM} = Cabibbo - Kobayashi - Maskawa matrixc

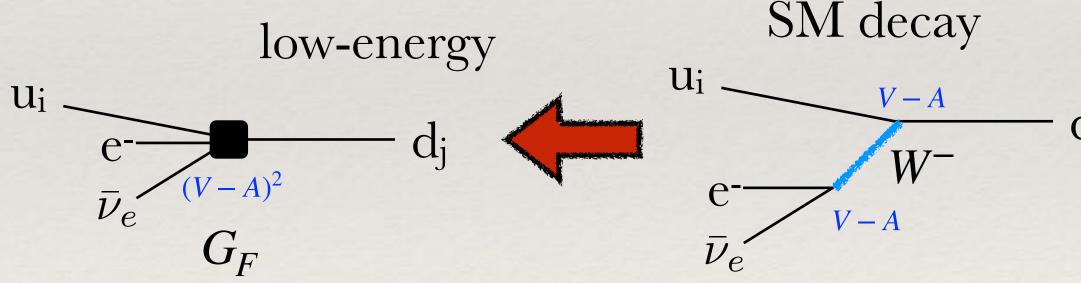
$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix}_{weak} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}_{QCD}$$

VCKM is a unitary matrix — if SM only no new physics: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Determining V_{ij} requires knowledge of $|M_{had}|$ \rightarrow we need LQCD (Lattice QCD)



phase space kinematic factor



β -decay — precision tests of the Standard Model (SM)

 $\Box \text{ The generic } \beta \text{-decay rate is given by} \\ \Gamma_k = \left(G_F^{(\mu)} \right)^2 \times |V_{ij}|^2 \times |M_{\text{had}}|^2 \times \left(1 + \delta_{\text{RC}} \right) \times F_{\text{kin}}$

Fermi's decay constant measured with µ-decay non-perturbative hadronic matrix elements

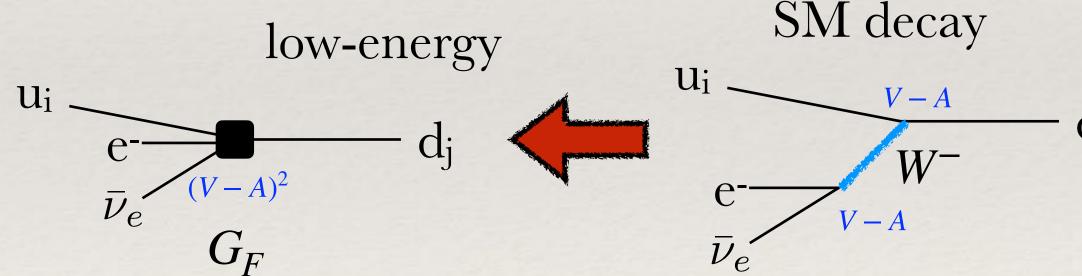
Quark mixing matrix elementsrac V_{CKM} = Cabibbo - Kobayashi - Maskawa matrixc

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix}_{weak} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}_{QCD}$$

V_{CKM} is a unitary matrix — if SM only no new physics: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Determining V_{ij} requires knowledge of $|M_{had}|$ \rightarrow we need LQCD (Lattice QCD)

phase space kinematic factor



 $(V, A, P, S, T)^2$

What would heavy BSM contribution look like? $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \neq 1$ u_i

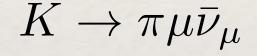
β -decay - determining V_{ij}

$$\mathbf{V}_{\mathrm{ud}} \quad \pi^{\pm} \to \pi^0 e \bar{\nu}_e$$

theoretically clean experimentally noisy nuclear $0^+ \to 0^+$

theoretically messy experimentally clean

Vus



theoretically clean experimentally clean

$$\frac{q^{\mu}\langle \pi^{-}(p+q) \,|\, \bar{s}\gamma_{\mu}u \,|\, K^{0}(p)\rangle}{m_{K}^{2} - m_{\pi}^{2}} \bigg|_{q^{2} \to 0}$$

$$\frac{V_{us}}{V_{ud}}$$

$$\frac{K \to \mu \bar{\nu}_{\mu}}{\pi \to \mu \bar{\nu}_{\mu}}$$

theoretically clean experimentally clean

$$\frac{\partial^{\mu} \langle 0 \,|\, \bar{s} \gamma_{\mu} \gamma_{5} u \,|\, K^{+} \rangle}{\partial^{\mu} \langle 0 \,|\, \bar{d} \gamma_{\mu} \gamma_{5} u \,|\, \pi^{+} \rangle} \rightarrow \frac{m_{K}^{2} \, F_{K}}{m_{\pi}^{2} \, F_{\pi}}$$

$\Gamma_{k} = \left(G_{F}^{(\mu)}\right)^{2} \times |V_{ij}|^{2} \times |M_{\text{had}}|^{2} \times \left(1 + \delta_{\text{RC}}\right) \times F_{\text{kin}}$

 $n \to p e \bar{\nu}_e$

theoretically clean-ish experimentally clean-ish

 $\rightarrow f_+(0) | V_{us} |$

 $|V_{us}|$

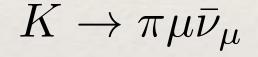
β -decay - determining V_{ij}

$$\mathbf{V}_{\mathrm{ud}} \quad \pi^{\pm} \to \pi^0 e \bar{\nu}_e$$

theoretically clean experimentally noisy nuclear $0^+ \to 0^+$

theoretically messy experimentally clean

Vus



theoretically clean experimentally clean

$$\frac{q^{\mu} \langle \pi^{-}(p+q) | \bar{s} \gamma_{\mu} u | K^{0}(p) \rangle}{m_{K}^{2} - m_{\pi}^{2}} \bigg|_{q^{2} - q^{2}}$$

$$\frac{V_{us}}{V_{ud}}$$

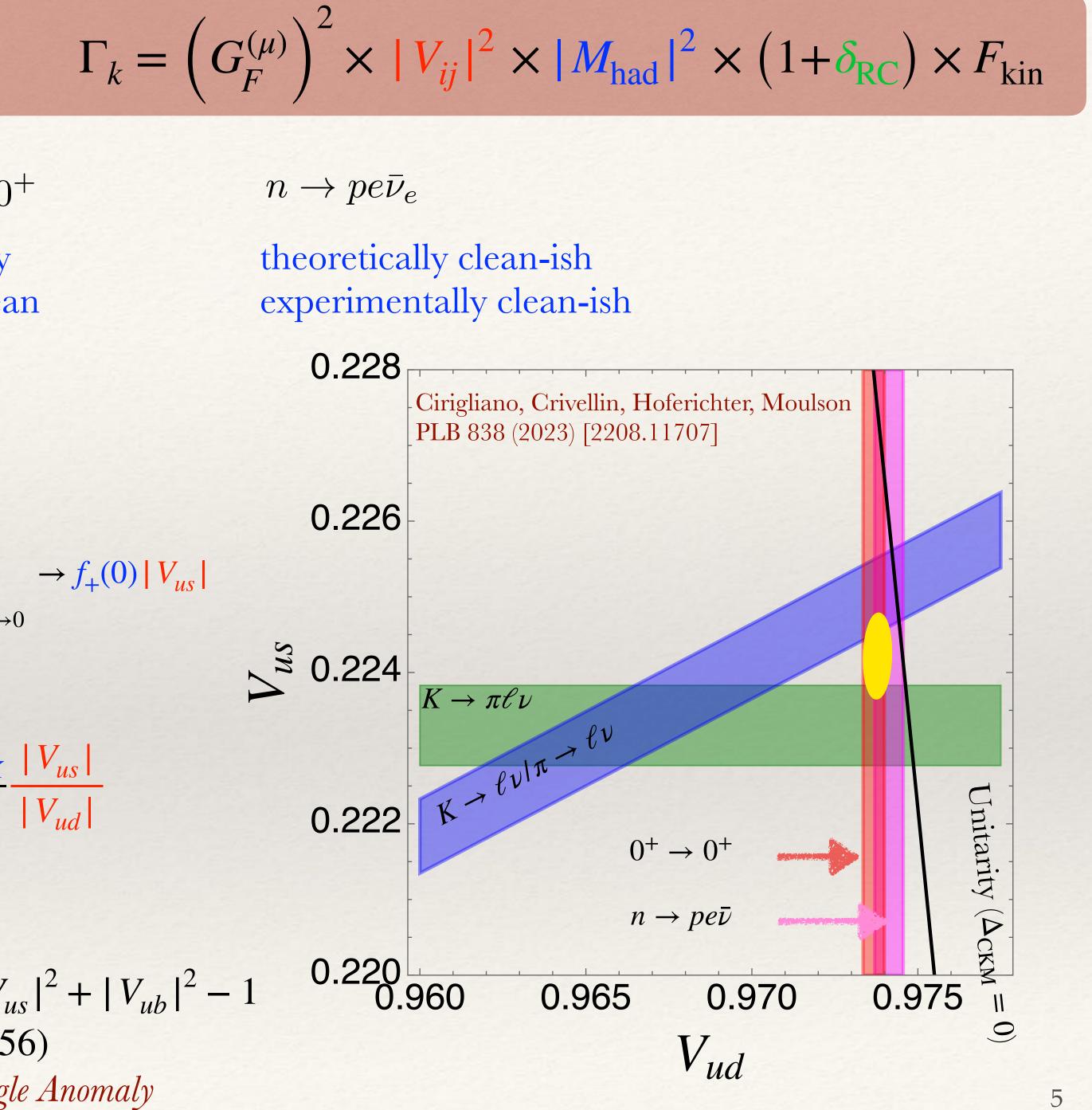
$$\frac{K \to \mu \bar{\nu}_{\mu}}{\pi \to \mu \bar{\nu}_{\mu}}$$

theoretically clean experimentally clean

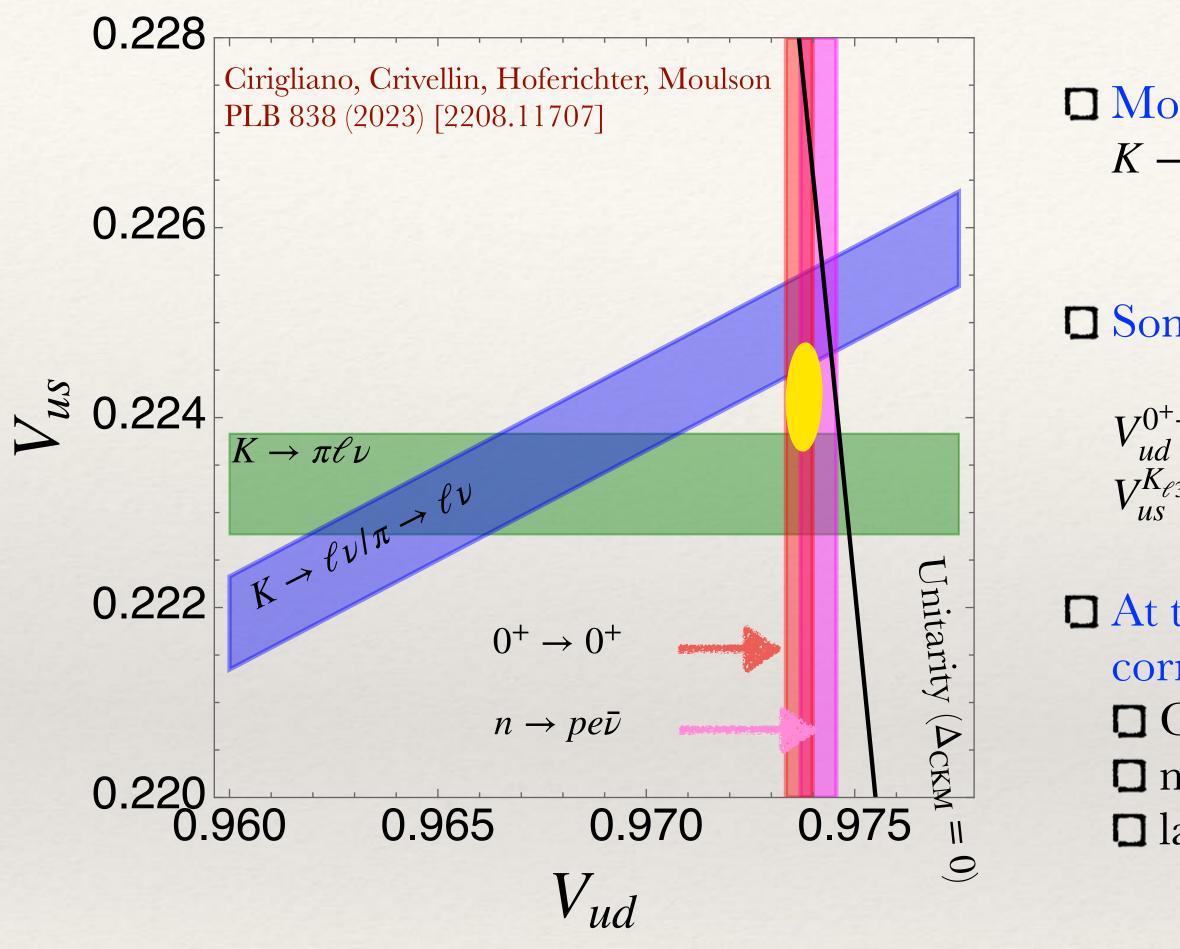
$$\frac{\partial^{\mu} \langle 0 \,|\, \bar{s} \gamma_{\mu} \gamma_{5} u \,|\, K^{+} \rangle}{\partial^{\mu} \langle 0 \,|\, \bar{d} \gamma_{\mu} \gamma_{5} u \,|\, \pi^{+} \rangle} \rightarrow \frac{m_{K}^{2} \, F_{K}}{m_{\pi}^{2} \, F_{\pi}}$$

 $\Delta_{\text{CKM}} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$ = -0.00176(56)Cabibbo Angle Anomaly

$$\Gamma_{k} = \left(G_{F}^{(\mu)}\right)^{2} \times |V_{ij}|^{2} \times |M_{\text{had}}|^{2} \times \left(1 + \delta_{\text{RC}}\right) \times$$



