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Heavy-ions [reviewed by Raimond]

Key achievements
I Formation of Quark-Gluon Plasma (QGP)
I Strongly coupled nature of QGP ← Nearly perfect fluid η/s ∼ 1/4π

Quark-gluon plasma

Hydrodynamics Kinetic theory

Hadron gas Observed

Free streaming

CGC

Thermalization

Challenges
I Thermalization in a rapid expansion
I Hydrodynamic collectivity for small systems Nparticle ∼ 103−4

I Dynamical properties of strongly coupled QGP (why η/s so small? etc)
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Quarkonium suppression in 21st century

HQ is a localized probe with color → Quarkonium reflects to the color force in medium
Color screening inside QGP = Static effect

T=0

c c
_

Confinement by string Color Screening

cc

T>Tc
I Bound states disappear at high temperatures (J/ψ suppression [Matsui-Satz (86)])
I Experimental data consistent with sequential melting

Question: Dynamical effects, e.g. collisions and gluon absorptions/emissions

In the potential picture, static effect = VRe, dynamical effect = VIm
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parameters of both CB functions for a given state are kept the 
same, as these are not affected by the detector resolution. The 
mass parameter of the ground state is left free to allow for possible 
shifts in the absolute momentum calibration of the reconstructed 
tracks. For the excited states (ϒ(2S) and ϒ(3S)), the yields can vary 
while all other fit parameters are fixed to be identical to those for 
the ground state except for the mean and width which are fixed 
to values found by multiplying those for ϒ(1S) by the ratio of the 
published masses of the states [41]. In the pp data fits, the two 
radiative-tail parameters and the parameter for the ratio of the 
two widths are allowed to vary within a Gaussian probability den-
sity function (PDF). The mean and the width of the constraining 
Gaussian function represent the average and its uncertainty, re-
spectively, from the fits in all the rapidity bins of the analysis with 
no fixed parameters. In the PbPb fits, in addition, the parameter 
for the fraction of the two CB functions is also constrained. In this 
case, the mean and the width of the constrained parameters rep-
resent the corresponding parameter values and their uncertainties 
from the pp fits for each kinematic region. The background PDF 
is an error function multiplied by an exponential, with the yield, 
the error function’s two parameters, and the decay parameter of 
the exponential all allowed to vary in the final fit. For bins with 
pT > 6 GeV, an exponential without the error function provides 
the best fit, and was used for the nominal result.

Fig. 1 shows the dimuon invariant mass distributions in pp 
and PbPb collisions along with the fits using the model described 
above, for the kinematic range pµ+µ−

T < 30 GeV and |yµ+µ− | <
2.4.

4.2. Corrections

In order to obtain the normalized cross sections, the yields ex-
tracted from the fits to the dimuon invariant mass spectra are cor-
rected for acceptance and efficiency, and scaled by the integrated 
luminosity. The acceptance corresponds to the fraction of dimuon 
events originating from ϒ mesons within the kinematic range of 
the analysis. The acceptance values for the considered kinematic 
region are 22.5% (ϒ(1S)), 27.8% (ϒ(2S)), and 31.0% (ϒ(3S)) for PbPb 
collisions and differ by < 1% from the corresponding pp data val-
ues, with the small difference being due to a small residual differ-
ence in the kinematic spectra after weighting the MC to data.

The dimuon efficiency is defined as the probability that a muon 
pair within the acceptance is reconstructed offline, satisfies the 
trigger condition, and passes the analysis quality criteria described 
in Section 3. The dimuon efficiency is calculated using MC. The in-
dividual components of the efficiency (track reconstruction, muon 
identification and selection, and triggering) are also measured us-
ing single muons from J/ψ meson decays in both simulated and 
collision data, with the tag-and-probe (T&P) method [30]. For the 
muons used in this analysis, data and MC efficiencies are seen to 
differ only in the case of the trigger efficiency, and there only 
by !1%. For this case, scaling factors (SF), calculated as the ra-
tio of data over simulated efficiencies as function of pµ

T and ηµ , 
are applied to each dimuon on an event-by-event basis. The other 
components of the T&P efficiency are used only for the estima-
tion of systematic uncertainties. The average efficiencies integrated 
over the full kinematic range are 73.5% (ϒ(1S)), 74.4% (ϒ(2S)), and 
75.0% (ϒ(3S)) in PbPb collisions, and they are 8–9% higher for pp 
collisions.

The integrated luminosity of 28.0 pb−1 with an uncertainty of 
2.3% [42] is used to normalize the yields for pp data. For PbPb
collisions, the number of minimum bias collision events sampled 
by the trigger (NMB), together with the average nuclear overlap 
function (TAA), are used for the normalization. The overlap func-
tion TAA is given by the number of binary NN collisions divided 

Fig. 1. Invariant mass distribution of muon pairs in pp (top) and PbPb (bottom) 
collisions, for the kinematic range pµ+µ−

T < 30 GeV and |yµ+µ− | < 2.4. In both 
figures, the results of the fits to the data are shown as solid blue lines. The separate 
yields for each ϒ state in pp are shown as dashed red lines in the top panel. The 
dashed red lines in the bottom panel are derived from the fits to PbPb (blue solid 
line). In order to show the suppression of all three ϒ states, the amplitudes of the 
corresponding peaks are increased above those found in the fit by the inverse of 
the measured RAA for the corresponding ϒ meson.

by the inelastic NN cross section, and can be interpreted as the 
NN-equivalent integrated luminosity per heavy ion collision. Val-
ues of TAA are calculated with a Glauber model MC simulation [43,
44], which is also used to obtain the average number of partic-
ipating nucleons, ⟨Npart⟩. This latter number is highly correlated 
with the impact parameter of the collision, and is used as the 
abscissa when plotting results as a function of PbPb collision cen-
trality.

