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Scattering experiments and femtoscopy
Introduction — femtoscopy

Traditional methods: scattering experiments

- Limited statistics (low-energy)

- Limited channels: NN, YN, πN, KN, K̄N, ⋯

Y. Ikeda et al. / Physics Letters B 706 (2011) 63–67 65

Fig. 2. Calculated K − p elastic, charge exchange and strangeness exchange cross sections as function of K − laboratory momentum, compared with experimental data [12].
The solid curves represent best fits of the full NLO calculations to the complete data base including threshold observables. The shaded uncertainty bands are explained in
the text.

with the K −p reduced mass, µr = mK M p/(mK + M p), and includ-
ing important second order corrections [6]. We use the accurate
SIDDHARTA measurements [10]:

!E = 283 ± 36(stat) ± 6(syst) eV,

Γ = 541 ± 89(stat) ± 22(syst) eV.

The available data base is completed by the collection of (less
accurate) scattering cross sections [12] (see Fig. 2). We do not in-
clude measured πΣ mass spectra in the fitting procedure itself but
rather generate them as “predictions” from our coupled-channels
calculations.

4. Results and discussion

Using the unitary coupled-channels method just described, the
basic aim of the present work is to establish a much improved
input set for chiral SU(3) dynamics, by systematic comparison
with a variety of empirical data and with special focus on the
new constraints provided by the recent kaonic hydrogen measure-
ments [10]. A detailed uncertainty analysis is performed. It will be

demonstrated that previous uncertainty measures [7,9] can be re-
duced considerably.

We have carried out χ2 fits to the empirical data set in several
consecutive steps: first starting with the leading order (TW) terms,
then adding direct and crossed Born terms, and finally using the
complete NLO effective Lagrangian. The results are summarized in
Table 1. All calculations have been performed using empirical me-
son and baryon masses. This implies in particular that those parts
of the NLO parameters b0,bD and bF responsible for shifting the
baryon octet masses from their chiral limit, M0, to their physi-
cal values, are already taken care of. The remaining renormalized
parameters, denoted by b̄0, b̄D and b̄F , are then expected to be
considerably smaller in magnitude than the ones usually quoted in
tree-level chiral perturbation theory. Similar renormalization argu-
ments imply that the pseudoscalar meson decay constants should
be chosen at or close to their physical values [13],

fπ = 92.4 MeV, f K = (1.19 ± 0.01) fπ ,

fη = (1.30 ± 0.05) fπ . (11)

It turns out that best fit results can indeed be achieved with these
physical decay constants as inputs. This is a non-trivial obser-

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

- Heavy ( ) hadrons: impossiblec, b

https://inspirehep.net/literature/927436
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the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.

PHYSICAL REVIEW LETTERS 124, 092301 (2020)

092301-4

Femtoscopy: correlation function
ALICE collaboration, PRL 124, 092301 (2020) C K

−
p(

q)

|q |
- Excellent precision (  cusp)K̄0n

- Various systems: ΛΛ, NΩ, ϕN, K̄Λ, DN, ⋯

- Heavy hadrons: possible!

- Heavy ( ) hadrons: impossiblec, b

https://inspirehep.net/literature/927436
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Experimental data in charm sector
Observed correlation functions with charm: DN, Dπ, DK

ALICE collaboration, PRD 106, 052010 (2022);
ALICE collaboration, PRD 110, 032004 (2024)

as previously mentioned, the systematic uncertainty on
Cexpðk"Þ is estimated by varying the proton and D−-
candidate selection criteria and ranges between 0.5% and
3% as a function of k". The uncertainties of the λi weights
are derived from the systematic uncertainties on the proton
and D− purities (Pp and PD−), fD"− , and fnonprompt reported
in Sec. III A. The systematic uncertainties of CpðKþπ−π−Þðk"Þ
are estimated following the same procedure adopted for
Cexpðk"Þ and, in addition, by varying the range of the fit of
the correlation function parametrized from the sidebands
regions of the invariant mass distribution. Additional
checks are performed by varying the invariant mass interval
used to define the sidebands region of up to 100 MeV=c2.
The resulting systematic uncertainty ranges from 1% to
5%. The systematic uncertainty of CpD"−ðk"Þ is due to the
uncertainty on the emitting source. Considering the small
λpD"−ðk"Þ this uncertainty results to be negligible compared
to the other sources of uncertainty. The overall relative
Systematic uncertainty on CpD−ðk"Þ resulting from the
different sources ranges between 3% and 10% and is
maximum in the lowest k" interval.

IV. RESULTS

The resulting genuine CpD−ðk"Þ correlation function can
be employed to study the pD− strong interaction that is
characterized by two isospin configurations and is coupled
to the nD̄0 channel. First of all, in order to assess the effect
of the strong interaction on the correlation function, a
reference calculation including only the Coulomb interac-
tion is considered. The corresponding correlation function is
obtained using CATS [71]. Second, various theoretical
approaches to describe the strong interaction are bench-
marked, including meson exchange (J. Haidenbauer et al.
[22]), meson exchange based on heavy quark symmetry
(Y. Yamaguchi et al. [25]), an SU(4) contact interaction
(J. Hoffmann and M. Lutz [23]), and a chiral quark model
(C. Fontoura et al. [24]). The relative wave functions for the
model of J. Haidenbauer et al. [22] are provided directly,
while for the other models [23–25] they are evaluated by
employing a Gaussian potential whose strength is adjusted
to describe the corresponding published I ¼ 0 and I ¼ 1
scattering lengths listed in Table I. The pD− correlation
function is computed within the Koonin-Pratt formalism,
taking into account explicitly the coupling between the pD−

and nD̄0 channels [73] and including the Coulomb inter-
action [74]. The finite experimental momentum resolution is
considered in the modeling of the correlation functions [39].
The outcome of these models is compared in Fig. 3 with

the measured genuine pD− correlation function. The degree
of consistency between data and models is quantified by the
p-value computed in the range k" < 200 MeV=c. It is
expressed by the number of standard deviations nσ reported
in Table I, where the nσ range accounts, at one standard
deviation level, for the total uncertainties of the data points
and the models. The values of the scattering lengths f0 for
the different models are also reported in Table I. Here, the
high-energy physics convention on the scattering-length
sign is adopted: a negative value corresponds to either a
repulsive interaction or to an attractive one with presence of
a bound state, while a positive value corresponds to an
attractive interaction. The data are compatible with the
Coulomb-only hypothesis within ð1.1–1.5Þ σ. Nevertheless,
the level of agreement slightly improves in case of the
models by J. Haidenbauer et al. (employing g2σ=4π ¼ 2.25)
which predicts an attractive interaction, and by Y.
Yamaguchi et al. which foresees the formation of a ND̄
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FIG. 3. Genuine pD− correlation function compared with
different theoretical models (see text for details). The null
hypothesis is represented by the curve corresponding to the
Coulomb interaction only.

TABLE I. Scattering parameters of the different theoretical models for the ND̄ interaction [22–25] and degree of
consistency with the experimental data computed in the range k" < 200 MeV=c.

Model f0ðI ¼ 0Þ f0ðI ¼ 1Þ nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [22] (g2σ=4π ¼ 2.25) 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [23] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [25] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [24] 0.16 −0.25 (1.1–1.5)

S. ACHARYA et al. PHYS. REV. D 106, 052010 (2022)

052010-6

D−p

Introduction — femtoscopy

Unique way to obtain data in charm sector (yet low statistics)

Studying the interaction between charm and light-flavor mesons ALICE Collaboration

modeled using the well-understood Coulomb potential, while the latter is parameterized with a Gaussian
potential of the form

V (r) =V0 exp(�m
2
⇢r

2), (7)

where V0 is the potential strength and m⇢ is the mass of the lightest exchangeable meson, the ⇢ meson,
which is the parameter that controls the potential range. The strength V0 is tuned to reproduce the
scattering lengths of the model [30].