β -decay - Tension in the first-row of CKM



$$\Delta_{\text{CKM}} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$$

= - 0.00176(56)
Cabibbo Angle Anomaly

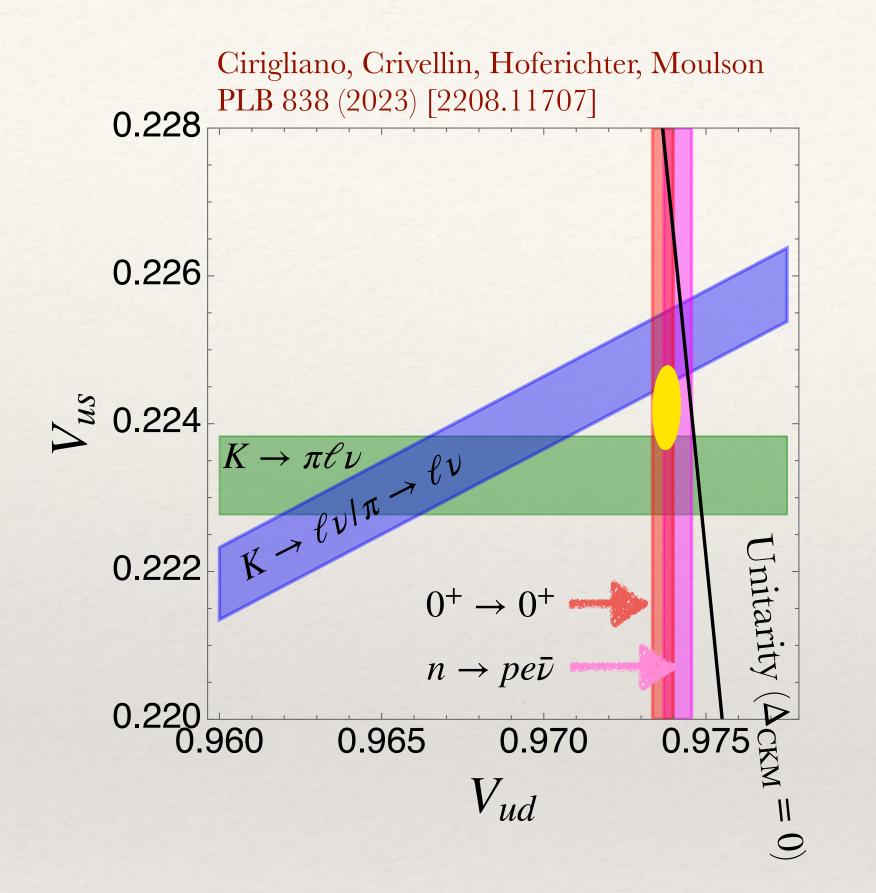
 $\Box \operatorname{Most significant tension with unitarity comes from Kaons}_{K \to \pi \ell \nu \operatorname{vs} K \to \ell \nu / \pi \to \ell \nu}_{(K_{\ell 3} \operatorname{vs} K_{\ell 2} / \pi_{\ell 2})}$

□ Some determinations of these CKM elements

 $V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{\exp}(13)_{\Delta_V^R}(27)_{\rm NS}[32]_{\rm total}$ $V_{us}^{K_{\ell 3}} = 0.22330(35)_{\exp}(39)_{f_+}(8)_{\rm IB}[53]_{\rm total}$

At this level of precision, careful treatment of radiative QED corrections has become the frontier
 Original Sirlin & Marciano et al approach (current algebra)
 modern pheno and EFT treatments
 lattice QCD + QED

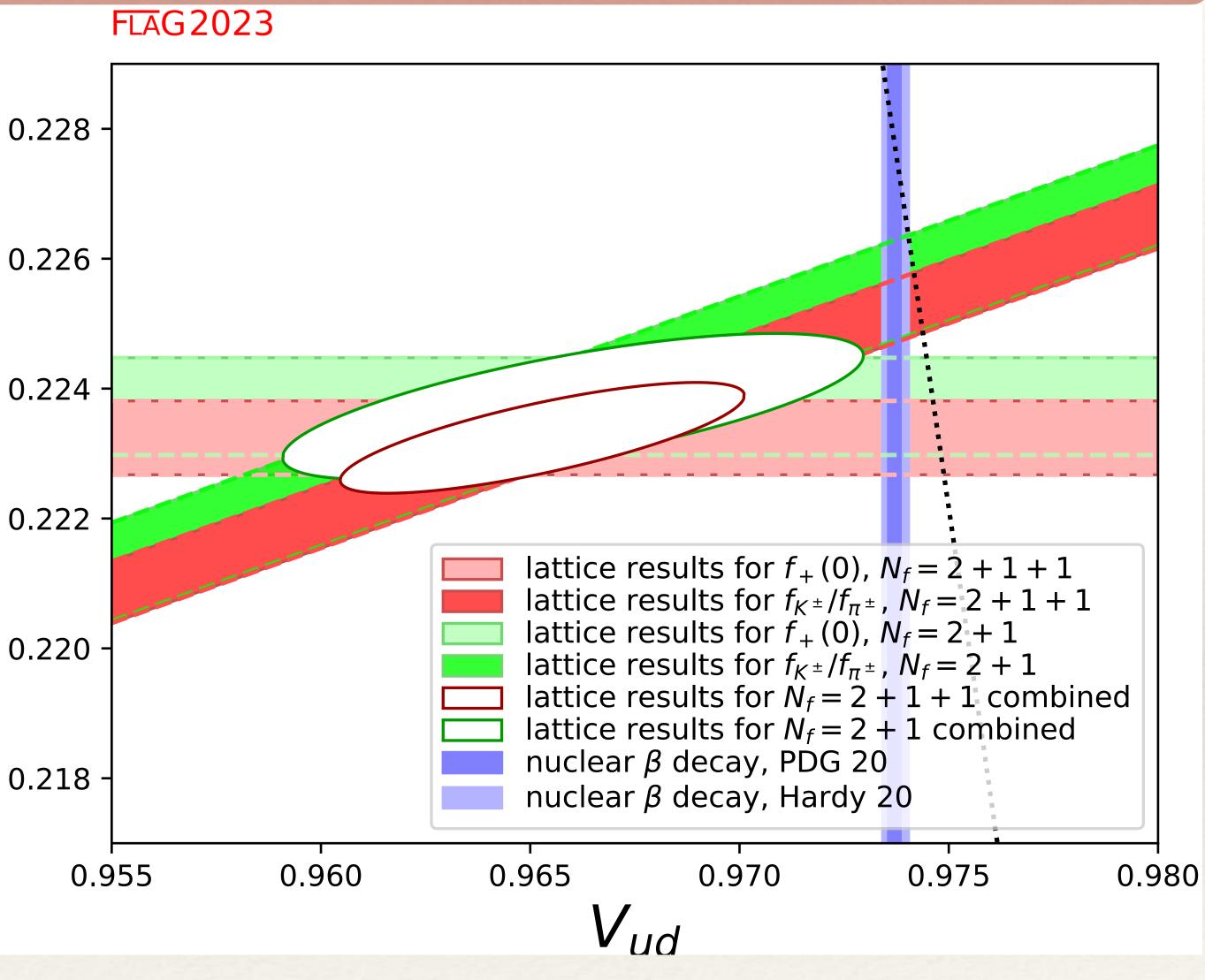
β -decay - Tension in the first-row of CKM



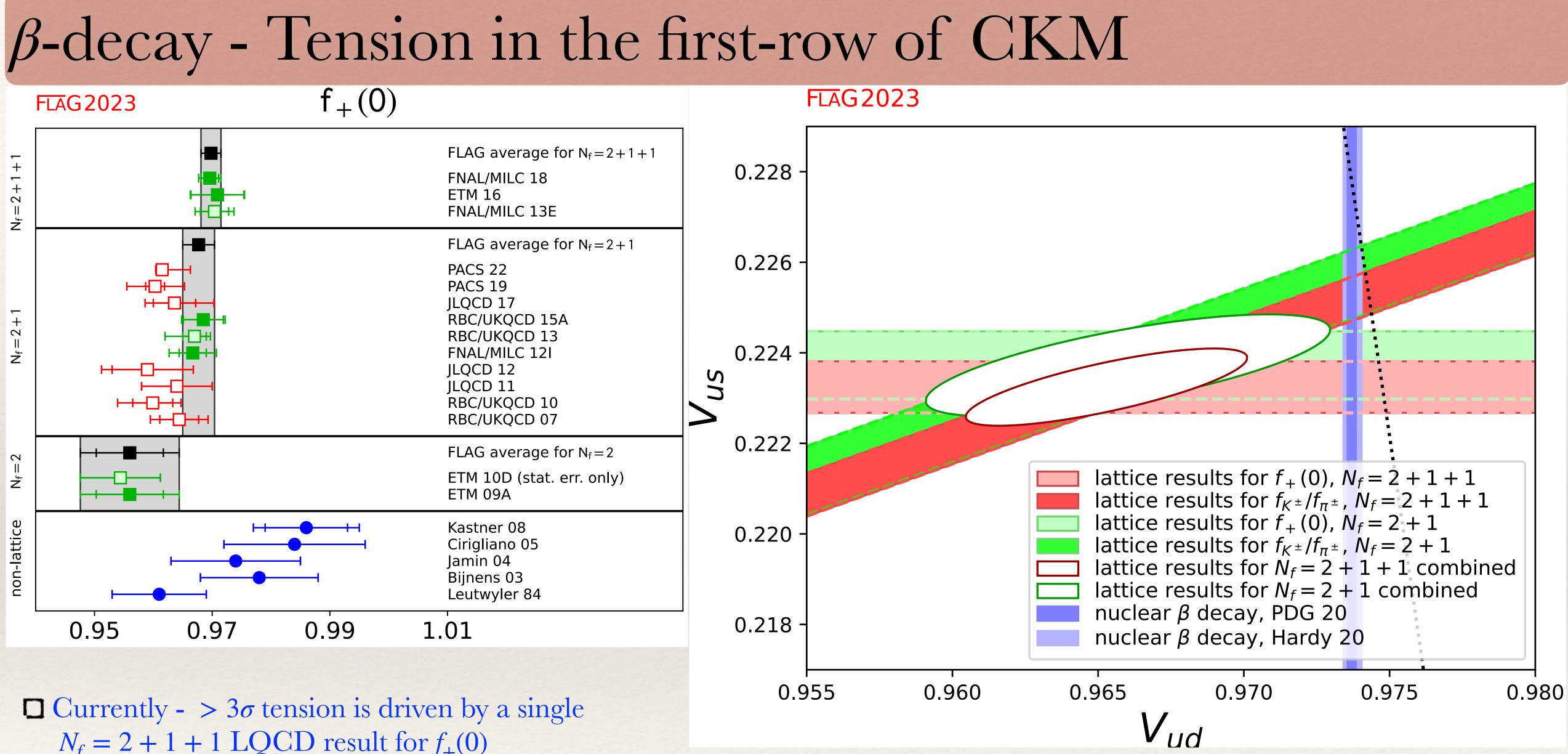
 3σ tension is seen with $N_f = 2 + 1 + 1$

 \square less tension with $N_f = 2 + 1$

US



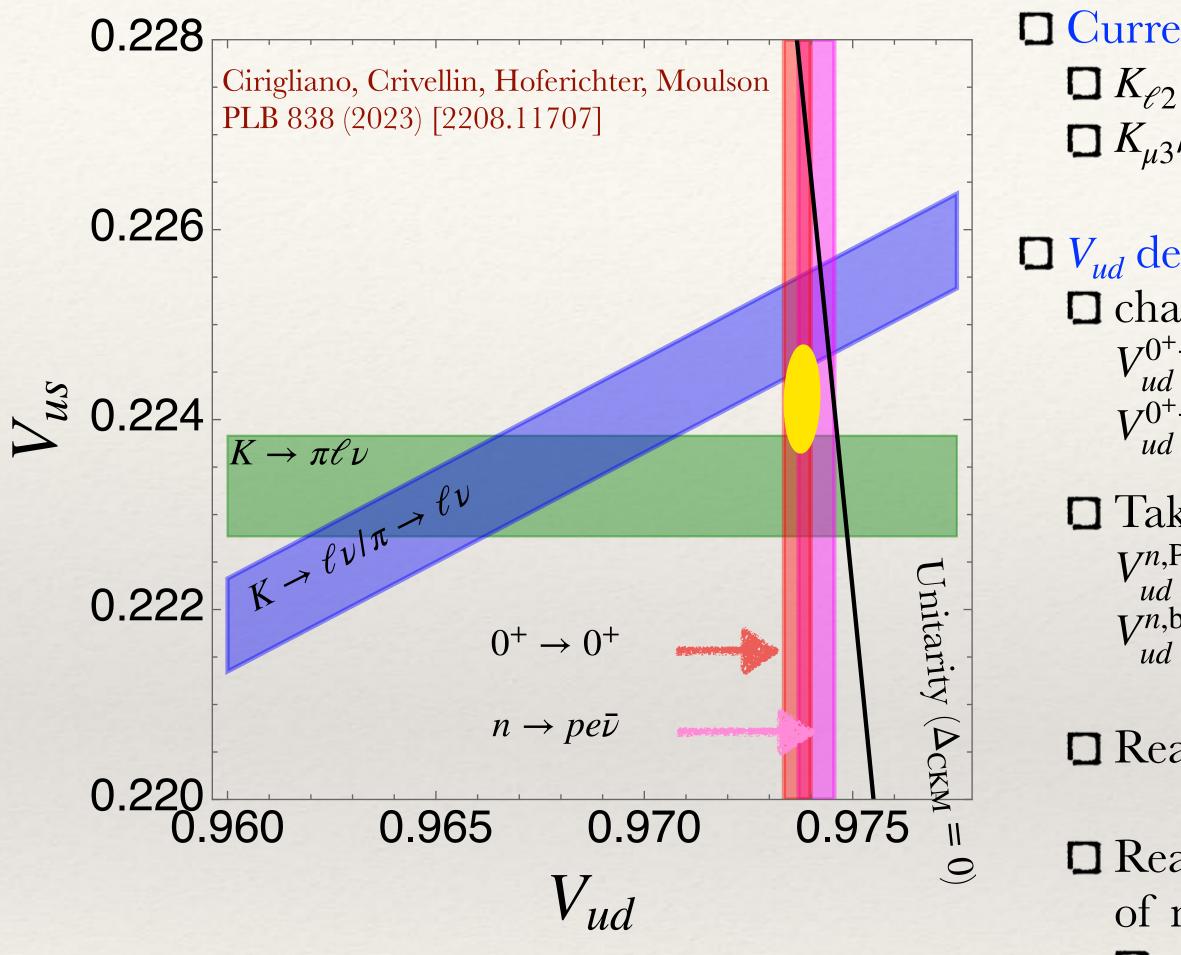
7



 $N_f = 2 + 1 + 1$ LQCD result for $f_+(0)$

□ It is important for other LQCD results to be pushed to the same precision as FNAL/MILC PACS-CS is getting there with $N_f = 2 + 1$ [Lattice2023, 2311.16755] - we need more