4.3. Systematic uncertainties

Point-to-point systematic uncertainties arise from the choices 
of signal and background PDFs and of the central value in the fit 
constraints, as well as from acceptance and efficiency corrections. 
Larger relative uncertainties are obtained when the background 
level is higher (at lower pT or more forward y regions), and, in 
particular for the ϒ(3S), when the absolute yield is small.

I Bound states disappear at high temperatures (J/ψ suppression [Matsui-Satz (86)])
I Experimental data consistent with sequential melting

Question: Dynamical effects, e.g. collisions and gluon absorptions/emissions

In the potential picture, static effect = VRe, dynamical effect = VIm
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Complex potential: definition

1. Definition using static heavy quark pair (M =∞)

Ψ(r, t) = 〈Qc(0, t)Q(r, t)Q†(r, 0)Q†
c(0, 0)〉T︸ ︷︷ ︸

medium average of e−iV(r;Abkg)t

−−−→
t→∞

e−iV (r)tΨ(r, 0)︸ ︷︷ ︸
oscillatory damping

2. Time dependence of real-time thermal Wilson loop at late times

t

x
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Complex potential in perturbation theory

Leading order (HTL-resummed) perturbation at r ∼ 1/gT [Laine et al (07)]
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Figure 1: The graphs contributing to the static potential at O(g2). Arrows indicate heavy quarks
or Wilson lines, and wiggly lines stand for gluons.

3. Details of the computation

Since we make use both of Minkowskian and Euclidean metrics, let us start by introducing

some notation to keep them apart. Minkowskian four-momenta are denoted by capital

symbols, Q, with components qµ, while Euclidean ones are denoted by Q̃, with components

q̃µ. The indices are kept down in the latter case, and our convention is q̃µ ≡ (q̃0, q̃i) ≡

(q̃0,−qi). Spacetime coordinates are denoted by x, x̃, and here our convention is x̃µ ≡

(x̃0, xi). The Euclidean scalar product is thereby naturally defined as x̃ · Q̃ ≡ x̃µq̃µ =

x̃0q̃0 − xiqi, the four-volume integral as
∫

x̃ ≡
∫ β
0 dx̃0

∫

d3x, and the thermal sum-integral as
∫

P

Q̃ = T
∑

q̃0

∫

d3q/(2π)3. Wick rotation amounts to x̃0 ↔ ix0, q̃0 ↔ −iq0. All Matsubara

frequencies we will meet are bosonic: i.e. q̃0 = 2πnT , n ∈ Z. The temperature is often

expressed as β ≡ T−1.

3.1 Wilson loop with Euclidean time direction

Let again W [z̃1; z̃0] be a Wilson line from point z̃0 to point z̃1:

W [z̃1; z̃0] = + ig

∫ z̃1

z̃0

dx̃µAµ(x̃) + (ig)2
∫ z̃1

z̃0

dx̃µ

∫ x̃

z̃0

dỹν Aµ(x̃)Aν(ỹ) + . . . , (3.1)

where Aµ = Aa
µT a and T a are the Hermitean generators of SU(Nc), normalised as

Tr [T aT b] = δab/2. The Euclidean correlation function considered is then defined as

CE(τ, r) ≡
1

Nc
Tr

〈

W [(0, r); (τ, r)] W [(τ, r); (τ,0)] W [(τ,0); (0,0)] W [(0,0); (0, r)]
〉

,

(3.2)

where we have for convenience shifted the origin by r/2 with respect to eq. (2.6). The

prefactor 1/Nc has been inserted as a normalization, guaranteeing that CE(0, r) = 1.

We can formally expand CE in a power series in the coupling constant g2, understand-

ing of course that the infrared problems of finite-temperature field theory necessitate the

use of resummed propagators in order for this procedure to be valid (cf. appendix B):

CE = C(0)
E + C(2)

E + . . . , where the superscript indicates the power of g appearing as a

prefactor. The leading order result is trivial, C(0)
E = 1. We now turn to the computation

of C(2)
E . The graphs entering at this order are shown in figure 1.

– 5 –

V (r) = −CFg2

4π

(
mD +

e−mDr

r

)
︸ ︷︷ ︸

mass shift + screening

−iCFg2T
∫

d3k
(2π)3

πm2
D(1− eik·r)

k(k2 + m2
D)

2︸ ︷︷ ︸
Landau damping ∼ collisions

Next-to-leading order calculation [see Joan’s talk]

8 / 26



Complex potential on the lattice

Analytic continuation of thermal Wilson loop to imaginary time

W (t = −iτ, r)︸ ︷︷ ︸
lattice

=

∫
dωe−ωτρ(ω, r), 0 ≤ τ ≤ β

Bayesian reconstruction of ρ(ω, r) from W (−iτ, r) → VRe(r) + iVIm(r)
[Jon-Ivar’s talk for meson SPF]

not change the outcome. A unique global solution is found
based on an LBFGS minimizer with 512 bit precision
arithmetic and a step size stopping criterion of Δ ¼ 10−60.
Several of the reconstructed spectra for Nτ ¼ 24 are shown
in Fig. 1.
In the top panel of Fig. 2 the results for the real part from