The theoretical models provide the scattering parameters in the (strangenenss, isospin) basis, but in the
experiment, the interactions are accessible only in the charge basis. The same-charge pairs consist of
a pure isospin state. The opposite-charge pairs are a mixture of two isospin states, which can be ad-
dressed by solving the coupled-channel Schrödinger equation with two isospin interaction components.
In the case of D(⇤)⇡ pairs, the isospin channel I = 3/2 is shared between the same- and opposite-charge
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Figure 4: Genuine correlation functions with statistical (bars) and systematic uncertainties (boxes) compared to
theoretical model predictions (bands), listed in Tables 4 and 5. The width of the theoretical bands represents the
uncertainty related to the source. The number of standard deviations ns is reported for each model in the legend.
The results are shown for D⇡ (first row) and DK (second row) for the opposite- (left column) and same-charge
(right column) combinations.
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Correlation function and KP formula
High-energy collision: chaotic source  of hadron emissionS(r)

- Definition
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interaction

Source function  <—> wave function  (interaction)S(r) Ψ(−)
q (r)

- Theory (Koonin-Pratt formula)

C(q) ≃ ∫ d3r S(r) |Ψ(−)
q (r) |2 , Ψ(−)

q (r) ∝ S†e−iqr − e+iqr (r → ∞)

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)
incoming + outgoing

http://inspirehep.net/record/1511900
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Wave functions and correlations
Spherical source with s-wave interaction dominance

C(q) ≃ 1 + ∫
∞

0
dr S(r){ | χq(r) |2 − sin2(qr)}

attraction repulsion

Introduction — femtoscopy
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Resonance in coupled-channel scattering

 thresholdK̄N
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gy Λ(1405)

 thresholdπΣ
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K̄

- Coupling to MB: chiral SU(3) dynamics

Σ
π

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)
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Coupled-channel effects
 correlations for K−p Λ(1405)

Schrödinger equation (s-wave)
−1
2μ1

d2

dr2 + V11(r) + VC(r) V12(r) ⋯

V21(r) −1
2μ2

d2

dr2 + V22(r) + Δ2 ⋯

⋮ ⋮ ⋱

ψK−p(r)
ψK̄0n(r)

⋮
= E

ψK−p(r)
ψK̄0n(r)

⋮

Coulomb threshold energy difference
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Schrödinger equation (s-wave)
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= E

ψK−p(r)
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Coulomb threshold energy difference
Asymptotic ( ) wave function (incoming + outgoing)r → ∞

ψK−p(r)
ψK̄0n(r)

⋮
∝

S†
11e−iqr − eiqr

S†
12e−iq2r − 0 × eiq2r

⋮
(r → ∞)

- Transition from  is in  with K̄0n, π+Σ−, π0Σ0, π−Σ+, π0Λ ψi(r) i ≠ K−p

K−

p

π0

Σ0
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Coupled-channel correlation function
 correlations for K−p Λ(1405)

Coupled-channel Koonin-Pratt formula
R. Lednicky, V.V. Lyuboshitz, V.L. Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998);
J. Haidenbauer, NPA 981, 1 (2019);
Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

CK−p(q) ≃ ∫ d3r SK−p(r) |Ψ(−)
K−p,q(r) |2
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CK−p(q) ≃ ∫ d3r SK−p(r) |Ψ(−)
K−p,q(r) |2 + ∑

i≠K−p

ωi ∫ d3r Si(r) |Ψ(−)
i,q (r) |2

- Transition from K̄0n, π+Σ−, π0Σ0, π−Σ+, π0Λ

- : weight of channel  source relative to ωi i K−p
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Coupled-channel correlation function
 correlations for K−p Λ(1405)

Coulomb function. For closed channels (E < Δi), the
asymptotic form is given by substituting qj ¼ −iκj ¼
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjðΔj − EÞ

p
as ψ ð−Þ

j ðrÞ→AjðqÞu
ð−Þ
j ð−iκjrÞ=ð2κjrÞ∝

e−κjr=κjr. This is because the wave function component of
the off-shell state can emerge only in the strong interaction
region. For spherically symmetric source functions the
correlation function can be written as

CðqÞ ¼
Z

d3rS1ðrÞ½jϕCðq; rÞj2 − jϕC
0 ðqrÞj2%

þ 4π
X

j

Z
∞

0
drr2ωjSjðrÞjψ

ð−Þ
j ðq; rÞj2; ð7Þ

where the left-hand side depends only on q ¼ jqj. The
normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
effects of the coupled πΣ and πΛ channels are implicitly
included in the renormalized K̄N potential to reproduce the
scattering amplitude, the proper boundary condition (6)
was not imposed because the wave function does not
contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full

K̄N-πΣ-πΛ coupled-channel framework. The starting point
is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.
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normalization of the source function implies that the weight
of the observed channel must be unity: ω1 ¼ 1 [27].
The K−p correlation function was calculated in Ref. [14]

using the effective K̄N potential in Ref. [33] within the
model space of K−p and K̄0n channels. Although the
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included in the renormalized K̄N potential to reproduce the
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contain explicit πΣ and πΛ components. The present
calculation reduces to that in Ref. [14] when the channel
couplings of K̄N ↔ πΣ; πΛ are switched off and the K̄0n
source function is ignored. It turns out, however, that there
are sizable deviations of the present results from those in
Ref. [14]. This indicates the importance of an explicit
treatment of coupled channels in the K−p correlation
function.
We now employ the wave functions in the full
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is chiral SU(3) dynamics at next-to-leading order [30]
which successfully describes the set of existing K−p
scattering data together with the SIDDHARTA kaonic
hydrogen data [4]. An equivalent local K̄N-πΣ-πΛ
coupled-channel potential has been constructed to repro-
duce the corresponding scattering amplitudes [28]. Note
that the coupled-channel effects contribute to the correla-
tion function through the wave functions ψ ð−Þ

j includ-

ing ψ ð−Þ
K−p.

Results.—The K−p correlation function and its break-
down into channels are shown in Fig. 1 for source sizes of
R ¼ 1 fm and 3 fm. We assume a common source function
of Gaussian shape for all channels, SjðrÞ ¼ SRðrÞ≡
expð−r2=4R2Þ=ð4πR2Þ3=2 with ωj ¼ 1. For both source
radii R we can see the strong enhancement due to the
Coulomb attraction at small momenta, demonstrated by
comparison with the results omitting the Coulomb inter-
action. Also evident is the cusp structure at the K̄0n
threshold at q ≃ 58 MeV=c. Among the coupled-channel

components, the enhancement by the K̄0n channel is found
to be the largest, and next in importance is πΣ. The
inclusion of the K̄0n component also makes the cusp
structure more prominent. The π0Λ channel couples to
K−p only in the I ¼ 1 sector; its effect is relatively weak.
Because the calculated wave functions in channels other
than K−p have a sizable magnitude only at small distances,
the contributions from these components decrease with
increasing source size. This leads to a less pronounced cusp
structure for the R ¼ 3 fm case.
Now we are prepared to compare the calculated K−p

correlation function with data. We allow for variations of
the source size and weights, which can be channel
dependent [25]. Since a given source function with the
weight in the relative coordinate is obtained from a product
of single-particle emission functions, the weight should be
proportional to the product of particle yields. For example,
ωπ−Σþ=ωK−p ¼ Nðπ−ÞNðΣþÞ=NðK−ÞNðpÞ. The produc-
tion yields NðhÞ should be regarded as those of promptly
emitted particles in order for those hadrons to couple into
the final K−p channel. Those primary yields are not
directly observable. Thus, we regard the source weights
ωj as parameters. While the effect of the π0Λ channel is

FIG. 1. K−p correlation function with R ¼ 1 fm (upper panel)
and R ¼ 3 fm (lower panel). The long-dashed line denotes the
result with K−p component only. The short-dashed, dotted, and
solid lines show the results in which the contributions from K̄0n,
K̄0n, and πΣ, and from all coupled-channel components are
added, respectively. The dash-dotted line denotes the full
coupled-channel calculation without the Coulomb interaction.
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Coupled-channel effect is enhanced for small sources

Coupled-channel Koonin-Pratt formula
R. Lednicky, V.V. Lyuboshitz, V.L. Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998);
J. Haidenbauer, NPA 981, 1 (2019);
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CK−p(q) ≃ ∫ d3r SK−p(r) |Ψ(−)
K−p,q(r) |2 + ∑
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ωi ∫ d3r Si(r) |Ψ(−)
i,q (r) |2

- Transition from K̄0n, π+Σ−, π0Σ0, π−Σ+, π0Λ

- : weight of channel  source relative to ωi i K−p
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Correlation from chiral SU(3) dynamics
Wave function : Kyoto  potentialΨ(−)

i,q (r) K̄N-πΣ-πΛ

Correlation is well reproduced by chiral SU(3) potential

small and the correlation function is not very sensitive to
ωπ0Λ, the effects of πΣ channels are important because of
the strong K̄N − πΣ coupling. Then we fix ωπ0Λ ¼ 1 and
vary the parameter ωπΣ around the reference value,
obtained by the simplest statistical model estimate [34],
ωðstatÞ
πΣ ≃ exp½ðmK þmN −mπ −mΣÞ=Tc& ≃ 2.0 with Tc ¼