β -decay - Prospects for improving experimental precision



 \Box Current tension in global kaon fits: p-value < 1% [2208.11707] $\Box K_{\ell^2}$ measurement dominated by single experiment $\Box K_{\mu3}/K_{\mu2}$ measurement @ 0.2% will add clarity — NA62

 $\Box V_{ud}$ determination dominated by nuclear $0^+ \rightarrow 0^+$ decays \Box challenging to control nuclear structure corrections at 10⁻⁴ precision $V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{\exp}(13)_{\Delta_V^R}(27)_{\rm NS}[32]_{\rm total}$ $V_{ud}^{0^+ \to 0^+} = 0.97364(10)_{exp}(12)_{g_V}(22)_{\mu}(12)_{\delta_C}(43)_{g_V}(20)_{\delta_{NS}}[56]_{total} [2405.18464]$

 $\Box \text{ Take best } \tau_n \text{ and } \lambda = g_A/g_V \text{ measurement from } n \to pe\bar{\nu}$ $V_{ud}^{n,\text{PDG}} = 0.97441(3)_f (13)_{\Delta_V^R} (82)_{\lambda} (28)_{\tau_n} [88]_{\text{total}}$ $V_{ud}^{n,\text{best}} = 0.97413(3)_f (13)_{\Delta_V^R} (35)_{\lambda} (20)_{\tau_n} [43]_{\text{total}}$

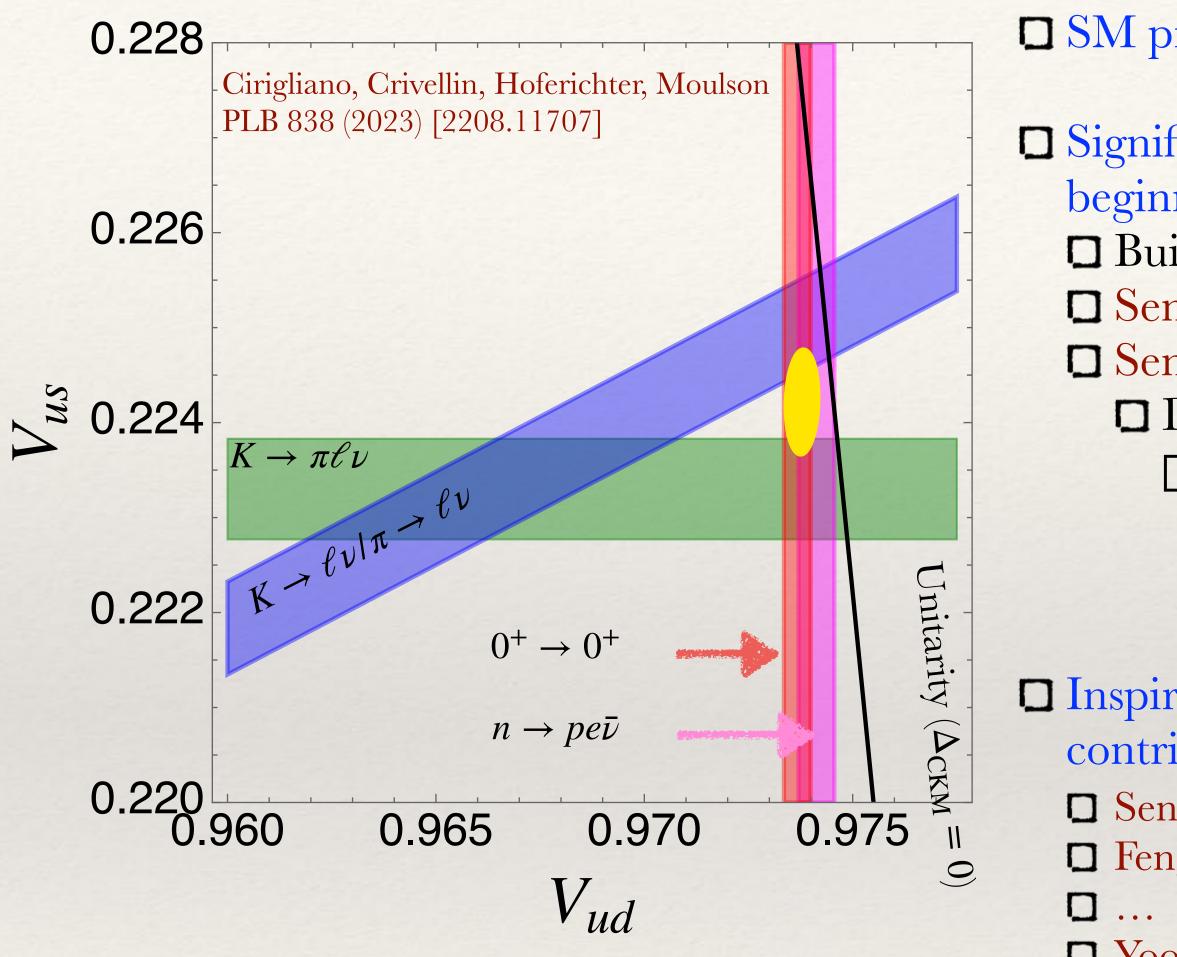
□ Realistic nuclear structure corrections larger than typically quoted

D Realistic to expect neutron decay measurements can match precision of nuclear decays

 \Box one more measurement of τ_n and λ that match best precision make neutron decay extraction competitive

D PIONEER Experiment will measure $\pi \rightarrow e\bar{\nu}/\pi \rightarrow \mu\bar{\nu}$ and π_{ℓ_3} allowing for independent V_{ud} and V_{us}/V_{ud} determinations

β -decay - Prospects for improving theoretical precision

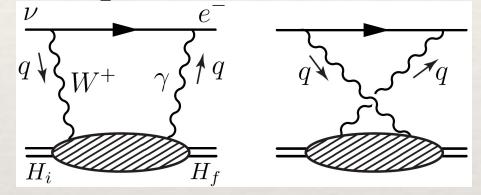


\Box SM predictions also need to be controlled at the O(0.2%) level

□ Significant recent progress in understanding QED corrections beginning with

D Built upon previous extensive work by Czarnecki, Marciano, Sirlin □ Seng, Gorchtein, Patel, Ramsey-Musolf, PRL 121 (2018) [1807.10197] **D** Seng, Gorchtein, Ramsey-Mosolf, PRD 100 (2019) [1812.03352] Dispersive methods used to provide more careful treatment of the

 $\Box_{\gamma W}$ arising in β -decay



□ Inspired new LQCD calculations to determine non-perturbative contributions to $\square_{\gamma W}$

□ Seng, Meissner PRL 122 (2019) [1903.07969]

□ Feng, Gorchtein, Jin, Ma, Seng PRL 124 (2020) [2003.09798]

D Yoo, Bhattacharya, Gupta, Mondal, Yoon, PRD 108 (2023) [2305.03198] D Ma, Feng, Gorchtein, Jin, Liu, Seng, Wang, Zhang PRL 132 (2024) [2308.16755]

D Modern Effective Field Theory Treatments

□ Ando, Fearing Gudkov, Kubodera, Myhrer, Nakamura, Sato PLB 595 (2004) [nucl-th/0402100] Cirigliano, deVries, Hayen, Mereghetti, Walker-Loud PRL 129 (2022) [2202.10439] **C**irigliano, Dekens, Mereghetti, Tomalak, PRD 108 (2023) [2306.03188]

NTNP

Home

science \sim

people

Nuclear Theory for New Physics

- About Us
- Commitment to Diversity
- Funding Acknowledgement

Nuclear Theory for New Physics co-chairs: Vincenzo Cirigliano & Saori Pastore

DEI Coordinator: Maria Piarulli

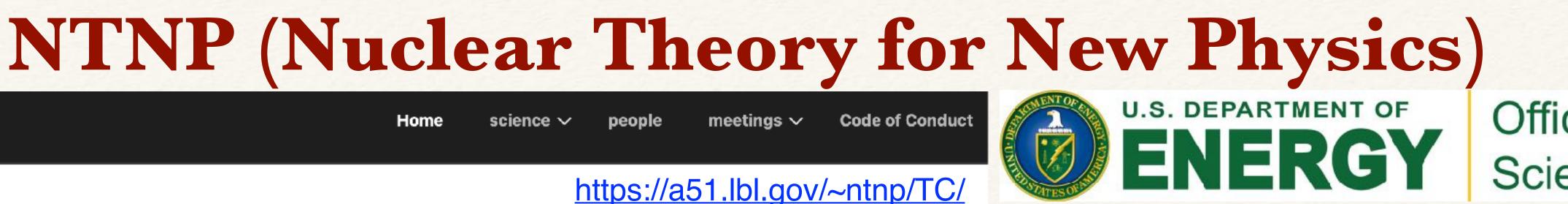
Lattice QCD

Coordinator: Andre' Walker-Loud

EFT / phenomenology Coordinator: Emanuele Mereghetti

Nuclear Structure

 $\searrow u$ EDM 🗢 SPIN EDM TIME FORWARD TIME BACKWARD β decays and new particles T & CP violation and the Origin of Matter



DWe are a new DOE Topical Collaboration

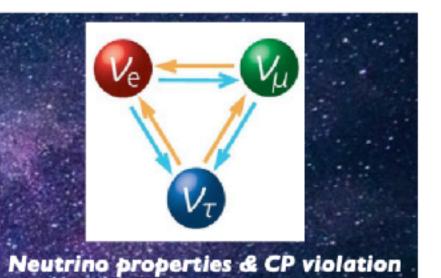
• We are jointly funded by the Offices of Nuclear and High Energy Physics

D A main goals of our collaboration: **D** improve the theoretical understanding of \Box neutron β -decay \Box nuclear β -decay

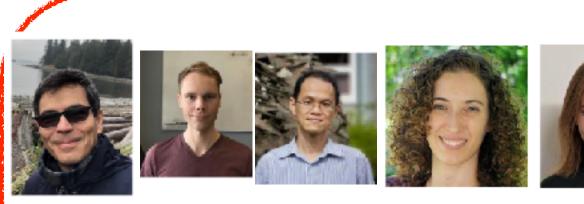
D Expertise in **D** Phenomenology **L**attice QCD **D** Effective Field Theory **D** Many-body nuclear methods

• We are happy to collaborate with others Get in touch!