the position of the lowest lying spectral peak are given by
colored open symbols. They are contrasted to the color
singlet free energies in Coulomb gauge Fð1ÞðrÞ ¼
−T log½W∥ðr; τ ¼ βÞ%, obtained on the same lattices (filled
gray circles). Since the raw values fall on top of each other
at small distances we have shifted them for better read-
ability. The error bars shown are obtained from the jack-
knife variance resulting from repeating the reconstruction
ten times excluding a different set of 10% of the underlying
measurements each. The error bands (given for T ¼ 210;
360; 629; 839 MeV) on the other hand denote the maxi-
mum variance obtained from changing three different
quantities. One corresponds to a reduction of the number
of data points along τ by 4 and 8, the second to changing
the default model normalization (×10, ×0.1) or functional
form (m ∝ const;ω−2;ω2) and the third to the reduction in
signal-to-noise ratio by excluding 10%, 20%, or 30% of the
available measurements. Note that because the spectral
reconstruction takes into account all data points along τ, our
results for T ≲ Tc are much more robust than the free
energies, which rely on a single data point. On the other
hand the Bayesian reconstruction suffers from a diminish-
ing number of data points at increasing temperature, as seen
in the error bands.
Our main observation is that even though the τ ¼ β data

point is excluded from the reconstruction, the values of
Re½V% obtained at all temperatures lie close to the color
singlet free energies. While the lowest temperature shows
no or very weak deviation from a linearly rising potential,
the values above T > Tc show clear signs of Debye
screening with increasing temperature. At r < 0.15 fm
we find little temperature dependence, as expected.

The extraction of the imaginary part from Bayesian
spectra poses an even more formidable challenge than
Re½V%. Its presence can be qualitatively inferred already
from the Euclidean correlator (see Fig. 1, top panel),
where at intermediate τ values a deviation from the
exponential decay and a finite curvature emerges. For
accurate quantitative results, the reconstruction of the
lowest lying peak needs to capture both the width and
the skewness of the Lorentzian related to nonpotential
effects.
The novel Bayesian approach for the first time allows us

to extract this functional form (see Fig. 1, bottom panel),
where the MEM yielded Gaussian-like features. Previous
tests based on mock data from momentum regularized
HTL perturbation theory show that to obtain values
accurate to ∼25%, data sets with Nτ ∼Oð100Þ data points
are required at a high precision of ΔD=D < 10−4. If fewer
points are available the reconstruction tends to under-
estimate the width, while statistical noise leads to broad-
ening. The former effect dominates at high temperatures

FIG. 1 (color online). Spectral reconstruction: on-axis Wilson
line correlator data (top) at Nτ ¼ 24 and (bottom) the spectral
functions obtained by the new Bayesian reconstruction method.

FIG. 2 (color online). Gluonic medium. Top: the shifted real
part of the static interquark potential (open symbols) compared to
the color singlet free energies (gray circles). Error bars represent
statistical uncertainty; error bands include also systematics (see
main text). Bottom: Im½V% (symbols) shifted and compared to the
HTL predictions (solid lines).
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line correlator data (top) at Nτ ¼ 24 and (bottom) the spectral
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[Rothkopf-Burnier (15)]
I VRe(r) screening, VIm(r) increases with r
I Latest result: Johannes’s talk, today 2pm-
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Basics of open quantum system [Reviews for quarkonium in QGP: Akamatsu (22), Yao (21), Sharma (21)]

Total System = System ⊗ Environment
I System observables are calculated by reduced density matrix ρS(t) = TrEρtot(t)
I Markovian evolution of the reduced density matrix [Gorini-Kosakowski-Sudarshan (76), Lindblad (76)]

dρS
dt

= −i[H ′
S , ρS ] +

∑
k

LkρSL†
k −

1
2

L†
kLkρS −

1
2
ρSL†

kLk

= −iHeffρS + iρSH †
eff +

∑
k

LkρSL†
k︸ ︷︷ ︸

quantum jump

, Heff = H ′
S −

i
2
∑

k
L†

kLk︸ ︷︷ ︸
contains complex potential VIm(r)

↔ ρS(t) > 0, TrSρS(t) = 1

Remarks on Lindblad equation
I Uncorrelated initial state is assumed ρtot(0) = ρS ⊗ ρE → OK for hard production
I Microscopic derivation assumes system-environment coupling is weak → not necessarily ...
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Quarkonium in weakly coupled QGP [Akamatsu (15)]

Non-relativistic quantum mechanical Hamiltonian from NRQCD

HI = g [Aa
0(x)(ta ⊗ 1)−Aa

0(xc)(1⊗ ta∗)] =

∫
k

[
eik·x(ta ⊗ 1)− eik·xc(1⊗ ta∗)

]
︸ ︷︷ ︸

∝ La
k

⊗ gAa
0(k)︸ ︷︷ ︸

∼ √
γk

Lindblad operator in recoilless (quasi-static) limit
I Leading order perturbation at r ∼ 1/gT

La
k =
√
γk

[
eik·x(ta ⊗ 1)︸ ︷︷ ︸

scattering with Q

− eik·xc(1⊗ ta∗)︸ ︷︷ ︸
scattering with Qc

]
+ O(ẋ, ẋc)︸ ︷︷ ︸

recoil∼dissipation

I Strength of the coupling γk from environment correlator

γkδ
abδ(k − k′) = g2

∫
t
〈Aa

0(k, t)Ab
0(−k′, 0)〉T ,HTL

Valid when g � 1 and r ∼ 1/gT → VIm(r) = −1
2
∫

k La†
k La

k reproduces the previous result
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Quarkonium in the dipole limit [Brambilla et al (17, 18, 20, 22)] [Ajaharul’s talk for QTraj simulation]