154 MeV [35,36]. As for the source size, the ALICE
collaboration fixed R ¼ 1.18 fm by assuming the same
source size as that of Kþp, which was obtained by the
femtoscopic correlation fit based on the Jülich Kþp
interaction [25], with Coulomb effects treated by the
Gamow factor correction. Although this correction
describes the Coulomb effect well for light systems such
as π − π, it lacks the necessary accuracy for heavier
systems [32]. Thus, we also consider the variation of R
in the fitting procedure. While the source size can in
principle be channel dependent, possible size differences
between channels can be compensated by varying the
source weights. We therefore use a common source size
in K̄N, πΣ, and πΛ channels. We also assume that the
source function has a Gaussian shape and the source weight
is isospin symmetric.
The measured correlation function is assumed to be

described in the form [20]

CfitðqÞ ¼ N ½1þ λfCðqÞ − 1g&; ð8Þ

whereN is a normalization constant and λ is the pair purity
parameter, known also as the chaoticity parameter. The pair
purity parameter is experimentally determined through a
Monte Carlo simulation, λexp ¼ 0.64' 0.06, so we allow
for variations of λ within 1σ. We fit the correlation function
data in the momentum range q < 120 MeV=c, where the
distortion of the s wave is considered to give the dominant
contribution.
In Fig. 2 the χ2=d:o:f: distribution is plotted in the

ðR;ωπΣÞ plane. A good fit (χ2=d:o:f:≲ 1) is achieved in the

region from ðR;ωπΣÞ ¼ ð0.6 fm; 0Þ to ð1.1 fm; 5.0Þ. The
source size R ≃ 1 fm is reasonable for pp collisions, while
ωπΣ should be consistent with the simple statistical model
estimate within a factor of 2 to 3. Thus, we consider
parameter sets in this region with 0.5 ≤ ωπΣ ≤ 5 as equally
acceptable. On the other hand, if we take the R ¼ 1.18 fm
as adopted by the ALICE Collaboration, ωπΣ ≳ 8 gives a
good fit, but such large ωπΣ values appear to be signifi-
cantly beyond the statistical model estimate.
Figure 3 shows the fitted K−p correlation function

with R ¼ 0.9 fm as an example of a result satisfying
χ2=d:o:f: < 1. The other parameters are chosen as

ωπΣ ¼ 2.95; N ¼ 1.13; λ ¼ 0.58; ð9Þ

to give the minimum value of χ2=d:o:f: ¼ 0.58. The
enhancement in the low-momentum range and the char-
acteristic cusp structure are evidently well reproduced.
Recalling the importance of the πΣ component in the K−p
correlation as shown in Fig. 1, the sizable value of ωπΣ
indicates that the contribution from the πΣ source is
essential to reproduce the data.
The peak structure seen in Fig. 3 around q ∼ 240 MeV=c

represents the Λð1520Þ resonance. The contribution from
this resonance can be simulated by a Breit-Wigner func-
tion:

CresðqÞ ¼
bΓ2

ðq2=2μK−p þmp þmK− − ERÞ2 þ Γ2=4
; ð10Þ

with parameters b, ER, and Γ. We can isolate the resonance
by subtracting CfitðqÞ from the correlation data, using the
parameters of Eq. (9) and R ¼ 0.9 fm. The remaining
structure in the interval 150 MeV=c < q < 300 MeV=c is

FIG. 2. Reduced χ2 distribution in the ðR;ωπΣÞ plane. From
inward out the contour lines correspond to χ2=d:o:f: ¼ 0.5, 1,
1.5, and 2, respectively.

FIG. 3. Correlation function with the best fit parameters (solid
line). The result including the Λð1520Þ contribution is shown by
the dotted line. The dashed line shows the prediction with
R ¼ 1.6 fm. Its shaded area shows the uncertainty with respect
to the variation of ωπΣ. For comparison, we also plot the
corresponding area for the case with R ¼ 0.9 fm. The ALICE
data set is taken from Ref. [20].
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 correlations for K−p Λ(1405)

- Source function : gaussian,  from  data S(r) R ∼ 1 fm K+p

- Source weight  by simple statistical model estimateωπΣ ∼ 2

small and the correlation function is not very sensitive to
ωπ0Λ, the effects of πΣ channels are important because of
the strong K̄N − πΣ coupling. Then we fix ωπ0Λ ¼ 1 and
vary the parameter ωπΣ around the reference value,
obtained by the simplest statistical model estimate [34],
ωðstatÞ
πΣ ≃ exp½ðmK þmN −mπ −mΣÞ=Tc& ≃ 2.0 with Tc ¼

154 MeV [35,36]. As for the source size, the ALICE
collaboration fixed R ¼ 1.18 fm by assuming the same
source size as that of Kþp, which was obtained by the
femtoscopic correlation fit based on the Jülich Kþp
interaction [25], with Coulomb effects treated by the
Gamow factor correction. Although this correction
describes the Coulomb effect well for light systems such
as π − π, it lacks the necessary accuracy for heavier
systems [32]. Thus, we also consider the variation of R
in the fitting procedure. While the source size can in
principle be channel dependent, possible size differences
between channels can be compensated by varying the
source weights. We therefore use a common source size
in K̄N, πΣ, and πΛ channels. We also assume that the
source function has a Gaussian shape and the source weight
is isospin symmetric.
The measured correlation function is assumed to be

described in the form [20]

CfitðqÞ ¼ N ½1þ λfCðqÞ − 1g&; ð8Þ

whereN is a normalization constant and λ is the pair purity
parameter, known also as the chaoticity parameter. The pair
purity parameter is experimentally determined through a
Monte Carlo simulation, λexp ¼ 0.64' 0.06, so we allow
for variations of λ within 1σ. We fit the correlation function
data in the momentum range q < 120 MeV=c, where the
distortion of the s wave is considered to give the dominant
contribution.
In Fig. 2 the χ2=d:o:f: distribution is plotted in the

ðR;ωπΣÞ plane. A good fit (χ2=d:o:f:≲ 1) is achieved in the

region from ðR;ωπΣÞ ¼ ð0.6 fm; 0Þ to ð1.1 fm; 5.0Þ. The
source size R ≃ 1 fm is reasonable for pp collisions, while
ωπΣ should be consistent with the simple statistical model
estimate within a factor of 2 to 3. Thus, we consider
parameter sets in this region with 0.5 ≤ ωπΣ ≤ 5 as equally
acceptable. On the other hand, if we take the R ¼ 1.18 fm
as adopted by the ALICE Collaboration, ωπΣ ≳ 8 gives a
good fit, but such large ωπΣ values appear to be signifi-
cantly beyond the statistical model estimate.
Figure 3 shows the fitted K−p correlation function

with R ¼ 0.9 fm as an example of a result satisfying
χ2=d:o:f: < 1. The other parameters are chosen as

ωπΣ ¼ 2.95; N ¼ 1.13; λ ¼ 0.58; ð9Þ

to give the minimum value of χ2=d:o:f: ¼ 0.58. The
enhancement in the low-momentum range and the char-
acteristic cusp structure are evidently well reproduced.
Recalling the importance of the πΣ component in the K−p
correlation as shown in Fig. 1, the sizable value of ωπΣ
indicates that the contribution from the πΣ source is
essential to reproduce the data.
The peak structure seen in Fig. 3 around q ∼ 240 MeV=c

represents the Λð1520Þ resonance. The contribution from
this resonance can be simulated by a Breit-Wigner func-
tion:

CresðqÞ ¼
bΓ2

ðq2=2μK−p þmp þmK− − ERÞ2 þ Γ2=4
; ð10Þ

with parameters b, ER, and Γ. We can isolate the resonance
by subtracting CfitðqÞ from the correlation data, using the
parameters of Eq. (9) and R ¼ 0.9 fm. The remaining
structure in the interval 150 MeV=c < q < 300 MeV=c is

FIG. 2. Reduced χ2 distribution in the ðR;ωπΣÞ plane. From
inward out the contour lines correspond to χ2=d:o:f: ¼ 0.5, 1,
1.5, and 2, respectively.