Coordinator: Heiko Hergert

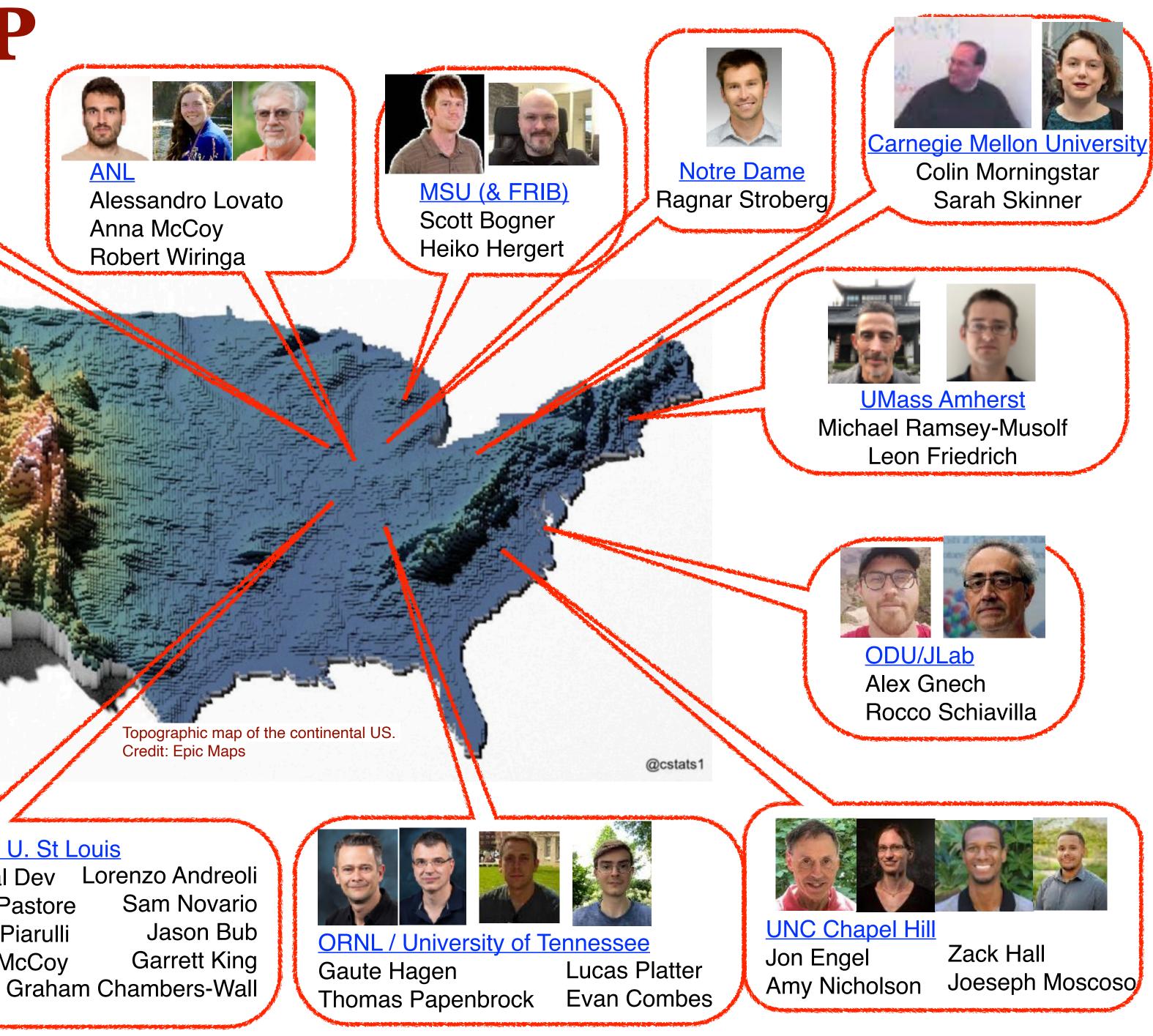


11



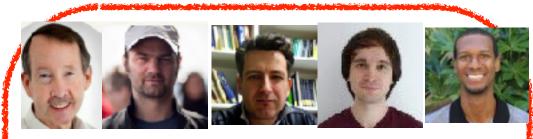
FNAL Noemi Rocco

NTNP



UW/INT Vincenzo Cirigliano Wouter Dekens Chien-Yeah Seng

Ayala Glick-Magid Maria Dawid



UC Berkeley/LBNL Wick Haxton André Walker-Loud Andrea Shindler

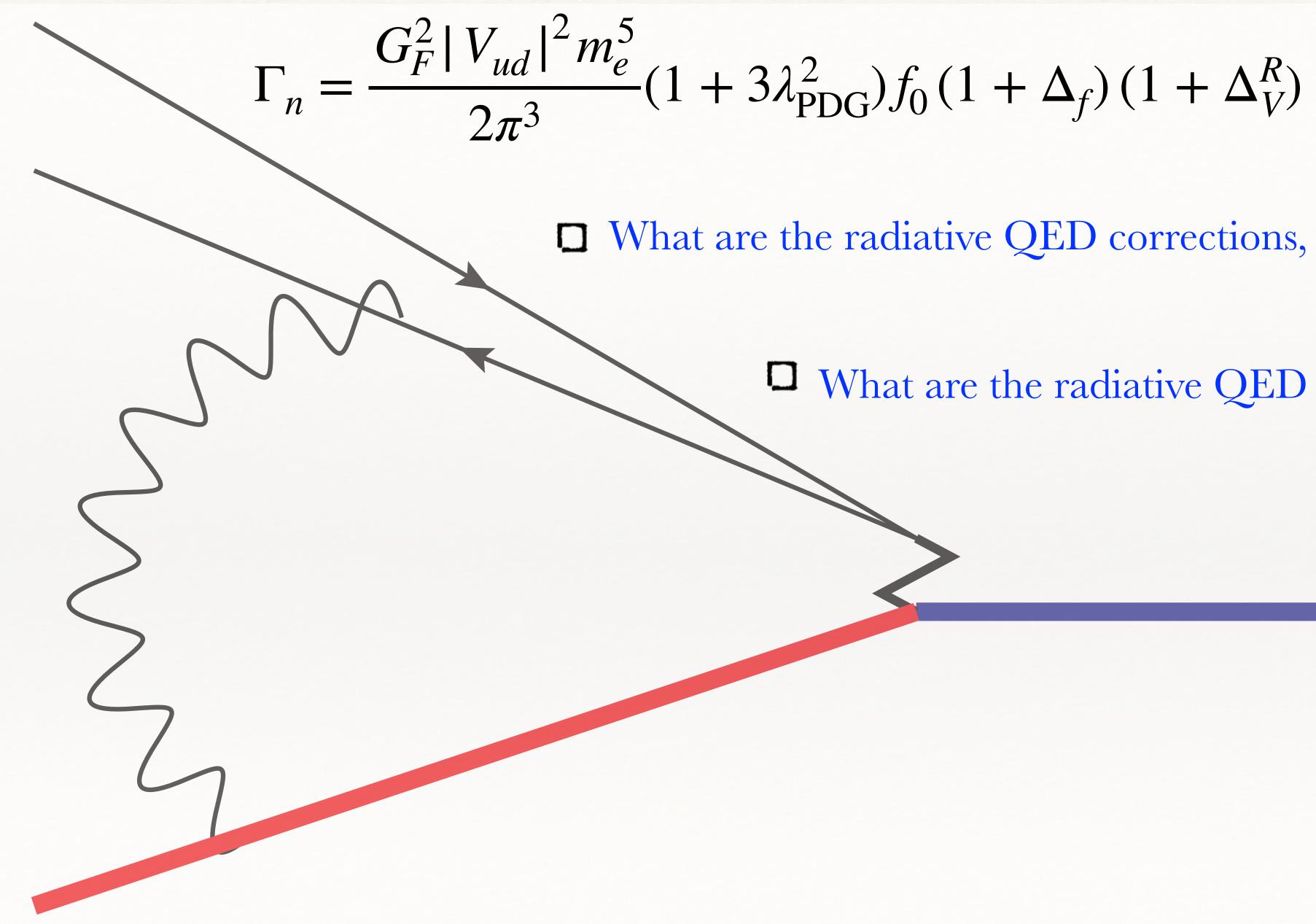
Lukáš Gráf Zack Hall

<u>ANL</u>

Joseph Carlson Kaori Fuyuto Stefano Gandolfi Emanuele Mereghetti Ingo Tews Sasha Tomalak Jacky Kumar

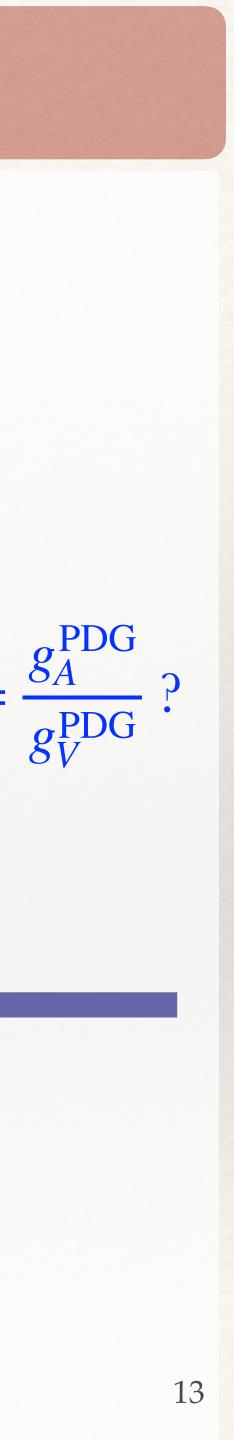
Wash. U. St Louis Bhupal Dev Saori Pastore Maria Piarulli Anna McCoy

β -decay - Two theoretical opportunities for $n \rightarrow pe\bar{\nu}$



 \square What are the radiative QED corrections, Δ_V^R ?

 \square What are the radiative QED corrections to $\lambda_{\text{PDG}} = \frac{g_A^{\text{PDG}}}{g_V^{\text{PDG}}}$?



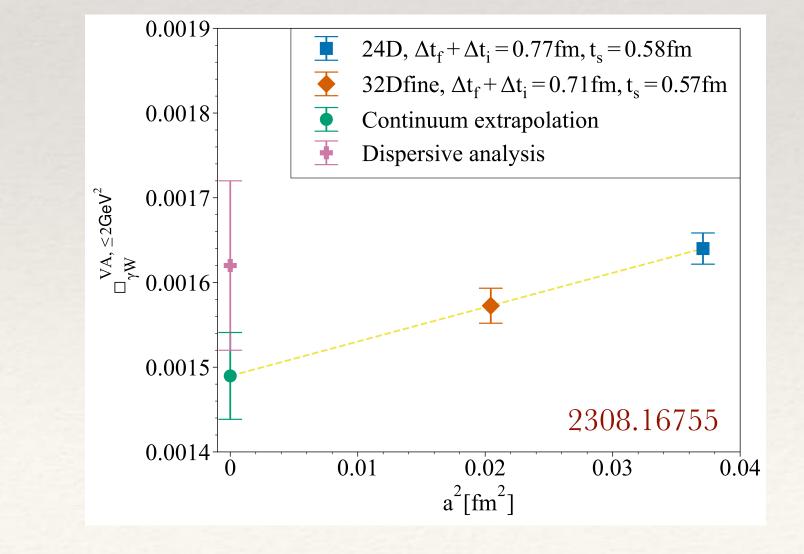
β -decay - QED corrections, Δ_V^R

$$\Gamma_n = \frac{G_F^2 |V_{ud}|^2 m_e^5}{2\pi^3} (1 + 3\lambda_{\text{PDG}}^2) f_0 (1 + \Delta_f) (1$$

$$\Delta_V^R = \frac{\alpha}{2\pi} \left[3\ln\frac{M_Z}{m_p} + \ln\frac{M_Z}{M_W} + \tilde{a}_g \right] + \delta_{\rm HO}^{\rm QED} + 2\Box_{\gamma W}^{VA}$$

$$\Box_{\gamma W}^{VA} = \frac{ie^2}{2M_N^2} \int \frac{d^4q}{(2\pi)^4} \frac{m_W^2}{m_W^2 - q^2} \frac{\epsilon^{\mu\nu\alpha\lambda}q_{\alpha}p_{\lambda}}{(q^2)^2} T_{\mu\nu}^{\gamma W}$$

$$T^{\gamma W}_{\mu\nu} = \int d^4x e^{iq \cdot x} \langle p(p,S) | T\{J^{em}_{\mu}(x)J^W_{\nu}(0)\} | n(p,S) \rangle$$



$+\Delta_V^R$)

K

Feng, Gorchtein, Jin, Ma, Seng PRL 124 (2020) [2003.09798] Seng, Feng, Gorchhtein, Jin, Meissner JHEP 10 (2020) [2009.00459] Ma, Feng, Gorchtein, Jin, Seng PRD 103 (2021) [2102.12048]

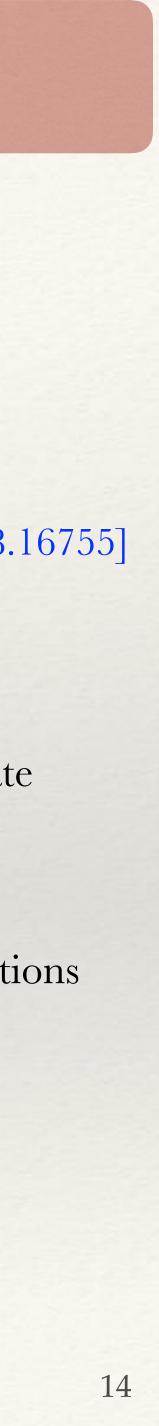
 πK Yoo, Bhattacharya, Gupta, Mondal, Yoon PRD 108 (2023) [2305.03198] Ma, Feng, Gorchtein, Jin, Liu, Seng, Wang, Zhang PRL 132 (2024) [2308.16755]

Challenging calculations — particularly for the neutron these are State-of-the-art LQCD results

- requires an integral over two-current insertions between ground-state neutron and proton
- many systematics need to be controlled
 - excited state contamination
 - separation between perturbative/non-perturbative Q^2 contributions
 - continuum limit
 - infinite volume limit
 - 2308.16755 was performed (a) m_{π}^{phys} !

I suspect the full systematic uncertainty is larger than currently quoted [don't let me take anything away from this very impressive work]

□ It will be great to see more LQCD results to compare with

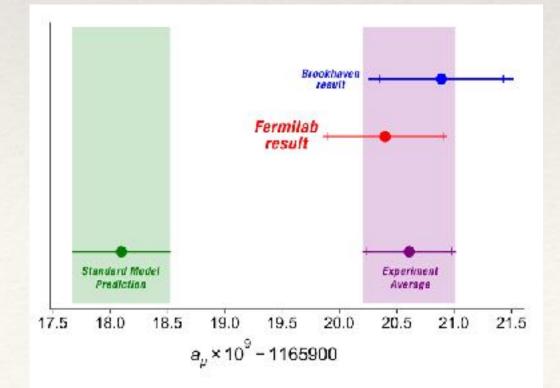


β -decay - QED corrections, Δ_V^R

$$\Gamma_{n} = \frac{G_{F}^{2} |V_{ud}|^{2} m_{e}^{5}}{2\pi^{3}} (1 + 3\lambda_{\text{PDG}}^{2}) f_{0} (1 + \Delta_{f}) (1$$

 \Box It is worth considering a full LQCD+QED calculation of $n \rightarrow pe\bar{\nu}$

- **D** This would be a challenging calculation — but possible on the time scale of new neutron τ_n and $\lambda = g_A/g_V$ measurements
- □ If first-row CKM approaches 5-sigma tension, we should have 2 or more methods \square Look to muon g - 2 as an example — \Box dispersion theory to determine hadronic vacuum polarization (HVP): $\approx 4\sigma$ tension \Box LQCD determination of HVP: $\approx 1\sigma$ tension (not a LQCD consensus yet, but moving this way)

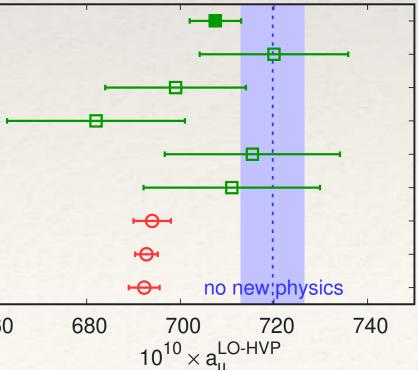


BMWc'20 Mainz'19 FHM'19 RBC'18 BMWc'17 DHMZ'19 **KNT'19** CHHKS'19

660

 $+\Delta_V^R$

R-ratio





This work	HHH	This work	
RBC '23	Hemet	RBC '23	
FHM '23	H-		
ETM '22	HHH	ETM '22	
Mainz '22	H=++	Mainz '22	
Aubin '22	⊢-+=+ 1	BMW '20	
χ QCD '22	H = H		
Lehner '20	H	BaBar	╟╍
BMW '20	HHH-I	CMD-3	
Benton '23		KLOE	⊪o+I
$e^+e^-\&$ lattice		Tau	Н
	14 208		228 2
$a_{\mu,04-10}^{\rm LO-HVP, light} \times 10^{10}$	200		$a_{\mu,04-10}^{\text{LO-HVP}} \times 10^{10}$

β -decay - QED corrections to $\lambda_{PDG} = g_A^{PDG} / g_V^{PDG}$

$$\Gamma_n = \frac{G_F^2 |V_{ud}|^2 m_e^5}{2\pi^3} (1 + 3\lambda_{\text{PDG}}^2) f_0 (1 + \Delta_f \lambda_f)$$