Non-relativistic quantum mechanical Hamiltonian from pNRQCD (after “field redefinitions”)

HI = −ri

[√ 1
2Nc

(|a〉〈s|+ |s〉〈a|)︸ ︷︷ ︸
singlet ↔ octet

+
1
2

dabc|b〉〈c|︸ ︷︷ ︸
octet ↔ octet

]
⊗ gEa

i (R)+(Ta
A)bc|b〉〈c| ⊗ gAa

0(R)︸ ︷︷ ︸
removed in “field redefinition”

Lindblad operator in recoilless (quasi-static) limit
I Leading order in dipole size r (non-perturbative in g)

La
i =
√
γri

[√ 1
2Nc

(|a〉〈s|+ |s〉〈a|) + 1
2

dabc|b〉〈c|
]
+ O(ṙ)︸ ︷︷ ︸

recoil∼dissipation

↓ octet projection Troctet

Los
i =

√
γos
2Nc

ri |o〉〈s|, Lso
i =

√
γso
2Nc

ri |s〉〈o|, Loo
i =

√
γoo
4

ri |o〉〈o|,

Valid when quarkonium is small → coefficients defined nonperturbatively
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Transport coefficients for dipoles: singlet/octet transition rates

Field redefinition = Setting the octet basis at infinite past
γos/so is E-field correlator connected by an adjoint Wilson line [Yao (22)]
[Saga’s talk for perturbative calculation, Di-Lun’s talk for magnetic correlation]

γos =
g2

3(N 2
c − 1)

∫
t
〈Ea

i (t)U ab
A (t, 0)︸ ︷︷ ︸
adjoint

Eb
i (0)〉T = (N 2

c − 1)γso

Adjoint Wilson line

I Different from heavy quark momentum diffusion constant
[CasalderreySolana-Teaney (06), CaronHuot-Moore (08)]

κ =
g2

3Nc

∫
t
〈Tr UF(−∞, t)︸ ︷︷ ︸

fund.

Ei(t)UF(t, 0)Ei(0)UF(0,−∞)〉T

Fundamental Wilson line
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Transport coefficients for dipoles: octet diffusion rate

γoo is similar to κ, but different from γos

γoo =
g2

3(N 2
c − 1)

∫
t
〈Tr UA(−∞, t)︸ ︷︷ ︸

adjoint

Ei(t)UA(t, 0)Ei(0)UA(0,−∞)〉T

dabcEa
i =: (Ei)bc

Adjoint Wilson line

I Recall the interaction Hamiltonian

H oo
I = −1

2
r · gEa(R)dabc|b〉〈c|︸ ︷︷ ︸

rotation of adjoint color

, c.f. H Q
I = −r · gEa(x)(ta)ij |i〉〈j|︸ ︷︷ ︸

rotation of fund. color

Two transport coefficients γso(∝ γos) and γoo in the Lindblad equation
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Quantum Brownian motion and color transitions of quarkonium

Y or B + BQuantum Brownian motion
_

s

o
o

s

Color transitions
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Reduced density matrix |ρS(x, y, t)| in 1D simulation [Miura et al (22)]

Stochastic unravelling: ρS(x, y, t) = limN→∞
1
N
∑N

i=1 ψi(x, t)ψ∗
i (y, t)

Starting from singlet ground state ∼ a bound state jumps in QGP after short formation time
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Reduced density matrix |ρS(x, y, t)| in 1D simulation [Miura et al (22)]

Stochastic unravelling: ρS(x, y, t) = limN→∞
1
N
∑N

i=1 ψi(x, t)ψ∗
i (y, t)

Starting from octet wave packet ∼ an octet pair jumps in QGP before forming bound states
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Thermalization of quarkonium, with 1st order recoil [Miura et al (22)]

Evolution of eigenstate occupation
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Role of recoil in thermalization

1. Interaction Hamiltonian
HI = VS ⊗VE

2. Lindblad operator with first order recoil

L =
√
γ

(
VS +

i
4T

V̇S + · · ·
)
∝ VS −

1
4T

[HS ,VS ] + · · ·

3. Approximate detailed balance

〈ε2|L|ε1〉 ∝ 〈ε2|VS |ε1〉
(

1− ε2 − ε1
4T

)
,

Γ1→2
Γ2→1

=
|〈ε2|L|ε1〉|2

|〈ε1|L|ε2〉|2
=

(
1− ε2−ε1

4T
1− ε1−ε2

4T

)2

' exp

(
−ε2 − ε1

T

)
,

∵

(
1 + x/4
1− x/4

)2
' 1 + x +

1
2

x2 +
3
16︸︷︷︸

' 1/6

x3 + · · · ' ex
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Polarons

I In metals, a conduction electron induces crystal polarization = Polaron [Landau-Pekar (48)]
I Polaron mass � electron mass, e.g. 432 times larger in NaCl

I Polaron broadly means (not necessarily heavy) impurity quasiparticles in cold atomic gas
I Various mass ratios, e.g. Fermi polaron 133Cs in 6Li gas, Bose polaron 40K in 87Rb gas
I Tunable coupling → attractive polarons, repulsive polarons

VIEWPOINT

Bose Polarons that Strongly Interact
Researchers have used impurities within a Bose-Einstein condensate to simulate
polarons—electron-phonon combinations in solid-state systems.

by Frédéric Chevy⇤

An electron moving through a solid-state crystal
will attract nearby atoms in the lattice causing
them to vibrate. Building on earlier work, Her-
bert Fröhlich proposed in 1950 a model in which

this interaction gives rise to a quasiparticle called a polaron,
made up of an electron dressed by a cloud phonons, the
quanta of acoustic vibration [1]. The physical properties of
the polaron, for instance its mobility or its effective mass,
can be very different from those of the bare electron, leading
to strong modifications of the electrical and thermal trans-
port properties of the material. The problem is that even the
simplest case, as described by Fröhlich’s model, is too com-
plex to be solved analytically, so approximations are often
made. Researchers are thus trying to study polaron physics
using analog systems consisting of gases of ultracold atoms.
The results of these simulations provide insights into the
underlying physics, as well as offer verification for the ap-
proximations made in polaron models.