FIG. 3. Correlation function with the best fit parameters (solid
line). The result including the Λð1520Þ contribution is shown by
the dotted line. The dashed line shows the prediction with
R ¼ 1.6 fm. Its shaded area shows the uncertainty with respect
to the variation of ωπΣ. For comparison, we also plot the
corresponding area for the case with R ¼ 0.9 fm. The ALICE
data set is taken from Ref. [20].
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Large source case
New data with  collisions at 5.02 TeVPb-Pb

 correlations for K−p Λ(1405)

Kaon–proton scattering in Pb–Pb collisions at the LHC ALICE Collaboration
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Figure 3: Left: scattering parameters obtained from the Lednický–Lyuboshitz fit compared with available world
data and theoretical calculations. Statistical uncertainties are represented as bars and systematic uncertainties, if
provided, as boxes. Right: experimental femtoscopic correlation function for K�p�K+p pairs in the 30–40%
centrality interval, together with various Lednický–Lyuboshitz calculations obtained using the scattering length
parameters from Refs. [17, 18, 71–75] and the source radius from this analysis. The statistical and systematic
uncertainties of the measured data points are added in quadrature and shown as vertical bars.

and ¡ f0 = 0.92± 0.05(stat)+0.12
�0.33(syst) fm.

The obtained parameters of the scattering length are compared with the available experimental values as
well as model calculations [18, 71–75] in the left panel of Fig. 3. Numerical values of those parameters
are also provided in Tab. 1. The ALICE results are compatible with them within uncertainties2. Up until
this point, the world’s best experimental data on Kp scattering are mainly from exotic kaonic atoms,
where the interaction at the threshold is measured, and from scattering experiments. Theory predictions
and calculations are based on cEFT models.

Moreover, the Lednický–Lyuboshitz formalism is also used to compute femtoscopic correlation functions
using scattering length parameters from previous measurements and theory predictions. They are then
compared with the experimental data and the deviations in units of c2/ndf are obtained. The result of
such a procedure is shown in Fig. 3 (right), while the c2/ndf values are presented in Table 1. The Kyoto
model, which captures well the structures related to coupled channels in pp collisions, reproduces the data
trends in all measured Pb–Pb centrality intervals, confirming that the coupled channels are fundamental
in the description of small sources but have a negligible influence on correlation functions at large source
sizes [39]. However, the model still requires further development as the resulting c2/ndf= 2.8 is slightly
worse than the best calculations using the Lednický–Lyuboshitz analytical approach.

2Note that systematic uncertainties are not provided for some of the older results.
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small and the correlation function is not very sensitive to
ωπ0Λ, the effects of πΣ channels are important because of
the strong K̄N − πΣ coupling. Then we fix ωπ0Λ ¼ 1 and
vary the parameter ωπΣ around the reference value,
obtained by the simplest statistical model estimate [34],
ωðstatÞ
πΣ ≃ exp½ðmK þmN −mπ −mΣÞ=Tc& ≃ 2.0 with Tc ¼

154 MeV [35,36]. As for the source size, the ALICE
collaboration fixed R ¼ 1.18 fm by assuming the same
source size as that of Kþp, which was obtained by the
femtoscopic correlation fit based on the Jülich Kþp
interaction [25], with Coulomb effects treated by the
Gamow factor correction. Although this correction
describes the Coulomb effect well for light systems such
as π − π, it lacks the necessary accuracy for heavier
systems [32]. Thus, we also consider the variation of R
in the fitting procedure. While the source size can in
principle be channel dependent, possible size differences
between channels can be compensated by varying the
source weights. We therefore use a common source size
in K̄N, πΣ, and πΛ channels. We also assume that the
source function has a Gaussian shape and the source weight
is isospin symmetric.
The measured correlation function is assumed to be

described in the form [20]

CfitðqÞ ¼ N ½1þ λfCðqÞ − 1g&; ð8Þ

whereN is a normalization constant and λ is the pair purity
parameter, known also as the chaoticity parameter. The pair
purity parameter is experimentally determined through a
Monte Carlo simulation, λexp ¼ 0.64' 0.06, so we allow
for variations of λ within 1σ. We fit the correlation function
data in the momentum range q < 120 MeV=c, where the
distortion of the s wave is considered to give the dominant
contribution.
In Fig. 2 the χ2=d:o:f: distribution is plotted in the

ðR;ωπΣÞ plane. A good fit (χ2=d:o:f:≲ 1) is achieved in the

region from ðR;ωπΣÞ ¼ ð0.6 fm; 0Þ to ð1.1 fm; 5.0Þ. The
source size R ≃ 1 fm is reasonable for pp collisions, while
ωπΣ should be consistent with the simple statistical model
estimate within a factor of 2 to 3. Thus, we consider
parameter sets in this region with 0.5 ≤ ωπΣ ≤ 5 as equally
acceptable. On the other hand, if we take the R ¼ 1.18 fm
as adopted by the ALICE Collaboration, ωπΣ ≳ 8 gives a
good fit, but such large ωπΣ values appear to be signifi-
cantly beyond the statistical model estimate.
Figure 3 shows the fitted K−p correlation function

with R ¼ 0.9 fm as an example of a result satisfying
χ2=d:o:f: < 1. The other parameters are chosen as

ωπΣ ¼ 2.95; N ¼ 1.13; λ ¼ 0.58; ð9Þ

to give the minimum value of χ2=d:o:f: ¼ 0.58. The
enhancement in the low-momentum range and the char-
acteristic cusp structure are evidently well reproduced.
Recalling the importance of the πΣ component in the K−p
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represents the Λð1520Þ resonance. The contribution from
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FIG. 2. Reduced χ2 distribution in the ðR;ωπΣÞ plane. From
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1.5, and 2, respectively.

FIG. 3. Correlation function with the best fit parameters (solid
line). The result including the Λð1520Þ contribution is shown by
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- Scattering length  fmaK−p = − 0.91 + 0.92i



13

Systematic study of source size dependence
Correlations in , ,  by Kyoto  potentialpp p-Pb Pb-Pb K̄N-πΣ-πΛ

More strength is needed in the  channelK̄0n

04/10/2022 Ramona Lea - Hadron physics with kaon beam and related topics

● Unique constraint and direct access to 
K⁻p ↔ K̅⁰n and K⁻p ↔ πΣ dynamics 

● 𝛼K̅⁰–n deviates from unity: 
○ K⁻p ↔ K̅⁰n currently implemented in Kyoto 

𝜒EFT is too weak 
○ fine tuning of Kyoto 𝜒EFT is needed and data 

from hadron-hadron collisions have to be 
taken into account

K⁻p from small to large systems

ALICE Collaboration arXiv: 2205.15176

21

p

p

p

Pb
Pb

Pb

expected weight is OK

enhancement needed to 
explain data

ALICE collaboration, EPJC 83, 340 (2023)

 correlations for K−p Λ(1405)

CK−p(q) ≃ ∫ d3r SK−p(r) |Ψ(−)
K−p,q(r) |2 + ∑

i≠K−p

αi ωi ∫ d3r Si(r) |Ψ(−)
i,q (r) |2

: expected weight by 
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Motivation
A solution to hyperon puzzle in neutron stars
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-  three-body force for repulsion at high densityΛNN
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Fig. 7 Single-particle potentials UΛ(p = 0; ρ) of a Λ hyperon in
dense symmetric nuclear matter (left) and neutron matter(right), based
on self-consistent solutions of Eqs. (15) and (17) computed up to
ρ = 3.5 ρ0 using the NLO13 interaction, and further extrapolated to

higher densities as described in the text. The uncertainty bands reflect
cutoff dependence and choices of (H1, H2) from the lower solid seg-
ments of the NLO13 lines of Fig. 6
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Fig. 8 Comparison of Λ and neutron chemical potentials, µΛ and µn ,
in neutron star matter up to baryon densities typically encountered in
the center of neutron stars. The neutron chemical potential is derived
from the equation-of-state calculated in ref. [10] using chiral SU(2)
nucleon-meson field theory combined with functional renormalization
group methods. The uncertainty band reflects primarily the errors in

the nuclear symmetry energy Esym = 32 ± 3 MeV. The Λ chemical
potential is based on UΛ as in Fig. 7, calculated using the chiral SU(3)
interactions NLO13 (left panel) and NLO19 (right panel) with full two-
and three-body forces (ΛN+ΛNN ) and sets of three-body parameters
as explained in the text. The dashed line shows µΛ using two-body Y N
interactions only

The comparison of µΛ and µn is shown in Fig. 8. The
uncertainty band of the neutron chemical potential is related
primarily to the range of possible values of the nuclear sym-
metry energy, Esym = (32 ± 3) MeV. We note that this
uncertainty band also includes µn as given in Ref. [8] for
their maximally repulsive interaction (AV18+δv + UIX*) up
to ρ ! 4 ρ0.