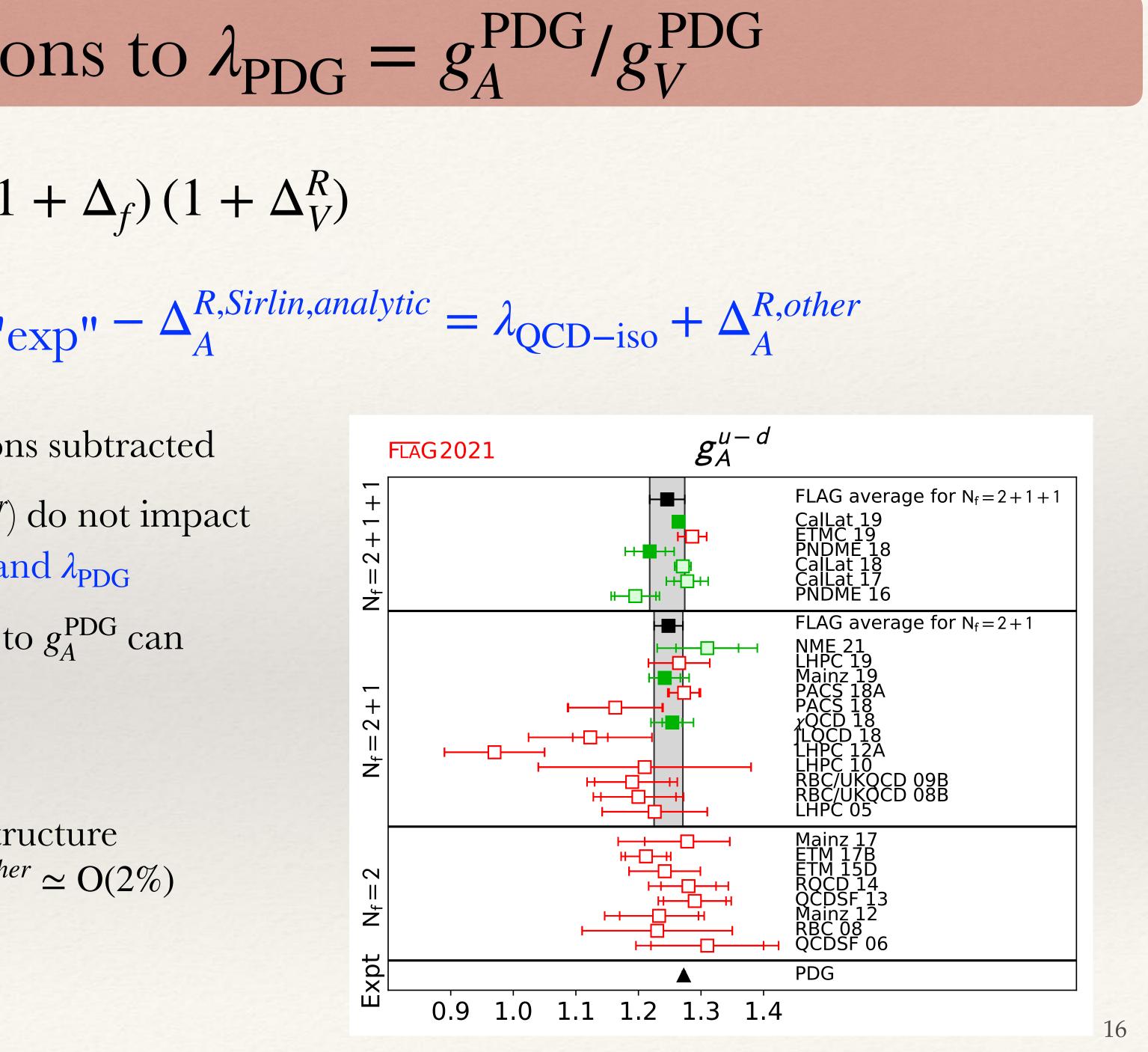
$$\lambda_{\text{PDG}} \approx \lambda_{\text{PDG}} = \lambda_f + \frac{1}{2\pi^3} \lambda_f$$

 $\Box \lambda_{PDG}$ is determined with *some* QED corrections subtracted \Box Additional QED corrections to $g_A^{PDG}(\Delta_A^{R,other})$ do not impact V_{ud} extraction — the $(1 + \Delta_A^R)$ cancels in Γ_n and λ_{PDG}

 \Box Comparing LQCD calculations of $g_A^{\text{QCD-iso}}$ to g_A^{PDG} can constrain BSM right-handed currents

 \Box Previously, we thought $\Delta_A^{R,other} \approx O(0.2\%)$

Potentially significant low-energy nucleon structure corrections may spoil this comparison, $\Delta_A^{R,other} \simeq O(2\%)$ Cirigliano, de Vries, Hayen, Mereghetti, Walker-Loud PRL 129 (2022) [2202.10439]



β -decay - QED corrections to $\lambda_{PDG} \stackrel{\text{physics PDG}}{=} g_A^{PDG} / g_V^{PDG}$ certainty entirely dominated by experiment [22].

0.975

ΔAIC

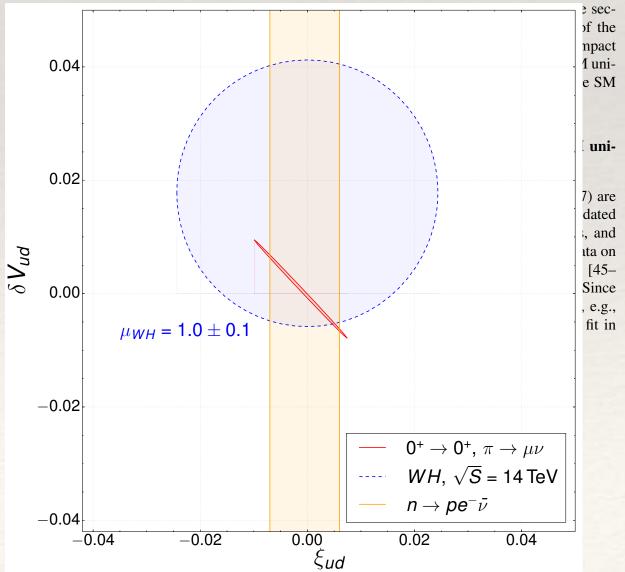
competitive determination requires a dedicated experimental campaign, as planned at the PIONEER experiment [26]. The best information on V_{us} comes from kaon decays, $K_{\ell 2}$ = $K_{\ell 3} = K \rightarrow \pi \ell \nu_{\ell}$. The former is typically ana-

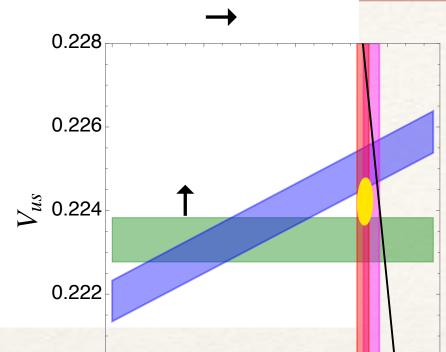
 $\square While Open while Control of the product of the$ do not cherails of the global fit to kaon decays as well as the input the decay constants, form factors, and activitive corrections, are

 $\square Global \xrightarrow{V_{us}}_{V_{ud}} = 0.23108(23)_{exp}(42)_{F_{K}+F_{\pi}}(16)_{IB}[51]_{total},$ ere the errors refer to experiment, lattice input for the matrix CKM JHEP 03 see also: Belfatto, The these points could be scrutinized by a new measurement of the Revel Dia tew permit, and

Celements, and isospin-breaking corrections, respectively. To-gether with the constraints on V_{ud} , these bands give rise to the gether with the constraints on V_{ud} , these bands give fibe to the situation depicted in Fig. 1: on the one hand, there is a ten-situation depicted in Fig. 1: on the one hand, there is a ten-sion between the best fit and CKM unitarity, but another ten sion arising entirely from meson decays, is due to the fact that in K_{ud} but another ten bands correspond to $V_{ud}^{0^+} \rightarrow 0^+$ (left $Q = Q_{ud}$) and $V_{ud}^{n} Q^{st} = Q = Q_{ud}$. The diagonal hand (blue) corre**favors** Britche. Additional information on V_{us} can be derived from τ Bicays [29, 30], but given the larger errors [3], 30] we will The main point of this Letter is that given the various en-it deviates from the unitarity line by 2.8 σ . Note that the significance tends to information on the various of K and K data a when it comes to interpreting either of the ensions (CRM uni-tarity and $K_{\ell 2}$ versus $K_{\ell 3}$) in terms of physics beyond the SM (BSM). In particular, the data base for $K_{\ell 2}$ is completely dominated by a single experiment [33], and at the same time the global fit to all kaon data displays a relatively poor fit quality. All these points could be scrutinized by a new measurement of

> possible at the NA62 experiment. Further, once the experimental situation is clarified, more robust interpretations of the ensuing tensions will be possible, especially regarding the role of



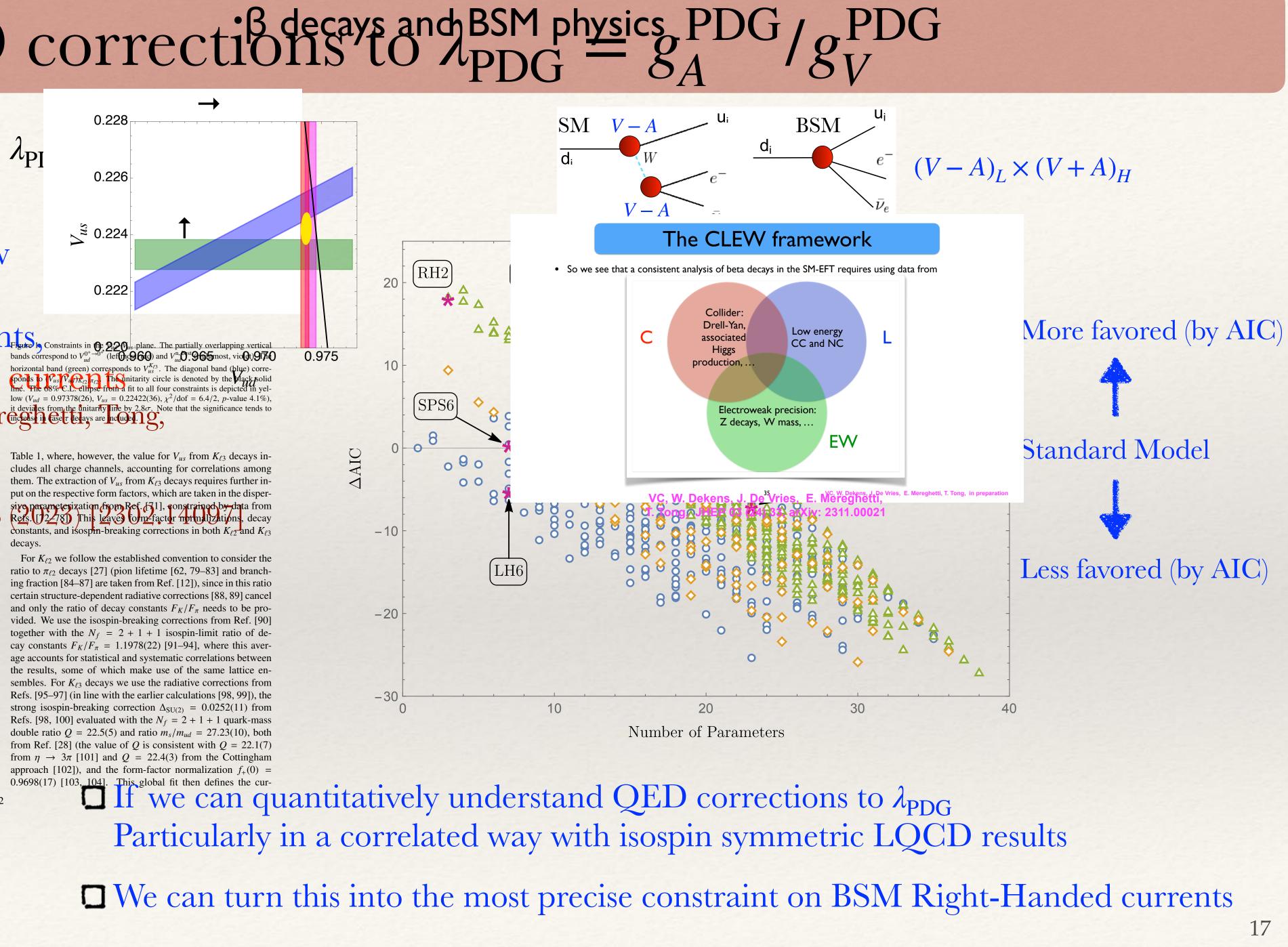


horizontal band (green) corresponds to $V_{us}^{K_{\ell_3}}$. The diagonal band (blue) corresponds to $V_{us}V_{u} p_{K_{\ell_2}} \pi_{\ell_2}$. The unitarity circle is denoted by the black solid line. The 08% C.L. ellipse from a fit to all four constraints is depicted in yellow ($V_{ud} = 0.97378(26)$, $V_{us} = 0.22422(36)$, $\chi^2/dof = 6.4/2$, *p*-value 4.1%),

Table 1, where, however, the value for V_{us} from $K_{\ell 3}$ decays includes all charge channels, accounting for correlations among them. The extraction of V_{us} from $K_{\ell 3}$ decays requires further input on the respective form factors, which are taken in the dispersive parameterization from Ref. [71], constrained by data from Refs. [22–78] This leaves complete rormalizations, decay constants, and isospin-breaking corrections in both $K_{\ell 2}$ and $K_{\ell 3}$ decays.