In two independent works, groups from Denmark [2] and
Colorado [3] have demonstrated an atomic implementation
of polaronic physics by immersing an impurity inside a
Bose-Einstein condensate (see Fig. 1). The impurity interacts
with the condensate in a way that is similar to an electron in
a crystal. Since, like solids, the low-energy modes of a Bose-
Einstein condensate (BEC) are phonons, this system can be
described by Fröhlich’s model in the regime of weak interac-
tions. But by tuning the strength of interactions, the research
teams could also access the regime of strong interaction be-
tween the impurity and the BEC, revealing the influence of
many-body correlations. The strongly interacting regime of
Bose polarons is largely an unchartered territory that may
provide insight into superfluid physics, such as in supercon-
ductors and liquid helium.

Both these works build on decade-old studies that used
ultracold atomic systems to study the fermionic polaron,
which is an impurity interacting with an ensemble of spin-
polarized fermions [4]. These fermions obey the Pauli

⇤Laboratoire Kastler Brossel, ENS-PSL Research University,
CNRS, UPMC, Collège de France, 24, rue Lhomond, 75005 Paris,
France

Figure 1: Polarons are quasiparticles that result from interactions
between an impurity and a surrounding bath of particles. In the
case of a crystal (left), the impurity is an electron that disturbs the
position of the atoms of the crystal. Researchers can mimic this
solid-state polaron using ultracold atoms (right). The impurity in
this case is an atom that interacts with surrounding gas atoms,
either drawing them towards itself or pushing them away. The net
effect can be a particle with an effective mass that is different from
that of the isolated impurity. (APS/Carin Cain)

principle, which prevents two or more identical fermions
from being at the same place. This principle does not apply
to bosons, which makes the case of bosonic polarons more
challenging, both theoretically and experimentally. Unlike
in a Fermi gas, a Bose gas allows interactions between three
atoms. These three-body correlations are both a blessing and
a curse. On the one hand, they lead to fascinating physical
phenomena, such as the celebrated Efimov bound states, a
family of universal trimers existing even in the absence of
two-body bound states [5]. On the other hand, they allow
the formation of bound molecules that effectively remove
atoms from the gas. These three-body recombination losses
can reduce significantly the lifetime of the polaron system in
the strongly interacting regime.

To reduce the effect of these losses during their mea-
surement, the two groups have used a scheme previously
developed for the study of fermionic polarons [6]. They
first prepared the impurity in a spin state that essentially
doesn’t interact with the surrounding condensate. Then, us-
ing a short radio frequency pulse, they flipped the spin of
the impurity, placing it in a spin state that interacts with
the condensate. In their experiment, Ming-Guang Hu and

physics.aps.org c� 2016 American Physical Society 28 July 2016 Physics 9, 86

Heavy impurities can simulate heavy quark systems in the QGP
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Inter-polaron potential in a superfluid

Polarons (Φ) in superfluid phonons (ϕ)
I Contact interaction nnΦ, n is conjugate of U (1) phase ϕ

Leff = Lph(ϕ) + Lpol(Φ) + g
[
√
χ∂tϕ+

1
2m

(∇ϕ)2
]
Φ†Φ︸ ︷︷ ︸

contact interaction nnΦ

,

Leading-order potential from two phonon exchange
I Real part of the potential ∝ T/r6 [Fujii-Hongo-Enss (22)] ← massless phonons
I Imaginary part of the potential1 ∝ T/r2 [Akamatsu-Endo-Fujii-Hongo (24)] ← why?
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FIG. 2. (a) The imaginary part of the induced potential for Fermi polarons with T/TF = 0.1, 0.5, and 1.0 (blue, green, and red
curves), normalized by T . The dashed curve shows the zero-temperature limit of the imaginary potential. (b) The imaginary
part of the induced potential at long distances for Fermi polarons with T/TF = 0.1, 0.5, and 1.0 (blue, green, and red curves),
normalized by TF . The dashed curve shows the power-law decay r

�2, which matches those of the induced potential.

Considering the fluctuation on the top of the global
equilibrium, we expand n̂(x) = n̄ + �n̂(x) and expand
✏(n̂) at the quadratic order. As a result, the e↵ective
Hamiltonian turns into

Ĥe↵ '

Z
d3x


n̄

2m
(r'̂)2 +

1

2�
(�n̂)2 +

1

2m
�n̂(r'̂)2

+ gn̄�̂†�̂+ g�n̂�̂†�̂

�
, (36)

where we defined the inverse charge susceptibility ��1 =
✏00(n̄) and omit the constant term ✏(n̄) and the higher-
order term with more than three �n̂. Since we are in-
terested in the long-distance behavior, we can regard the
interaction term appearing in the first line of Eq. (36) as a
perturbation. We emphasize that this treatment follows
from the derivative expansion [63], and does not require a
small coupling constant among medium particles. Based
on this, we evaluate the retarded Green’s function for the
number density operator n̂(x).