Figure 8 points out that the combined repulsion from
two- and three-body hyperon–nuclear interactions for both
NLO13 and NLO19 cases can indeed be potentially strong
enough to avoid the appearance of Λ hyperons in neutron
stars. One findsµΛ > µn throughout the neutron star density
range when a set of three-body parameters is selected from
the solid segments of the lines in Fig. 6 that are constrained
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The comparison of µΛ and µn is shown in Fig. 8. The
uncertainty band of the neutron chemical potential is related
primarily to the range of possible values of the nuclear sym-
metry energy, Esym = (32 ± 3) MeV. We note that this
uncertainty band also includes µn as given in Ref. [8] for
their maximally repulsive interaction (AV18+δv + UIX*) up
to ρ ! 4 ρ0.

Figure 8 points out that the combined repulsion from
two- and three-body hyperon–nuclear interactions for both
NLO13 and NLO19 cases can indeed be potentially strong
enough to avoid the appearance of Λ hyperons in neutron
stars. One findsµΛ > µn throughout the neutron star density
range when a set of three-body parameters is selected from
the solid segments of the lines in Fig. 6 that are constrained
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How to verify this in experiments? 
-  directed flow in heavy ion collisionsΛ

Y. Nara, A. Jinno, K. Murase, A. Ohnishi, 
PRC 106, 044902 (2022)
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primarily to the range of possible values of the nuclear sym-
metry energy, Esym = (32 ± 3) MeV. We note that this
uncertainty band also includes µn as given in Ref. [8] for
their maximally repulsive interaction (AV18+δv + UIX*) up
to ρ ! 4 ρ0.

Figure 8 points out that the combined repulsion from
two- and three-body hyperon–nuclear interactions for both
NLO13 and NLO19 cases can indeed be potentially strong
enough to avoid the appearance of Λ hyperons in neutron
stars. One findsµΛ > µn throughout the neutron star density
range when a set of three-body parameters is selected from
the solid segments of the lines in Fig. 6 that are constrained
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How to verify this in experiments? 
-  directed flow in heavy ion collisionsΛ

Y. Nara, A. Jinno, K. Murase, A. Ohnishi, 
PRC 106, 044902 (2022)

 correlation function —> nature of  potential?Λα Λα

-nucleus correlation function? Λ

- Heavy nuclei are difficult to produce
- Strong binding of : two-body treatment justifiedα
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 potentialsΛα
 correlations for  in mediumΛα Λ

Phenomenological  potentials (  binding energy)Λα 5
ΛHe

- SG: single gaussian
I. Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345, 386 (1997)

- Isle: two gaussians (with core)

4

FIG. 1. ⇤↵ potentials as functions of the distance between ⇤ and
↵. Isle (dashed line) and SG (thick dash-dotted line) are the phe-
nomenological potentials given in Gaussian form [37]. Chi3 (solid
line), LY-IV (dotted line), and Chi3 w/o mom (thin dash-dotted line),
are the Skyrme-type ⇤ potentials with the ↵ density distribution.

LY-IV exhibits the Woods-Saxon like shape. This is a con-
sequence of the different high-density behavior of the ⇤ po-
tential in nuclear matter mentioned above. In this way, we
explicitly show that the property of ⇤ in nuclear matter is re-
flected in the short range behavior of the ⇤↵ potential. The
Isle potential has further strong repulsive core at short dis-
tance, while the SG model is entirely attractive. In all cases,
the interaction ranges are of the order of 2-3 fm.

The two-body Schrödinger equation for the ⇤↵ system is
written as

"
�r⇤ ·

✓
1

2m⇤
⇤(r)

r⇤

◆
�

1

2m↵
r

2
↵

+ U⇤↵(r)

#
�(r⇤, r↵) = E�(r⇤, r↵), (13)

where ri is the coordinate of the particle i. The derivative
operator ri is acting on the particle i and the relative coordi-
nate is defined as r = r↵ � r⇤. The effective mass m⇤

⇤(r)
of ⇤ is set as its vacuum value m⇤ for local potentials: Isle,
SG, and Chi3 w/o mom. In the center-of-mass frame, the total
momentum is zero, and then rR� = 0 with the center-of-
mass coordinate R = (m↵r↵+m⇤r⇤)/(m↵+m⇤), and the
Schrödinger equation (13) can be reduced to the equation for
the relative wave function  as

�rr ·

✓
1

2µ⇤(r)
rr

◆
+ U⇤↵(r)

�
 (r) = E (r), (14)

where we call µ⇤
= m⇤

⇤m↵/(m⇤
⇤ + m↵) the reduced effec-

tive mass. In Fig. 2, the r dependence of µ⇤ for different
models is shown. The reduced effective mass is a constant
µ = m⇤m↵/(m⇤ + m↵) for local potentials, Isle, SG, and
Chi3 w/o mom. For nonlocal potentials, the reduced effective
mass decreases from µ in the distance where the nucleon den-
sity appears, and Chi3 shows stronger reduction than that of

FIG. 2. Reduced effective masses as functions of the distance be-
tween ⇤ and ↵ for Chi3 (solid line) and LY-IV (dotted line). Its
vacuum value µ corresponds to the dashed line.

LY-IV. The reduction of µ⇤ is a consequence of positive a⇤2
[see Eq. (3)], which is enhanced for the model with larger a⇤2 .

In Fig. 3, normalized ⇤↵ phase shifts �/⇡ calculated with
various potential models are shown as functions of the magni-
tude of the relative momentum q =

p
2µE1. The behavior of

the low-energy phase shift is constrained by the bound state
5
⇤He below the threshold. The ⇤ binding energy of 5

⇤He is
listed in Table III. The results are similar since all models are
constructed to reproduce the experimental value. The scatter-
ing length a0 and the effective length re↵ are defined with the
effective range expansion parameters as

q cot � = �
1

a0
+

1

2
re↵q

2
+O

�
q4
�
. (15)

Obtained values are listed in Table III. We note that the order-
ing of the magnitude of a0 and re↵ coincides with the order-
ing of the value of the potential U⇤↵ at r = 0, except for Chi3
w/o mom. To check the convergence of the effective range
expansion, we evaluate the binding energy estimated by the
truncated effective range expansion [70]
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2re↵
a0

� 1
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in Table III. It is seen that the exact binding energy B⇤ is
reasonably estimated by BERE

⇤ , indicating the good conver-
gence of the effective range expansion. At the same time,
however, the deviation of B⇤ and BERE

⇤ increases for mod-
els with larger re↵ .

1 To determine the momentum, we use the reduced mass µ also for the non-
local potentials, because the scattering momentum is defined in the asymp-
totic region r ! 1 where µ⇤ ! µ.
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gence of the effective range expansion. At the same time,
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els with larger re↵ .

1 To determine the momentum, we use the reduced mass µ also for the non-
local potentials, because the scattering momentum is defined in the asymp-
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 correlation functions: source size dependenceΛα

Correlation functions from small and large sources

 correlations for  in mediumΛα Λ

- Bound state signature (dip at low  in small source)q

6

FIG. 4. ⇤↵ correlation functions for three different source sizes. The solid and dotted lines show the result calculated by the Skyrme-type ⇤↵
potentials, Chi3 and LY-IV, respectively. The dashed and dash-dotted lines are the results from the phenomenological ⇤↵ potentials, Isle and
SG, respectively.

is valid if R is much larger than the interaction range, as men-
tioned above.

To see the dependence on the momentum-dependent part
of the Skyrme-type potential, we compare the ⇤↵ correlation
functions calculated by using Chi3 with those by Chi3 w/o
mom in Fig. 6. For a source size R = 1 fm, the correla-
tion functions show tiny but nonnegligible deviation, origi-
nated from the momentum dependence of the potential. From
Fig. 2, the momentum dependence of the potential induces
a sizable difference in the reduced effective mass of the ⇤↵
system. Nevertheless, its influence in the correlation function
is quantitatively small, presumably because of the subsequent
adjustment of the a⇤3 parameter to reproduce the ⇤ binding en-
ergy of 5

⇤He. For R � 3 fm, the differences in the correlation
function is not noticeable. For such larger source size, the LL
formula works well, as seen above. Then, the similarity be-
tween the correlation functions represents that the differences
in a0 and re↵ are not so large to exhibit the difference in the
correlation functions.