For $K_{\ell 2}$ we follow the established convention to consider the ratio to $\pi_{\ell 2}$ decays [27] (pion lifetime [62, 79–83] and branching fraction [84-87] are taken from Ref. [12]), since in this ratio certain structure-dependent radiative corrections [88, 89] cancel and only the ratio of decay constants F_K/F_{π} needs to be provided. We use the isospin-breaking corrections from Ref. [90] together with the $N_f = 2 + 1 + 1$ isospin-limit ratio of decay constants $F_K/F_{\pi} = 1.1978(22)$ [91–94], where this average accounts for statistical and systematic correlations between the results, some of which make use of the same lattice ensembles. For $K_{\ell 3}$ decays we use the radiative corrections from Refs. [95–97] (in line with the earlier calculations [98, 99]), the strong isospin-breaking correction $\Delta_{SU(2)} = 0.0252(11)$ from Refs. [98, 100] evaluated with the $N_f = 2 + 1 + 1$ quark-mass double ratio Q = 22.5(5) and ratio $m_s/m_{ud} = 27.23(10)$, both from Ref. [28] (the value of Q is consistent with Q = 22.1(7)from $\eta \rightarrow 3\pi$ [101] and Q = 22.4(3) from the Cottingham approach [102]), and the form-factor normalization $f_+(0) =$

[□] We can turn this into the most precise constraint on BSM Right-Handed currents



Particularly in a correlated way with isospin symmetric LQCD results

 \square Systematic, EFT treatment of neutron β -decay

The parameters can be measured

If we want to connect them to Standard Model (SM) parameters we need to start from a Lagrangian with parameters related to SM parameters

$$\mathcal{L}_{\not{\tau}} = -\sqrt{2}G_F V_{ud} \left[\bar{e}\gamma_{\mu}P_L\nu_e \left(\bar{N} \left(g_V v_{\mu} - 2g_A S_{\mu} \right) \tau^+ N \right. \right. \\ \left. + \frac{i}{2m_N} \bar{N} \left(v^{\mu}v^{\nu} - g^{\mu\nu} - 2g_A v^{\mu}S^{\nu} \right) \left(\overleftarrow{\partial} - \overrightarrow{\partial} \right)_{\nu} \tau^+ N \right) \right. \\ \left. + \frac{ic_T m_e}{m_N} \bar{N} \left(S^{\mu}v^{\nu} - S^{\nu}v^{\mu} \right) \tau^+ N \left(\bar{e}\sigma_{\mu\nu}P_L\nu \right) \right. \\ \left. + \frac{i\mu_{\text{weak}}}{m_N} \bar{N} \left[S^{\mu}, S^{\nu} \right] \tau^+ N \left. \partial_{\nu} \left(\bar{e}\gamma_{\mu}P_L\nu \right) \right] + \dots$$
(2)

pion-less low-energy EFT

$$\lambda = \frac{g_A}{q_V}$$

$$= -\sqrt{2}G_F V_{ud} \left[\bar{e}\gamma_{\mu}P_L\nu_e \left(\bar{N} \left(g_V v_{\mu} - 2g_A S_{\mu} \right) \tau^+ N \right. \right. \\ \left. + \frac{i}{2m_N} \bar{N} \left(v^{\mu}v^{\nu} - g^{\mu\nu} - 2g_A v^{\mu}S^{\nu} \right) \left(\overleftarrow{\partial} - \overrightarrow{\partial} \right)_{\nu} \tau^+ N \right) \right. \\ \left. + \frac{ic_T m_e}{m_N} \bar{N} \left(S^{\mu}v^{\nu} - S^{\nu}v^{\mu} \right) \tau^+ N \left(\bar{e}\sigma_{\mu\nu}P_L\nu \right) \right. \\ \left. + \frac{i\mu_{\text{weak}}}{m_N} \bar{N} \left[S^{\mu}, S^{\nu} \right] \tau^+ N \partial_{\nu} \left(\bar{e}\gamma_{\mu}P_L\nu \right) \right] + \dots$$
(2)

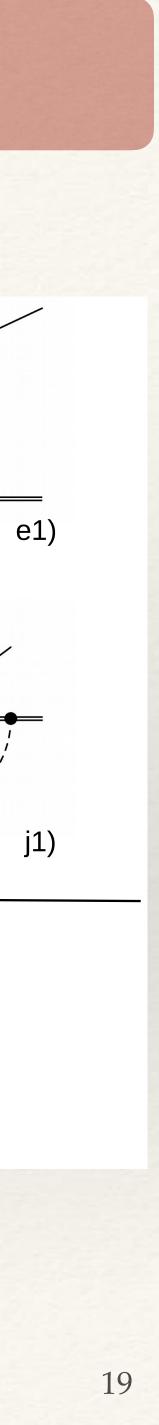
whose parameters can be matched to experimentally measured quantities

$$\frac{d\Gamma}{dE_e d\Omega_e d\Omega_\nu} = \frac{(G_F V_{ud})^2}{(2\pi)^5} (1 + 3\lambda^2) w(E_e) \times \left[1 + \bar{a}(\lambda) \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \bar{A}(\lambda) \frac{\vec{\sigma_n} \cdot \vec{p_e}}{E_e} + \dots\right]$$

Perform the calculation with SU(2) heavy-baryon χPT and match the results to this pion-less EFT

 \Box Sub-set of O(50) diagrams





 \square Sub-set of O(50) diagrams

photons

LO

NLO

a1)

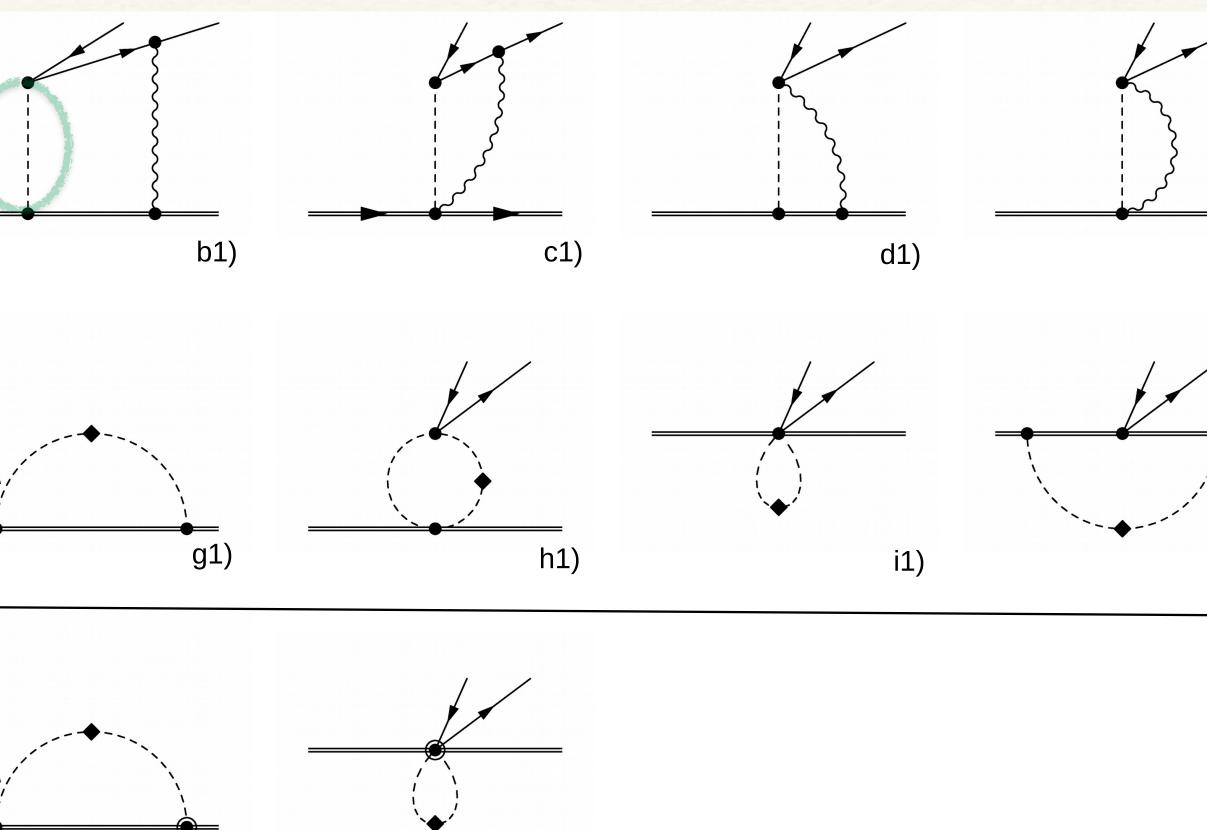
f1)

a2)

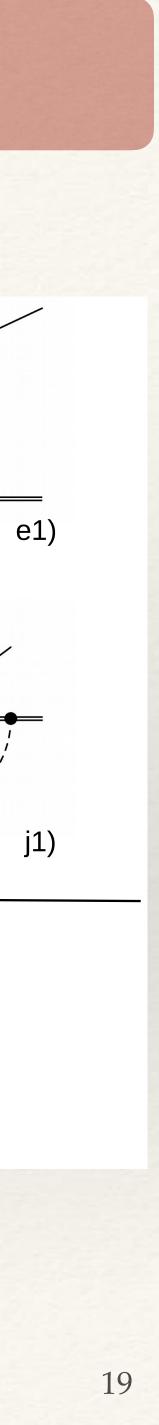
b2)

pions

pion electromagnetic mass splitting $m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$



c2)

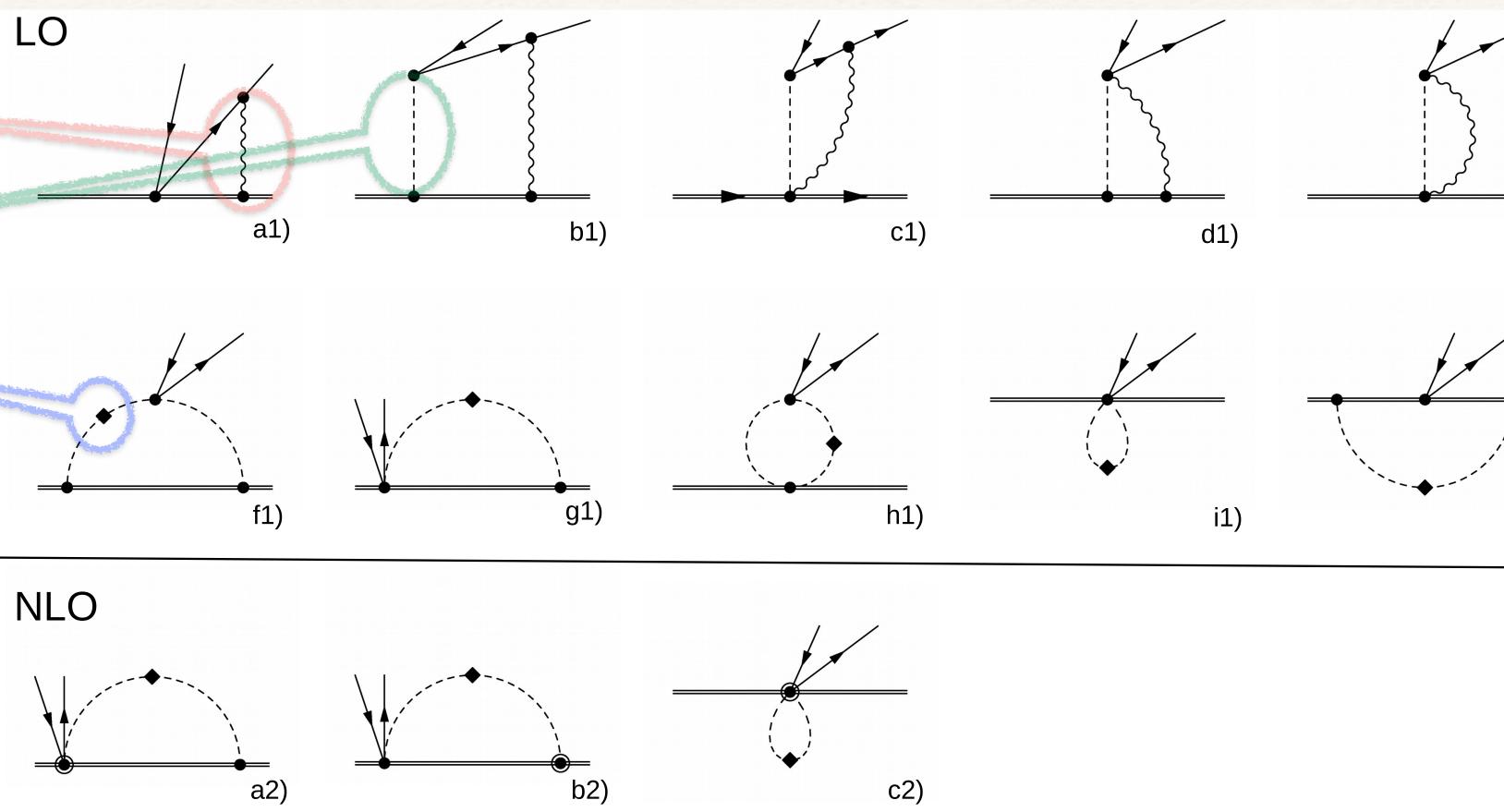


 \Box Sub-set of O(50) diagrams

photons

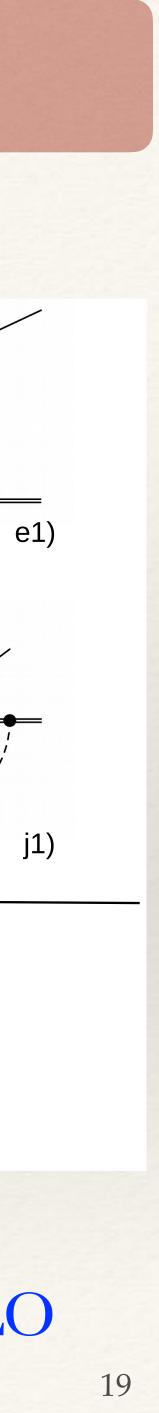
pions

- pion electromagnetic mass splitting $m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$
- NOTE: at this order, we also include QED, m_d-m_u corrections to M_n-M_p



 \Box iso-vector contributions to M_n-M_p vanish from symmetry constraints for τ^+ current

iso-scalar contributions do not vanish - but the sum of all of them does vanish through NLO



 $\lambda_{\rm PDG} = g_A^{\rm QCD} \left(1 + \delta_{\rm RC}^{(\lambda)} - 2 {\rm Re}(\epsilon_R) \right)$ Matching

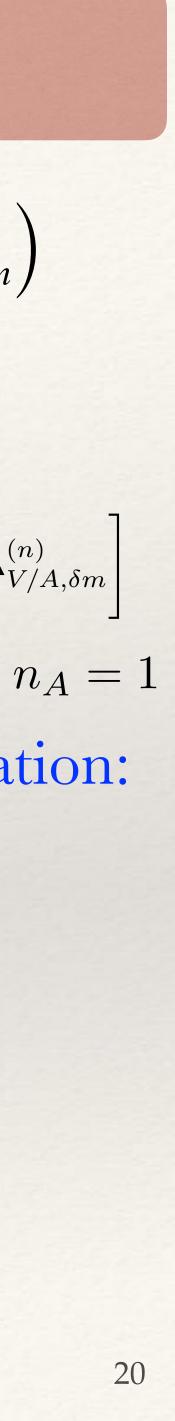
$$\begin{split} \Delta_{A,\text{em}}^{(0)} &= Z_{\pi} \left[\frac{1 + 3g_A^{(0)2}}{2} \left(\ln \frac{\mu^2}{m_{\pi}^2} - 1 \right) - g_A^{(0)2} \right] + \hat{C}_A(\mu) \\ \Delta_{Z,\text{em}}^{(0)} &= \hat{C}_V(\mu) \\ \Delta_{A,\text{em}}^{(1)} &= Z_{\pi} 4\pi m_{\pi} \left[c_4 - c_3 + \frac{3}{8m_N} + \frac{9}{16m_N} g_A^{(0)2} \right] \end{split}$$