Again, we employ the imaginary-time formalism, in
which we have a set of the Mastubara Green’s functions
given by

�''(k, i!
B

n
) =

k
=

��1

(!B
n
)2 + E2

k

,

�nn(k, i!
B

n
) =

k
=

�E2
k

(!B
n
)2 + E2

k

,

�'n(k, i!
B

n
) =

k
=

!B

n

(!B
n
)2 + E2

k

,

�n'(k, i!
B

n
) =

k
=

�!B

n

(!B
n
)2 + E2

k

, (37)

where we defined Ek ⌘ cs|k|. From Eq. (36), we also
read o↵ the following three-point interaction vertex join-

q k + q ' q k + q

FIG. 3. Feynman diagram representing the exchange of the
phonon (solid lines), which induces the potential between two
impurities (amputated bold solid lines) at O(g2). At low fre-
quencies, the left diagram can be e↵ectively reduced to the
right one (see the main text).

ing two phonon and one number density fluctuations:

qk =
1

2m
k · q. (38)

We now perform a perturbative expansion with respect
to the medium interaction term (38). In this expansion,
the leading one-loop diagram that contributes to the in-
medium potential is given in the left diagram of Fig. 3.
Recalling the zero-frequency limit in Eqs. (17) and (18),
it is su�cient to evaluate the low-frequency behavior of
the retarded Green’s function. At vanishing frequencies,
the propagation of the density fluctuation �n̂(x) is sup-
pressed as �nn(k, i!B

n
= 0) = �. Thereby, the Green’s

function of the number density fluctuation directly con-
nected to the impurity lines on the left diagram of Fig. 3
can be replaced with �nn(k, i!n) ' � at low frequencies.
As a result, the resulting Feynman diagram contributing
to the in-medium potential is shown on the left of Fig. 3,
which agrees with the diagram computed in Ref. [38] to
evaluate the real part of the potential.

Having identified the relevant one-loop diagram for the
in-medium potential, we now find the corresponding Mat-
subara Green’s function as

1after subtracting r → ∞ value
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Universal imaginary potential [Akamatsu-Endo-Fujii-Hongo (24)]

Polarons in a superfluid, VIm(r) ∝ −1/r2 at large distance
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Due to massless nature of phonons?
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Universal imaginary potential [Akamatsu-Endo-Fujii-Hongo (24)]

Polarons in a Fermi gas [Sighinolfi et al (22)], VIm(r) ∝ −1/r2 at large distance
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Due to zero-energy excitation of a particle-hole pair?
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Universal imaginary potential [Akamatsu-Endo-Fujii-Hongo (24)]

Quarkonium in QGP [Laine+ (07), Beraudo+ (08), Brambilla+ (08)], VIm(r) ∝ +1/r2 at large distance
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Gluons are massive due to screening → no massless excitations
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Physics behind the universal imaginary potential at long distances

Common properties: 2-body collisions
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FIG. 4. The imaginary part of the induced potential for polarons in the superfluid. (a) at short distances and (b) long
distances. Black, blue, and red curves show results for T/(mc

2
s) = 0.6, 0.8, and 1.0. In panel (b), The dashed curve shows the

power-law decay r
�2, which matches the asymptotic behaviors of the induced potential.

the (electric) gluon acquires Debye screening mass bring-
ing about the exponential decay for the real potential.
Namely, the gapless nature of the medium excitations is
unnecessary.

As we will show below, the power-law behavior of
VIm(r) at long distances originates from the common
structure of the low-energy scattering between the impu-
rity and the medium excitation. To clarify this origin, let
us consider the imaginary potential in momentum space

eV F

Im(k) / �g2
Z

q
�(⇠q+k � ⇠q)nF (⇠q)

⇥
1� nF (⇠q)

⇤
, (46)

eV SF
Im (k) / �

g2

m2

Z

q

(q2 + k · q)2

E2
q

�(Eq+k � Eq)

⇥ nB(Eq)[1 + nB(Eq)], (47)

which follow from Eqs. (28) and (41), respectively. The
asymptotic behavior at long distances is then specified
by that at low momentum regions k ' 0.

It is crucial to notice that the above results allow
a scattering interpretation: The imaginary part is ex-
pressed in terms of the scattering amplitude of the
medium excitation with the static impurity as shown in
Fig. 5 (see, e.g., Ref. [64] for the so-called cutting rule).
The integrand is composed of three parts; (a) the delta
function imposing the energy conservation of the on-shell
medium excitation, (b) the (properly normalized) scat-
tering cross section part,2 and (c) thermal distributions
for incoming and outgoing excitations.

Let us now investigate the low-k behaviors of these
building blocks. We first note that thermal distributions
are k-independent, and thus, the low-momentum behav-
ior is controlled by the delta function and cross section.

2 Note that E�2
q appears for the superfluid case from the proper

normalization with �(Eq+k � Eq).

Im

2

66664
q k + q

3

77775
=

�������� q k + q

��������

2

FIG. 5. Scattering interpretation of the imaginary part of
the induced potential. Taking the imaginary part results in
cutting the diagram with the dashed line in the right panel.
As a result, the imaginary part is given by the right panel,
which gives a cross section of the on-shell medium excitation
(solid lines) scattered by the heavy static impurity (ampu-
tated bold lines).