IV. SUMMARY

In this paper, we extend the femtoscopy technique to the
system including light nuclei, and provide quantitative predic-
tions of the ⇤↵ momentum correlation functions measured in
the high-energy collisions. We have examined five models of
the ⇤↵ potentials. Two of them are the phenomenological ⇤↵
models (Isle and SG) [37]. The others are constructed by sub-
stituting the ↵ density distribution for the Skyrme-type ⇤ po-
tentials [58, 59]. All models reproduce the ⇤ binding energy
of 5

⇤He and have consistent interaction range of 2-3 fm, while
they have different properties at short range, including both
attractive ones and repulsive ones. The constructed Skyrme-
type potentials indicate that the repulsive nature of the ⇤ po-
tential at high densities induces the repulsive core in the ⇤↵
interaction at short range.

While the correlation functions from the source with R & 3

fm are not sensitive to the short range behavior of the ⇤↵ po-
tential, the difference of the potentials is manifest in the cor-
relation functions from the small source system (R ⇠ 1 fm).

It is found that the correlation is suppressed in the order of the
repulsive strength of the ⇤↵ potential at short range. This in-
dicates that the ⇤↵ correlation function can constrain the ⇤↵
potential at short range, which is not sensitive to the calcu-
lated ⇤ binding energy of the few-body ⇤ hypernuclei [31].
Detailed knowledge of the ⇤↵ potential at short range would
bring valuable information on the property of ⇤ in dense nu-
clear medium, which is one of the key ingredients to solve the
hyperon puzzle of neutron stars.

We examine the validity of the LL formula, which has been
utilized to extract the low-energy scattering parameters from
the correlation function measurements. For a small source
size of 1 fm, the LL formula is shown to severely deviate from
the exact result in the low-momentum region, since the system
with longer interaction range than the source size invalidates
the assumption made in the LL formula. We also study the
effect of the momentum dependence of the ⇤ potential, which
is not so firmly determined from the experimental data. We
compare the momentum dependent model with the one omit-
ting the momentum dependence of the ⇤ potential in symmet-
ric nuclear matter while fixing the ⇤ binding energy of 5

⇤He.
The difference between with and without the momentum de-
pendence is found to be small.

We have demonstrated that the study of the two-body corre-
lation functions including ↵ could serve as a new tool to study
the property of the hyperons in nuclear medium. The exper-
imental measurement of the ⇤↵ correlation function may be
feasible at the collision energy

p
sNN < 10 GeV in which a

number of ↵ particles would be produced in central heavy-ion
collisions as estimated by the statistical model [75]. Also, ac-
cording to Ref. [75], yield of ⇤ is always larger than that of ↵
for

p
sNN � 3 GeV. We hope that the present work stimu-

lates the study of the ⇤↵ correlation functions in future exper-
iments, including the facilities with medium collision energies
such as FAIR [76], NICA, and J-PARC HI [77].
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FIG. 4. ⇤↵ correlation functions for three different source sizes. The solid and dotted lines show the result calculated by the Skyrme-type ⇤↵
potentials, Chi3 and LY-IV, respectively. The dashed and dash-dotted lines are the results from the phenomenological ⇤↵ potentials, Isle and
SG, respectively.
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We have demonstrated that the study of the two-body corre-
lation functions including ↵ could serve as a new tool to study
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FIG. 1. ⇤↵ potentials as functions of the distance between ⇤ and
↵. Isle (dashed line) and SG (thick dash-dotted line) are the phe-
nomenological potentials given in Gaussian form [37]. Chi3 (solid
line), LY-IV (dotted line), and Chi3 w/o mom (thin dash-dotted line),
are the Skyrme-type ⇤ potentials with the ↵ density distribution.

LY-IV exhibits the Woods-Saxon like shape. This is a con-
sequence of the different high-density behavior of the ⇤ po-
tential in nuclear matter mentioned above. In this way, we
explicitly show that the property of ⇤ in nuclear matter is re-
flected in the short range behavior of the ⇤↵ potential. The
Isle potential has further strong repulsive core at short dis-
tance, while the SG model is entirely attractive. In all cases,
the interaction ranges are of the order of 2-3 fm.

The two-body Schrödinger equation for the ⇤↵ system is
written as

"
�r⇤ ·

✓
1

2m⇤
⇤(r)

r⇤

◆
�

1

2m↵
r

2
↵

+ U⇤↵(r)

#
�(r⇤, r↵) = E�(r⇤, r↵), (13)

where ri is the coordinate of the particle i. The derivative
operator ri is acting on the particle i and the relative coordi-
nate is defined as r = r↵ � r⇤. The effective mass m⇤

⇤(r)
of ⇤ is set as its vacuum value m⇤ for local potentials: Isle,
SG, and Chi3 w/o mom. In the center-of-mass frame, the total
momentum is zero, and then rR� = 0 with the center-of-
mass coordinate R = (m↵r↵+m⇤r⇤)/(m↵+m⇤), and the
Schrödinger equation (13) can be reduced to the equation for
the relative wave function  as

�rr ·

✓
1

2µ⇤(r)
rr

◆
+ U⇤↵(r)

�
 (r) = E (r), (14)

where we call µ⇤
= m⇤

⇤m↵/(m⇤
⇤ + m↵) the reduced effec-

tive mass. In Fig. 2, the r dependence of µ⇤ for different
models is shown. The reduced effective mass is a constant
µ = m⇤m↵/(m⇤ + m↵) for local potentials, Isle, SG, and
Chi3 w/o mom. For nonlocal potentials, the reduced effective
mass decreases from µ in the distance where the nucleon den-
sity appears, and Chi3 shows stronger reduction than that of

FIG. 2. Reduced effective masses as functions of the distance be-
tween ⇤ and ↵ for Chi3 (solid line) and LY-IV (dotted line). Its
vacuum value µ corresponds to the dashed line.

LY-IV. The reduction of µ⇤ is a consequence of positive a⇤2
[see Eq. (3)], which is enhanced for the model with larger a⇤2 .

In Fig. 3, normalized ⇤↵ phase shifts �/⇡ calculated with
various potential models are shown as functions of the magni-
tude of the relative momentum q =

p
2µE1. The behavior of

the low-energy phase shift is constrained by the bound state
5
⇤He below the threshold. The ⇤ binding energy of 5

⇤He is
listed in Table III. The results are similar since all models are
constructed to reproduce the experimental value. The scatter-
ing length a0 and the effective length re↵ are defined with the
effective range expansion parameters as

q cot � = �
1

a0
+

1

2
re↵q

2
+O

�
q4
�
. (15)

Obtained values are listed in Table III. We note that the order-
ing of the magnitude of a0 and re↵ coincides with the order-
ing of the value of the potential U⇤↵ at r = 0, except for Chi3
w/o mom. To check the convergence of the effective range
expansion, we evaluate the binding energy estimated by the
truncated effective range expansion [70]
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i

re↵
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re↵

r
2re↵
a0

� 1

◆2

, (16)

in Table III. It is seen that the exact binding energy B⇤ is
reasonably estimated by BERE

⇤ , indicating the good conver-
gence of the effective range expansion. At the same time,
however, the deviation of B⇤ and BERE

⇤ increases for mod-
els with larger re↵ .