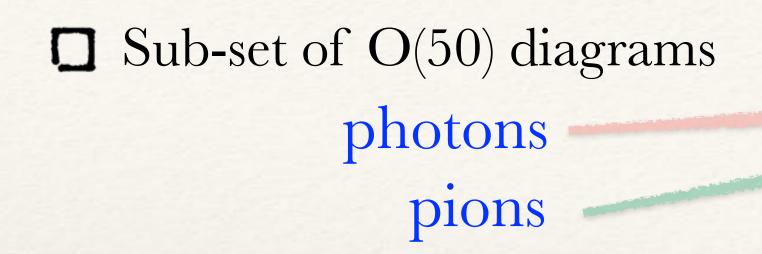
Low-Energy-Constants (LECs) $\hat{C}_{A,V}(\mu)$ - completely unknown c_{34} are estimated from literature (large)

Using Naive Dimensional Analysis (NDA) to estimate $C_{A(\mu)}$ and $c_{3,4}$ from the literature $\delta_{\rm RC}^{(\lambda)} \in \{1.4, 2.6\} \cdot 10^{-2}$

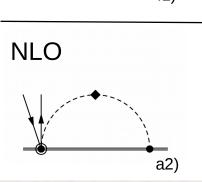
$$\delta_{\text{RC}}^{(\lambda)} = \frac{\alpha}{2\pi} \left(\Delta_{A,em}^{(0)} + \Delta_{A,em}^{(1)} - \Delta_{V,em}^{(0)} \right)$$

an order of magnitude larger than previous estimates





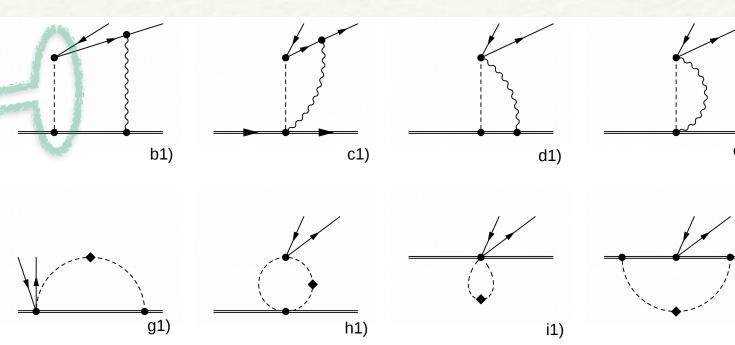
pion electromagnetic mass splitting $m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$

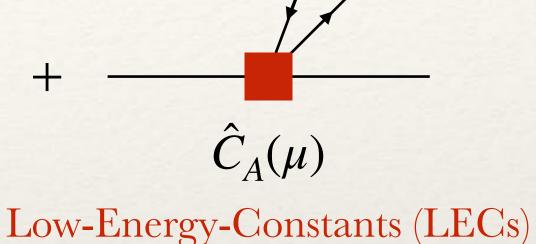


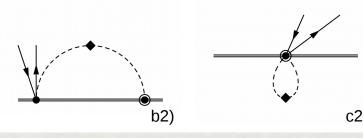
LO

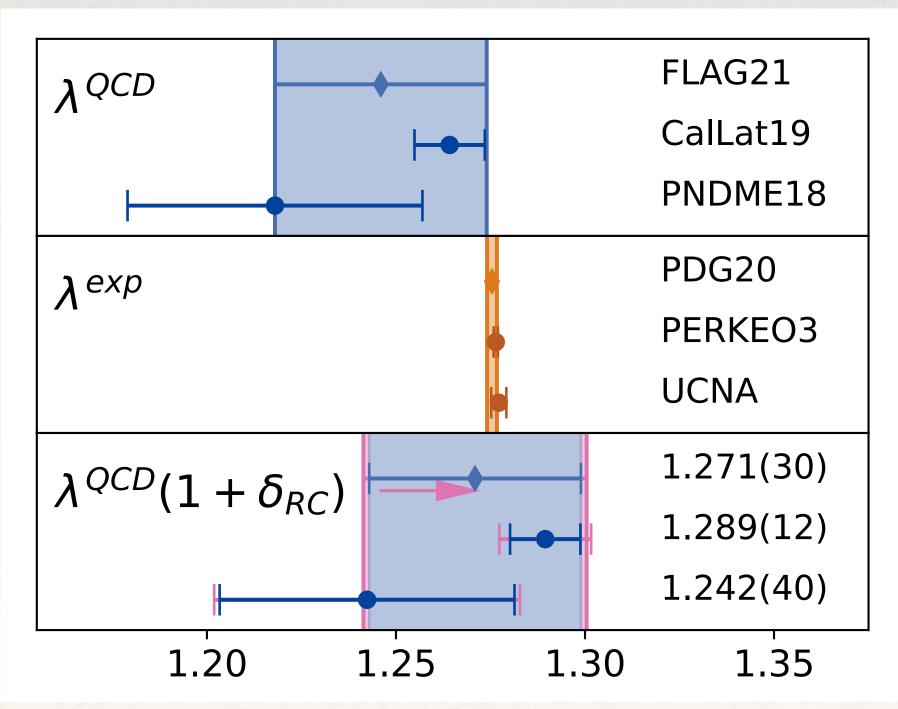
 $g_A^{\text{PDG}} = g_A^{\text{QCD-iso}} + \delta_{\text{RC}}^{(\lambda)}(\alpha_{fs}, \hat{C}_A(\mu), \dots)$ $\delta_{\text{RC}}^{(\lambda)} \in \{1.4, 2.6\} \cdot 10^{-2}$

seems to move g_A^{QCD} towards g_A^{exp}
need LQCD+QED calculation to determine δ_{RC}^(λ)
requires careful understanding of
renormalization
QED gauge/scheme choice to handle IR/UV

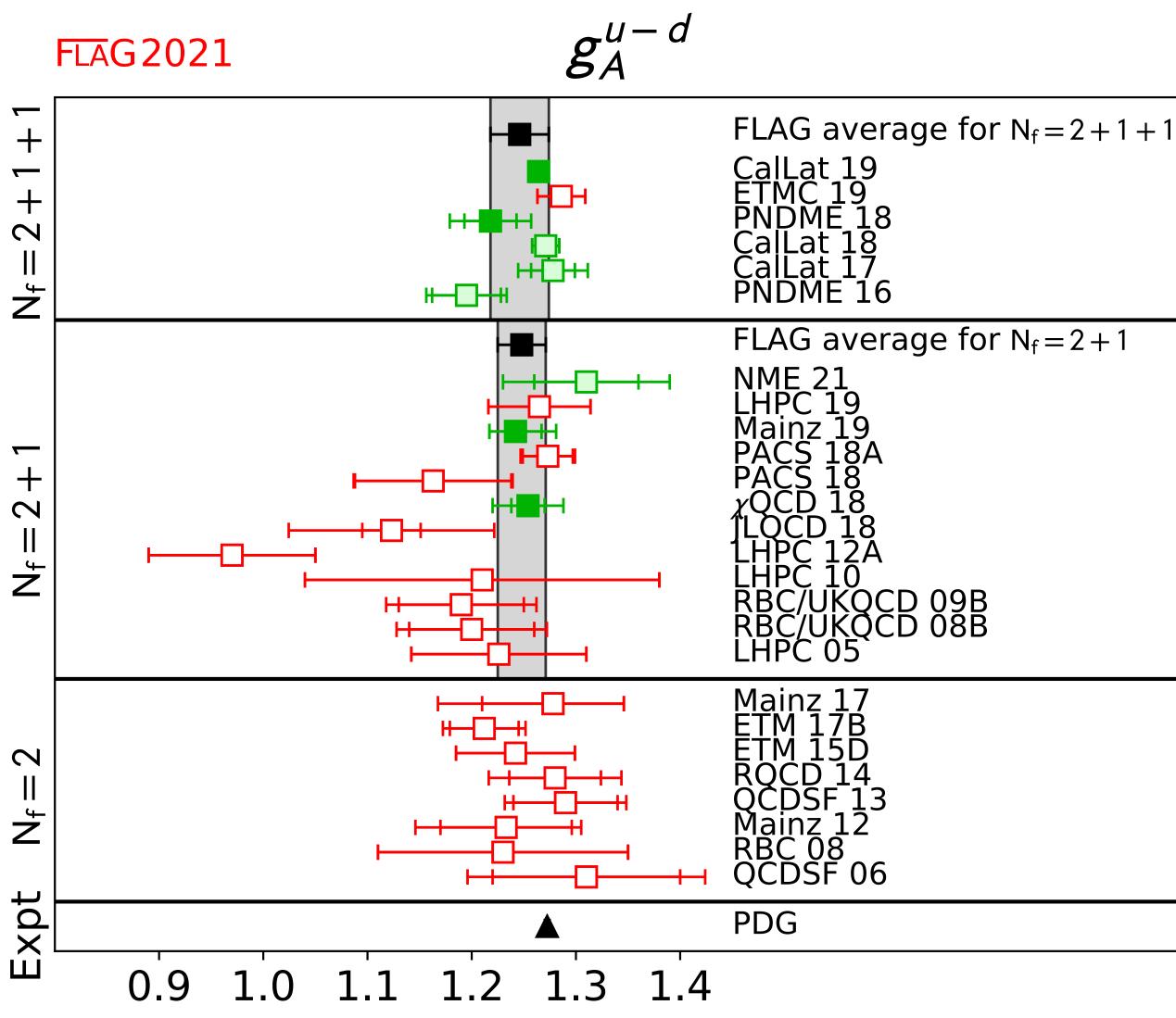


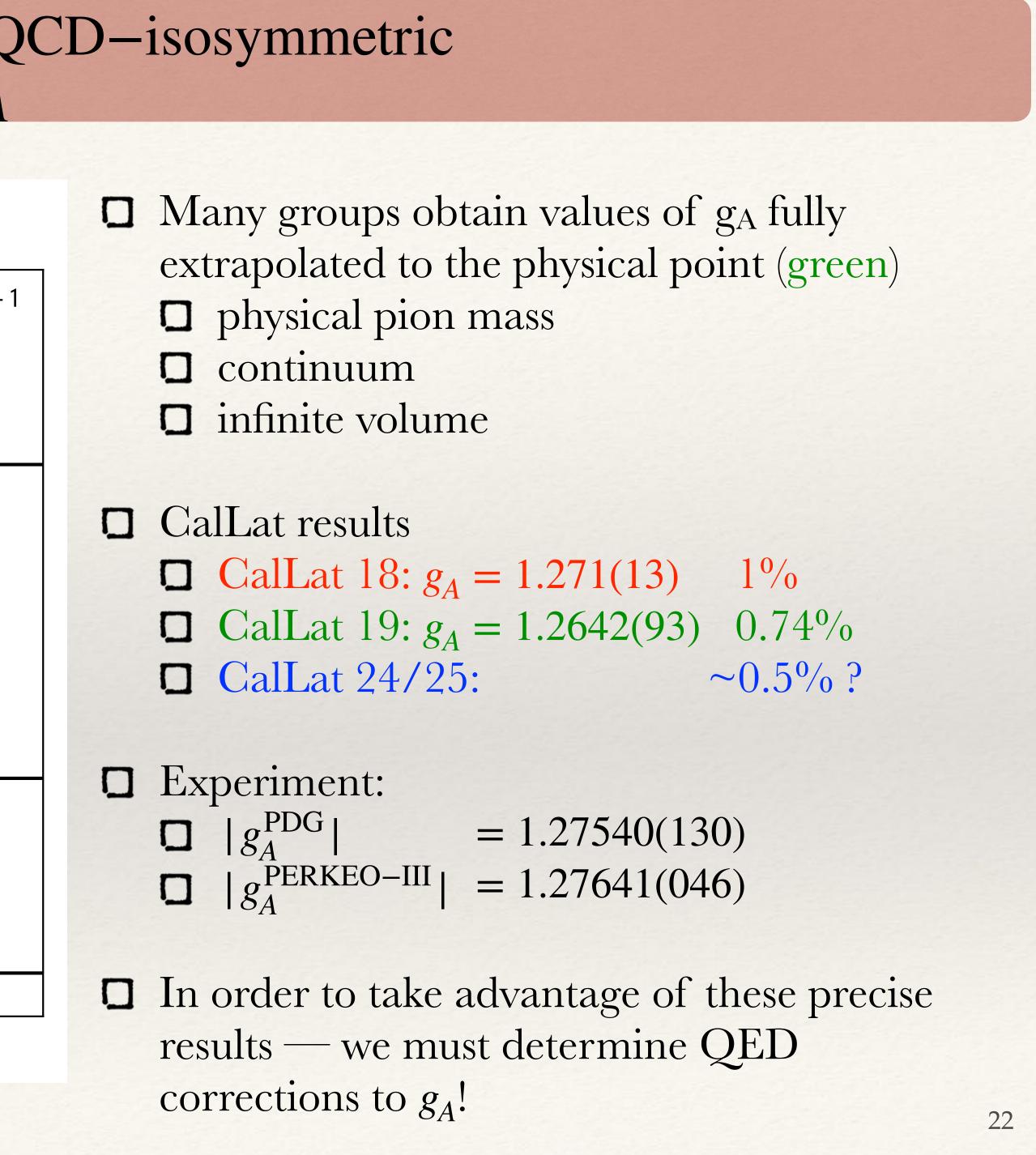






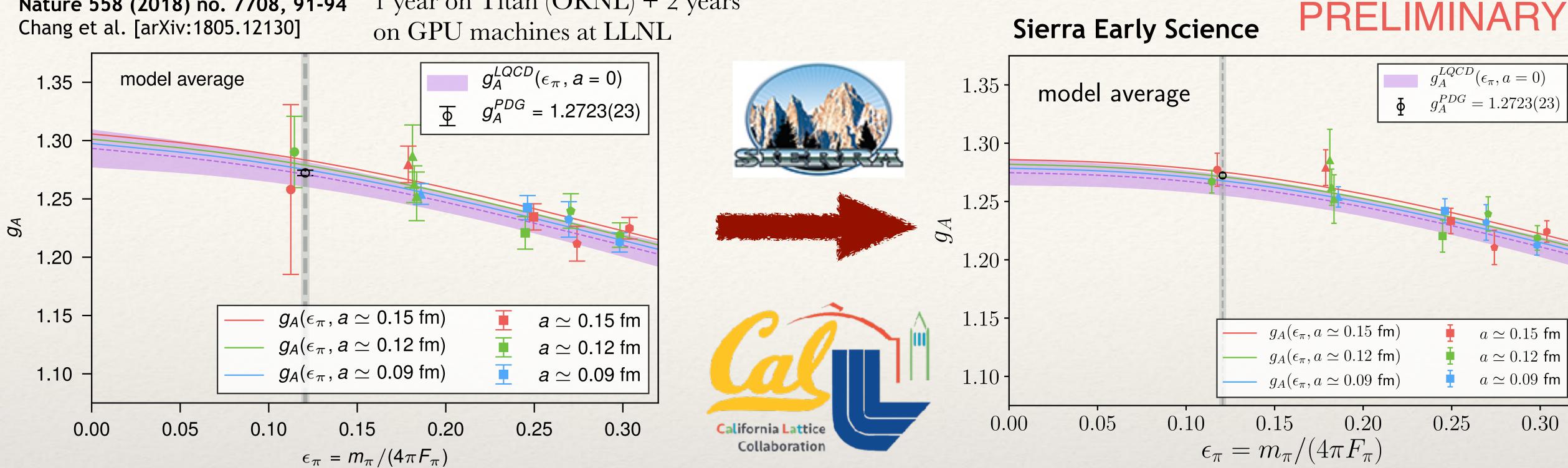
Status of LQCD results for $g_{\Lambda}^{\text{QCD-isosymmetric}}$