At low momentum k ' 0, one can approximate the delta
functions as

�(⇠q+k � ⇠q) ! �(q · k/m) =
m

qk
�(cos ✓q), (48)

�(Eq+k � Eq) ! �(csq · k/q) =
1

csk
�(cos ✓q), (49)

yielding the k�1 factor (✓q is the angle between q and k,
which is fixed ✓q = ⇡/2 by performing the q-integration).
As a result, if the remaining part—the low-energy scat-
tering cross section—approaches to the non-vanishing
constant, the above k�1 factor governs the long-distance
behavior, leading to r�2 behavior of VIm(r) in coordinate
space.
As the above discussion clarifies, the crucial point here

is whether the low-energy scattering cross section gives
the finite nonvanishing contributions at the vanishing
momentum k ! 0. The presence of nonzero contribu-
tions means that on-shell medium excitation can scatter
o↵ an immobile impurity with zero energy transfer, i.e.,
(Eq, q) ! (Eq, q + k), at low momentum k ' 0 (see the
right panel of Fig. 5). Indeed, the interaction vertices
between the impurity and the medium excitation inves-

ṼIm(k) ∝ −
∫

q
|Mk+q,q |2 δ(Ek+q − Eq)︸ ︷︷ ︸

instantaneous pot.

n(Eq)
[
1± n(Ek+q)

]
,

Long distance limit (k → 0)
I Delta function: δ(Ek+q − Eq) = δ(cos θq)/vqk
I The other parts approach constant 6= 0
I In total, VIm(k) ∝ 1/k → VIm(r) ∝ 1/r2

Universal imaginary potential 1/r2 in the collisional regime
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Summary

I OQS description for quarkonium has been developed
- Thermalization achieved by including the first recoil effect
- Application to heavy-ion collisions, different models compared in [Andronic et al (24)]
- Initial condition in heavy-ion collisions unknown (octet dominant?)

I Challenges:
- Restricted validity
- Non-Markovian effects
- Open many-body systems

I Application to polarons in cold atomic gas
- Universality VIm(r) ∝ 1/r2 in the collisional regime
- Any interesting questions unique to the cold atomic context?

Can we witness color fields inside QGP by the eyes of octet quarkonium?
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Field redefinition as a unitary transformation

1. Interaction Hamiltonian in the interaction picture

HI = · · ·+ (Ta
A)bc|b〉〈c| ⊗ gAa

0(R, t)

2. Want to eliminate the octet gauge interaction = octet basis set in t = −∞

|Ψ′(t)〉 = U (t)|Ψ(t)〉, U (t) = P exp

[
−ig

∫ −∞

t
dt′Ta

A ⊗Aa
0(R, t′)

]
3. Two-point functions 〈E(t)E(0)〉 in the t = −∞ basis
4. To get expressions in local octet basis, we need to insert adjoint Wilson lines
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Applications in heavy-ion collisions

Phenomenological studies for J/ψ and Υ suppression in heavy-ion collisions [Andronic et al (24)]
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Figure 5: The dependence of RAA of ⌥ mesons on Npart for Pb–Pb at 5.02 TeV and Au-Au collisions
at 200 GeV, measured at midrapidity (left) and forward rapidity (right).

challenging to obtain from lQCD). The question of regeneration, especially in the case of multiple
quark pairs, has not been addressed yet at a level suitable for phenomenological applications. The
equilibration of a single pair has been studied in Ref. [84] and in semiclassical limits for multiple pairs
in Refs. [85, 86]. All of these considerations will figure in the model descriptions given in Sec. 4.

3.2 Lattice QCD Results

Lattice-QCD calculations can provide first-principles input into theoretical modeling of quarkonium
production in heavy-ion collisions. Many quantities of interest, like in-medium quarkonium masses and
widths, or transport coe�cients, are encoded in the spectral functions, defined as the imaginary part
of the retarded meson correlation functions [4, 87]. For example, the in-medium widths of quarkonia
are closely related to the reaction rates used in transport models. If the widths are reasonably small,
quarkonium states can be identified by peaks in the spectral functions. As temperature increases, the
peaks become broader and ultimately can no longer be used to identify quarkonium states. For ex-
ample, if the width of the peak is much larger than the energy splitting between di↵erent quarkonium
states it is no longer possible to extract well defined quarkonium states. Obtaining the spectral func-
tions from lQCD is challenging because the latter is formulated in Euclidean time, and the correlation
functions are given in terms of integrals over spectral functions. Temporal correlation functions are re-
lated to spectral functions via a Laplace transformation, while spatial correlation functions are related
to spectral functions via a double integral transformation [4]. Lattice QCD calculations can also be
combined with EFT approaches. For example, information about quarkonium spectral function can
be obtained using a lattice formulation of NRQCD [88–93]. In this way one avoids large discretization
e↵ects due to HQ masses An additional benefit arises from the fact that meson correlators in NRQCD
do not obey periodic boundary conditions, which e↵ectively implies that information on meson correla-
tors can be obtained from doubling the temporal extent in the Euclidean time direction. Heavy-Quark
E↵ective Theory (HQET) can be used for lQCD calculations of the HQ di↵usion coe�cient [94–96].