1 To determine the momentum, we use the reduced mass µ also for the non-
local potentials, because the scattering momentum is defined in the asymp-
totic region r ! 1 where µ⇤ ! µ.

potentialcorrelation

- : Isle < LY-IV < Chi3 < SGCΛα(q = 0)

- : Isle > LY-IV > Chi3 > SGUΛα(r = 0)

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)
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Femtoscopy: novel and useful method to study 
interactions of exotic hadrons and nuclei

 correlations 

 correlations

K−p

Λα

Summary and future prospects

Summary

- precise test for  and  interactionsΛ(1405) K̄N

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

- hint for repulsive core in  interactionΛα

- unique tool to study charm sector

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

https://inspirehep.net/literature/1762829
https://inspirehep.net/literature/2768754
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LL formula
Introduction — femtoscopy

Correlation function <—> observables ( )a0, re, f(q)

- Gaussian (relative) source S(r) = exp(−r2/4R2)/(4πR2)3/2

R. Lednicky, V.L. Lyuboshits, Yad. Fiz. 35, 1316 (1981)

 -  : source size (gaussian width is )R 2R
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Correlation function <—> observables ( )a0, re, f(q)

- Gaussian (relative) source S(r) = exp(−r2/4R2)/(4πR2)3/2

R. Lednicky, V.L. Lyuboshits, Yad. Fiz. 35, 1316 (1981)

 -  : source size (gaussian width is )R 2R

C(q) = 1 +
| f(q) |2

2R2
F3(re /R) +

2Re f(q)

πR
F1(2qR) −

Im f(q)
R

F2(2qR)

- zero-range interaction :  (use asymptotic w.f.)R ≫ Rint

f(q) =
1

q cot δ − iq
≃

1

− 1
a0

+ re

2 q2 − iq

-  : known functions,   : s-wave scattering amplitudeFi(x) f(q)

- s-wave interaction only

S. Cho, et al., ExHIC collaboration, PPNP 95, 279 (2017)

http://inspirehep.net/record/1511900
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B. ⇤⇤ correlation function

In the lower panels of Fig. 6, our final results of the ⇤⇤
correlation functions are compared with the ⇤⇤ data in pp

collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [9]. The solid lines denote our final
results with statistical and systematic errors of the HAL QCD
potential. The dotted green lines are the results with only the
quantum statistics effect. Although there are large uncertain-
ties of the experimental data at small q region, the agreement
of the solid line with the data indicates a weak attraction in
the ⇤⇤ channel without a deep bound state. This is consistent
with the conclusions in Refs. [8, 9].

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon
pairs [33] are also plotted in the lower panels of Fig. 6 by
the dash-dotted line:

C(q) =1� 1

2
e
�4q

2
R

2

+
1

2
�C(q), (23)

�C(q) =
|f(q)|2
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⌘
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F1(2qR)

� Imf(q)
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F2(2qR), (24)

where F1(x) =
R
x

0
dt e

t
2�x

2

/x, F2(x) = (1 � e
�x

2

)/x,
F3(x) = 1 � x/2

p
⇡, and we make the effective range ex-

pansion of single channel ⇤⇤ scattering amplitude f(q) with
a0 = �0.78 fm and re↵ = 5.4 fm given in Table I. The same
non-femtoscopic parameters and the pair purity listed in Ta-
ble. II are used. We find that the single-channel LL formula
gives a good approximation to the fully coupled-channel re-
sults for wide range of q in both pp and pPb collisions. It
would be interesting to see whether high precision data for
C⇤⇤(q) in the future may reveal cusp structures at the n⌅0

and p⌅� thresholds as expected from the coupled channel ef-
fect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether bound or quasi-bound state is generated by the
strong interaction. This can be demonstrated by using an an-
alytic model for neutral and non-identical particles C(q) =
1 +�C(q) with re↵ = 0 which is obtained from Eq. (24) as

�C(q) =
1

x2 + y2


1

2
� 2yp

⇡
F1(2x)� xF2(2x)

�
, (25)

with x = qR and y = R/a0. Shown in Fig. 7 is a contour
plot of C(q) in the x-y plane. The strongly enhanced region
C(q) > 2 indicated by the white area extends to both negative
and positive sides of y for x < 0.5. (Even if one introduces
the Coulomb attraction such as the case of p⌅�, this situation
does not change qualitatively as discussed in Appendix C.)

Scanning through the y-axis by changing the system size R
would provide further experimental information on the sign of
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FIG. 7. The contour plot of the correlation function C(q) in the LL
analytic model at re↵ = 0 as a function of x = qR and y = R/a0.

y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.

Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, 
PRC 105,  014915 (2022)

LL formula with re = 0
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correlation functions are compared with the ⇤⇤ data in pp

collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [9]. The solid lines denote our final
results with statistical and systematic errors of the HAL QCD
potential. The dotted green lines are the results with only the
quantum statistics effect. Although there are large uncertain-
ties of the experimental data at small q region, the agreement
of the solid line with the data indicates a weak attraction in
the ⇤⇤ channel without a deep bound state. This is consistent
with the conclusions in Refs. [8, 9].

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon
pairs [33] are also plotted in the lower panels of Fig. 6 by
the dash-dotted line:
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sults for wide range of q in both pp and pPb collisions. It
would be interesting to see whether high precision data for
C⇤⇤(q) in the future may reveal cusp structures at the n⌅0

and p⌅� thresholds as expected from the coupled channel ef-
fect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether bound or quasi-bound state is generated by the
strong interaction. This can be demonstrated by using an an-
alytic model for neutral and non-identical particles C(q) =
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C(q) > 2 indicated by the white area extends to both negative
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the Coulomb attraction such as the case of p⌅�, this situation
does not change qualitatively as discussed in Appendix C.)
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y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.

Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, 
PRC 105,  014915 (2022)

LL formula with re = 0
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of the solid line with the data indicates a weak attraction in
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FIG. 7. The contour plot of the correlation function C(q) in the LL
analytic model at re↵ = 0 as a function of x = qR and y = R/a0.

y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.
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B. ⇤⇤ correlation function

In the lower panels of Fig. 6, our final results of the ⇤⇤
correlation functions are compared with the ⇤⇤ data in pp

collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [9]. The solid lines denote our final
results with statistical and systematic errors of the HAL QCD
potential. The dotted green lines are the results with only the
quantum statistics effect. Although there are large uncertain-
ties of the experimental data at small q region, the agreement
of the solid line with the data indicates a weak attraction in
the ⇤⇤ channel without a deep bound state. This is consistent
with the conclusions in Refs. [8, 9].

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon
pairs [33] are also plotted in the lower panels of Fig. 6 by
the dash-dotted line:

C(q) =1� 1

2
e
�4q

2
R

2

+
1

2
�C(q), (23)

�C(q) =
|f(q)|2

2R2
F3

⇣
re↵

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR), (24)

where F1(x) =
R
x

0
dt e

t
2�x

2

/x, F2(x) = (1 � e
�x

2

)/x,
F3(x) = 1 � x/2

p
⇡, and we make the effective range ex-

pansion of single channel ⇤⇤ scattering amplitude f(q) with
a0 = �0.78 fm and re↵ = 5.4 fm given in Table I. The same
non-femtoscopic parameters and the pair purity listed in Ta-
ble. II are used. We find that the single-channel LL formula
gives a good approximation to the fully coupled-channel re-
sults for wide range of q in both pp and pPb collisions. It
would be interesting to see whether high precision data for
C⇤⇤(q) in the future may reveal cusp structures at the n⌅0

and p⌅� thresholds as expected from the coupled channel ef-
fect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether bound or quasi-bound state is generated by the
strong interaction. This can be demonstrated by using an an-
alytic model for neutral and non-identical particles C(q) =
1 +�C(q) with re↵ = 0 which is obtained from Eq. (24) as

�C(q) =
1

x2 + y2


1

2
� 2yp

⇡
F1(2x)� xF2(2x)

�
, (25)

with x = qR and y = R/a0. Shown in Fig. 7 is a contour
plot of C(q) in the x-y plane. The strongly enhanced region
C(q) > 2 indicated by the white area extends to both negative
and positive sides of y for x < 0.5. (Even if one introduces
the Coulomb attraction such as the case of p⌅�, this situation
does not change qualitatively as discussed in Appendix C.)

Scanning through the y-axis by changing the system size R
would provide further experimental information on the sign of
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FIG. 7. The contour plot of the correlation function C(q) in the LL
analytic model at re↵ = 0 as a function of x = qR and y = R/a0.

y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.
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B. ⇤⇤ correlation function

In the lower panels of Fig. 6, our final results of the ⇤⇤
correlation functions are compared with the ⇤⇤ data in pp

collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [9]. The solid lines denote our final
results with statistical and systematic errors of the HAL QCD
potential. The dotted green lines are the results with only the
quantum statistics effect. Although there are large uncertain-
ties of the experimental data at small q region, the agreement
of the solid line with the data indicates a weak attraction in
the ⇤⇤ channel without a deep bound state. This is consistent
with the conclusions in Refs. [8, 9].