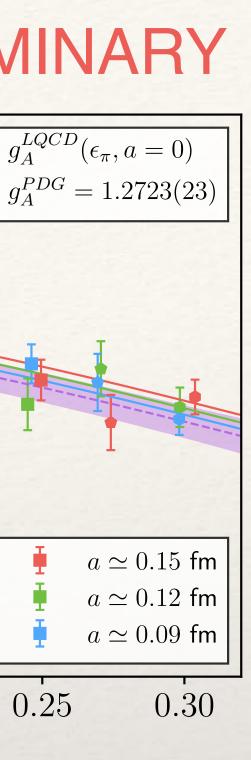
Nature 558 (2018) no. 7708, 91-94

1 year on Titan (ORNL) + 2 years



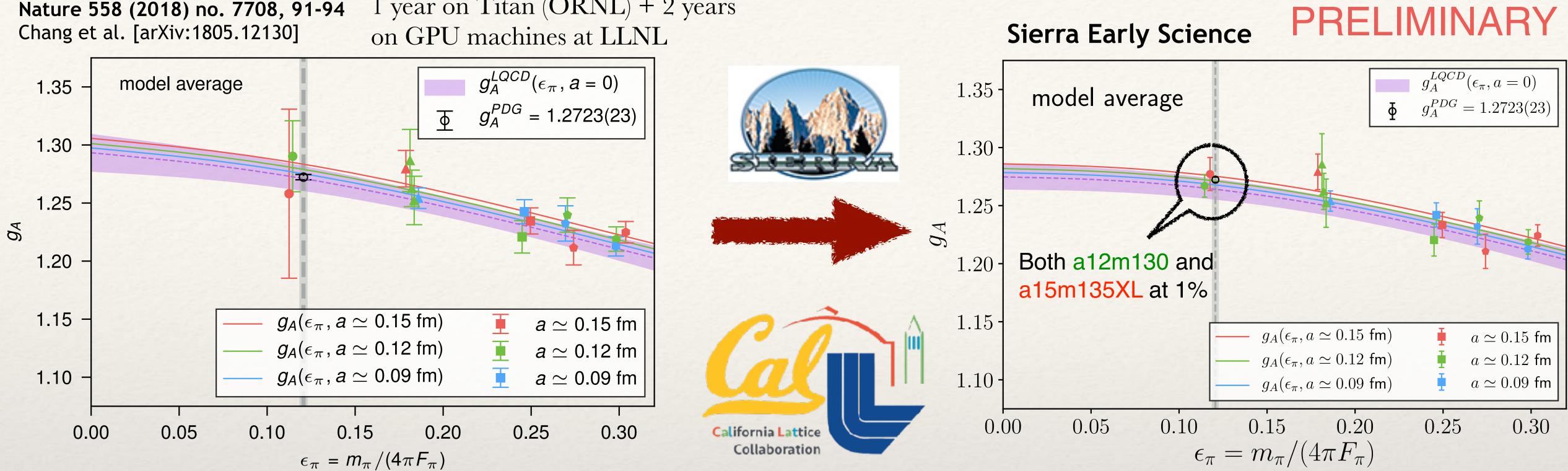
The a12m130 (48³ x 64 x 20) with 3 sources cost as much as all other ensembles combined

 $\Box 2.5$ weekends on Sierra $\rightarrow 16$ srcs □ Now, 32 srcs (un-constrained, 3-state fit) \Box We generated a new a15m135XL (48³ x 64) ensemble (old a15m130 is 32³ x 48) $\Box M\pi L = 4.93$ (old $M\pi L = 3.2$) $1.2711(125) \rightarrow 1.2641(93) [0.74\%]$ $\Box L_5 = 24$, $N_{src} = 16$



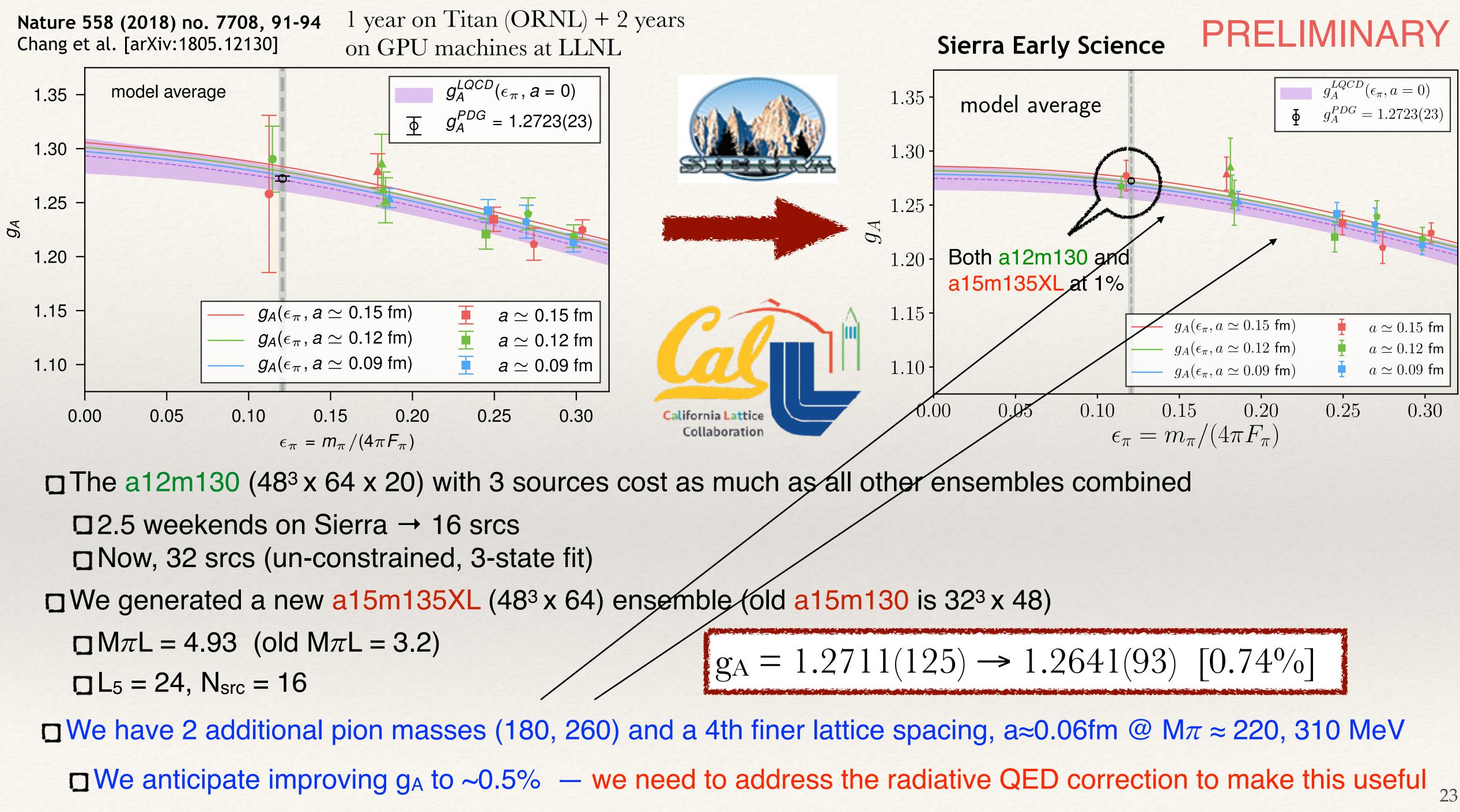
Nature 558 (2018) no. 7708, 91-94

1 year on Titan (ORNL) + 2 years



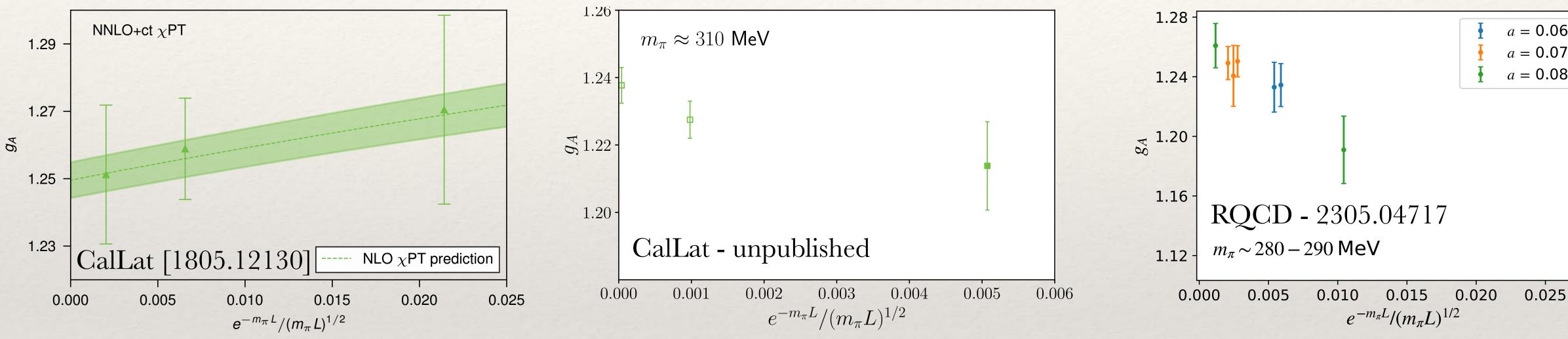
The a12m130 (48³ x 64 x 20) with 3 sources cost as much as all other ensembles combined

 $\Box 2.5$ weekends on Sierra $\rightarrow 16$ srcs □ Now, 32 srcs (un-constrained, 3-state fit) \Box We generated a new a15m135XL (48³ x 64) ensemble (old a15m130 is 32³ x 48) $\Box M\pi L = 4.93$ (old $M\pi L = 3.2$) $1.2711(125) \rightarrow 1.2641(93) [0.74\%]$ $\Box L_5 = 24$, $N_{src} = 16$



Sub-percent determination of $g_{\Lambda}^{\text{QCD-isosymmetric}}$

□ At sub-percent precision — we have to worry about non-monotonic finite volume corrections to g_A Z. Hall, D. Pefkou, A.S. Meyer, R. Briceño, M.A. Clark, M. Hoferichter, E. Mereghetti, H. Monge-Camacho, C. Morningstar, A. Nicholson, P. Vranas, A. Walker-Loud — *In preparation*

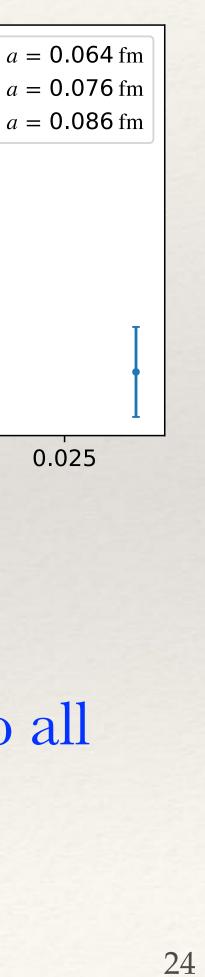


 \Box Sign change versus m_{π} is expected from bar **\Box** Current strategy of most groups: $L g_A(L) =$ We need to add sub-leading FV correction **D** and simultaneously understand discretization errors...

$$\frac{cyon \chi PT}{g_A + c_2} \frac{m_{\pi}^2}{(4\pi F_{\pi})^2} \frac{e^{-m_{\pi}L}}{\sqrt{m_{\pi}L}}$$

$$S + c_3 \frac{m_{\pi}^3}{(4\pi F_{\pi})^3} \frac{e^{-m_{\pi}L}}{m_{\pi}L} + \cdots$$

fit c_2 at heavy m_{π} , apply to all



Summary & Outlook

\Box Interesting $\approx 3\sigma$ tension in the first row CKM unitarity

D Experimental prospects to

- \Box Improve the precision of K_{ℓ^2} (currently dominated by single experiment) and determine K_{μ^3}/K_{μ^2} -NA62
- \Box Improve V_{us}/V_{ud} and determine V_{ud} from π^+ decays PIONEER
- superallowed nuclear decay

In order to take advantage of the anticipated experimental precision — we need to provide SM theory prediction with O(0.2%) uncertainty \Box We need more LQCD calculations of K_{ℓ_3} — both pure QCD and QCD+QED

 \Box Requires understanding radiative QED corrections down to O(0.2%) \Box Exciting new LQCD determinations of electroweak $\Box_{\gamma W}$ contribution to pion, kaon and now nucleon Agrees with previous (and recent) dispersive determinations

D BSM Right-Handed currents provide more statistically favored solutions to CKM unitarity tension \Box LQCD calculations of g_A can be compared with $\lambda_{PDG} = g_A^{PDG}/g_V^{PDG}$ to constrain right-handed currents \Box Unexpected O(2%) QED correction to g_A spoils this comparison □ Need LQCD+QED calculation to determine it