Most lattice studies of quarkonium spectral functions use point meson operators, i.e., meson oper-
ators with the quark and antiquark field located at the same spatial point. It turns out that temporal
meson correlation functions with point meson operators have limited sensitivity to the in-medium
properties of quarkonia [1, 4]. This is due to large contributions from the continuum part of the spec-
tral function to the correlators of point meson operators, as well as the rather small temporal lattice
extent at high temperatures [97, 98]. Therefore, no conclusive results on the in-medium properties
of the quarkonium states could be obtained from the temporal correlation functions of point meson
operators. There only seems to be a consensus that the 1S bottomonium state can survive in the
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Figure 18: Left: RAA as a function of Npart for ⌥(1S), pT-integrated; right: RAA as a function of pT
for 0-10% centrality. For the TAMU model the regeneration component is shown separately (dotted
line) and also summed to the suppression component (dashed line). The results of the SHM, included
in the left plot for the case of 50% thermalized bottom quarks, constitute pure generation at Tpc.

cf. Fig. 7, while Tsinghua has a smaller initial temperature in central collisions but a larger one at
”intermediate” centralities which could explain the stronger suppression in more peripheral collisions.
The Saclay and the Munich-KSU results are closest to each other, which may be due to due to longer
lifetime in the Bjorken model (Saclay) and escape e↵ects in the Munich-KSU which render the latter’s
RAA higher in peripheral but lower in central collisions where the initial temperature is higher. Both
models generate a stronger suppression than TAMU, which is largely consistent with the temperature
evolution shown in Fig. 7.

5.7 Quarkonium Formation Time E↵ects

To study the impact of quarkonium formation times calculations were performed starting from a
“realistic” initial QQ state (the one used in the respective dynamical model, usually reported as a
”point-like initial state” in the OQS and the ground state in semiclassical approaches). This state was
evolved in a QGP at fixed temperature T=300 MeV, neglecting regeneration. The models provided
the ”survival” probability as a function of time to find this QQ pair at p=0 in an eigenstate of the
in-medium potential.

Figure 19 illustrates how suppression mechanisms underlying the calculations of the decay rate are
realized in a basic time evolution scenario at constant T . We focus the discussion on the bottomonium
case which was addressed by most of the groups. In the TAMU approach, where the initial state is an
in-medium ⌥(1S) state and regeneration mechanisms were discarded for the purpose of this study, one
finds as expected a survival probability = exp(��t), where � agrees with the reaction rate displayed in
Fig. 9 (including the gluo-dissociation mechanism); the inclusion of a formation time typically delays
the evolution, with an o↵set of ⇡ 0.05 fm/c. The same exact agreement with the exponential decay
law is obtained in the Saclay calculation as the regeneration was not considered in this implementation
of the model. In the Duke approach the regeneration component was not removed, leading to a slight
deviation with respect to the exponential decay initiated with a vacuum state of the ⌥(1S)3, of the
order of 5% after 8 fm/c. In the Munich-KSU calculation, the evolution starts from a compact state
close to a Dirac �-function peak. While the evolution of the survival probability of the in-medium state
decreases nearly exponentially, the associated decay rate is found to be twice the imaginary part of the
eigenvalue (⇡ 8.95 � 0.017i GeV) corresponding to the fundamental eigenstate of the non-hermitian

3Note that ”in-medium states” are not defined in the Duke approach owing to the � ⌧ Eb hierarchy.
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Figure 6: The dependence of RAA of ⌥ mesons on pT for 0-90% Pb–Pb collisions at 5.02 TeV, at
midrapidity.

QGP for T > 400 MeV, with a small mass shift [89, 90, 99]. The study of spatial meson correlation
functions is not limited to small separations, rendering them more sensitive to the in-medium prop-
erties of quarkonia [100–102]. In particular, indications were found that 1S charmonia states may
dissolve for temperatures of 200-300MeV [100, 101], while 1S bottomonium states will dissolve for
temperatures above 500MeV [102]. The latter finding is consistent with the analysis of bottomonium
spectral function in lattice NRQCD.

Correlators of extended meson operators, i.e., meson operators with quark and antiquark fields
separated by some spatial distance, are more sensitive to the in-medium modification of quarkonia,
since the contribution of the continuum part to the spectral function is reduced. Using NRQCD with
extended operators it was possible to analyze in-medium masses and widths of di↵erent bottomonium
states [91, 92]. Interestingly, it was found that the in-medium mass shift of all bottomonium states is
small and compatible with zero within estimated errors. The in-medium width of di↵erent bottomo-
nium states was found to increase with temperature, and that the magnitude of the width follows a
hierarchy in the sizes of the di↵erent states [91, 92].

The in-medium modification of QQ̄ interactions in QGP has been traditionally studied in terms
of the free energy and singlet free energy of a static QQ̄ pair. The latter quantity can be defined in
Coulomb gauge. State-of-the-art calculations in 2+1 flavor QCD with physical quark masses suggest
that color screening in the free energy sets in at distances r ' 0.3/T [103]. Previous studies of the QQ̄

free energy for two [104] and three [105] degenerate quark flavors with unphysical masses have been
used as input potentials in some phenomenological models.

The QQ̄ free energy characterizes the interactions at time scales much larger than the inverse
temperature. For quarkonia physics, it is more relevant to consider a complex potential defined in
terms of Wilson loops [106]. The first calculation of the complex potential along these lines with
2+1 flavor QCD with unphysical quark masses found [107] that the real part of the potential is
screened. A parametrization of these results using a generalized Gauss law model [108] has also
been used in some phenomenological models. The corresponding lattice calculations are performed on
N⌧ = 12 lattices and with limited statistics. Another lattice study that also uses N⌧ = 12 lattices, but
with much larger statistics, extracted a di↵erent result [109]. Here, simple but physically motivated
parametrizations of the spectral functions were used to obtain the real and imaginary parts of the
potential: the real part of the potential turns out not to be screened in general [109]. The only way to
obtain a screened potential from the lattice results of Ref. [109] is to use a perturbative HTL inspired
representation of the spectral function [109]. However, it turns out that, although HTL results for the
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I Open system description suitable for Υ (Munich-KSU, Nantes, Saclay)
I For J/ψ, one needs to solve open many-body system of charms
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