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon
pairs [33] are also plotted in the lower panels of Fig. 6 by
the dash-dotted line:

C(q) =1� 1

2
e
�4q

2
R

2

+
1

2
�C(q), (23)

�C(q) =
|f(q)|2

2R2
F3

⇣
re↵

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR), (24)

where F1(x) =
R
x

0
dt e

t
2�x

2

/x, F2(x) = (1 � e
�x

2

)/x,
F3(x) = 1 � x/2

p
⇡, and we make the effective range ex-

pansion of single channel ⇤⇤ scattering amplitude f(q) with
a0 = �0.78 fm and re↵ = 5.4 fm given in Table I. The same
non-femtoscopic parameters and the pair purity listed in Ta-
ble. II are used. We find that the single-channel LL formula
gives a good approximation to the fully coupled-channel re-
sults for wide range of q in both pp and pPb collisions. It
would be interesting to see whether high precision data for
C⇤⇤(q) in the future may reveal cusp structures at the n⌅0

and p⌅� thresholds as expected from the coupled channel ef-
fect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether bound or quasi-bound state is generated by the
strong interaction. This can be demonstrated by using an an-
alytic model for neutral and non-identical particles C(q) =
1 +�C(q) with re↵ = 0 which is obtained from Eq. (24) as

�C(q) =
1

x2 + y2


1

2
� 2yp

⇡
F1(2x)� xF2(2x)

�
, (25)

with x = qR and y = R/a0. Shown in Fig. 7 is a contour
plot of C(q) in the x-y plane. The strongly enhanced region
C(q) > 2 indicated by the white area extends to both negative
and positive sides of y for x < 0.5. (Even if one introduces
the Coulomb attraction such as the case of p⌅�, this situation
does not change qualitatively as discussed in Appendix C.)

Scanning through the y-axis by changing the system size R
would provide further experimental information on the sign of
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FIG. 7. The contour plot of the correlation function C(q) in the LL
analytic model at re↵ = 0 as a function of x = qR and y = R/a0.

y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.

Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, 
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B. ⇤⇤ correlation function

In the lower panels of Fig. 6, our final results of the ⇤⇤
correlation functions are compared with the ⇤⇤ data in pp

collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [9]. The solid lines denote our final
results with statistical and systematic errors of the HAL QCD
potential. The dotted green lines are the results with only the
quantum statistics effect. Although there are large uncertain-
ties of the experimental data at small q region, the agreement
of the solid line with the data indicates a weak attraction in
the ⇤⇤ channel without a deep bound state. This is consistent
with the conclusions in Refs. [8, 9].

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon
pairs [33] are also plotted in the lower panels of Fig. 6 by
the dash-dotted line:

C(q) =1� 1

2
e
�4q

2
R

2

+
1

2
�C(q), (23)

�C(q) =
|f(q)|2

2R2
F3

⇣
re↵

R

⌘
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2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR), (24)

where F1(x) =
R
x

0
dt e

t
2�x

2

/x, F2(x) = (1 � e
�x

2

)/x,
F3(x) = 1 � x/2

p
⇡, and we make the effective range ex-

pansion of single channel ⇤⇤ scattering amplitude f(q) with
a0 = �0.78 fm and re↵ = 5.4 fm given in Table I. The same
non-femtoscopic parameters and the pair purity listed in Ta-
ble. II are used. We find that the single-channel LL formula
gives a good approximation to the fully coupled-channel re-
sults for wide range of q in both pp and pPb collisions. It
would be interesting to see whether high precision data for
C⇤⇤(q) in the future may reveal cusp structures at the n⌅0

and p⌅� thresholds as expected from the coupled channel ef-
fect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether bound or quasi-bound state is generated by the
strong interaction. This can be demonstrated by using an an-
alytic model for neutral and non-identical particles C(q) =
1 +�C(q) with re↵ = 0 which is obtained from Eq. (24) as

�C(q) =
1

x2 + y2


1

2
� 2yp

⇡
F1(2x)� xF2(2x)

�
, (25)

with x = qR and y = R/a0. Shown in Fig. 7 is a contour
plot of C(q) in the x-y plane. The strongly enhanced region
C(q) > 2 indicated by the white area extends to both negative
and positive sides of y for x < 0.5. (Even if one introduces
the Coulomb attraction such as the case of p⌅�, this situation
does not change qualitatively as discussed in Appendix C.)

Scanning through the y-axis by changing the system size R
would provide further experimental information on the sign of
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FIG. 7. The contour plot of the correlation function C(q) in the LL
analytic model at re↵ = 0 as a function of x = qR and y = R/a0.

y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.
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B. ⇤⇤ correlation function

In the lower panels of Fig. 6, our final results of the ⇤⇤
correlation functions are compared with the ⇤⇤ data in pp

collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [9]. The solid lines denote our final
results with statistical and systematic errors of the HAL QCD
potential. The dotted green lines are the results with only the
quantum statistics effect. Although there are large uncertain-
ties of the experimental data at small q region, the agreement
of the solid line with the data indicates a weak attraction in
the ⇤⇤ channel without a deep bound state. This is consistent
with the conclusions in Refs. [8, 9].

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon
pairs [33] are also plotted in the lower panels of Fig. 6 by
the dash-dotted line:

C(q) =1� 1

2
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�4q

2
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2

+
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2
�C(q), (23)

�C(q) =
|f(q)|2

2R2
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⌘
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2Ref(q)p
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F1(2qR)

� Imf(q)

R
F2(2qR), (24)

where F1(x) =
R
x

0
dt e

t
2�x

2

/x, F2(x) = (1 � e
�x

2

)/x,
F3(x) = 1 � x/2

p
⇡, and we make the effective range ex-

pansion of single channel ⇤⇤ scattering amplitude f(q) with
a0 = �0.78 fm and re↵ = 5.4 fm given in Table I. The same
non-femtoscopic parameters and the pair purity listed in Ta-
ble. II are used. We find that the single-channel LL formula
gives a good approximation to the fully coupled-channel re-
sults for wide range of q in both pp and pPb collisions. It
would be interesting to see whether high precision data for
C⇤⇤(q) in the future may reveal cusp structures at the n⌅0

and p⌅� thresholds as expected from the coupled channel ef-
fect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether bound or quasi-bound state is generated by the
strong interaction. This can be demonstrated by using an an-
alytic model for neutral and non-identical particles C(q) =
1 +�C(q) with re↵ = 0 which is obtained from Eq. (24) as

�C(q) =
1

x2 + y2


1

2
� 2yp

⇡
F1(2x)� xF2(2x)

�
, (25)

with x = qR and y = R/a0. Shown in Fig. 7 is a contour
plot of C(q) in the x-y plane. The strongly enhanced region
C(q) > 2 indicated by the white area extends to both negative
and positive sides of y for x < 0.5. (Even if one introduces
the Coulomb attraction such as the case of p⌅�, this situation
does not change qualitatively as discussed in Appendix C.)

Scanning through the y-axis by changing the system size R
would provide further experimental information on the sign of
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FIG. 7. The contour plot of the correlation function C(q) in the LL
analytic model at re↵ = 0 as a function of x = qR and y = R/a0.

y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.
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B. ⇤⇤ correlation function

In the lower panels of Fig. 6, our final results of the ⇤⇤
correlation functions are compared with the ⇤⇤ data in pp

collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [9]. The solid lines denote our final
results with statistical and systematic errors of the HAL QCD
potential. The dotted green lines are the results with only the
quantum statistics effect. Although there are large uncertain-
ties of the experimental data at small q region, the agreement
of the solid line with the data indicates a weak attraction in
the ⇤⇤ channel without a deep bound state. This is consistent
with the conclusions in Refs. [8, 9].

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon
pairs [33] are also plotted in the lower panels of Fig. 6 by
the dash-dotted line:
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p
⇡, and we make the effective range ex-

pansion of single channel ⇤⇤ scattering amplitude f(q) with
a0 = �0.78 fm and re↵ = 5.4 fm given in Table I. The same
non-femtoscopic parameters and the pair purity listed in Ta-
ble. II are used. We find that the single-channel LL formula
gives a good approximation to the fully coupled-channel re-
sults for wide range of q in both pp and pPb collisions. It
would be interesting to see whether high precision data for
C⇤⇤(q) in the future may reveal cusp structures at the n⌅0

and p⌅� thresholds as expected from the coupled channel ef-
fect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether bound or quasi-bound state is generated by the
strong interaction. This can be demonstrated by using an an-
alytic model for neutral and non-identical particles C(q) =
1 +�C(q) with re↵ = 0 which is obtained from Eq. (24) as

�C(q) =
1

x2 + y2
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2
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⇡
F1(2x)� xF2(2x)

�
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with x = qR and y = R/a0. Shown in Fig. 7 is a contour
plot of C(q) in the x-y plane. The strongly enhanced region
C(q) > 2 indicated by the white area extends to both negative
and positive sides of y for x < 0.5. (Even if one introduces
the Coulomb attraction such as the case of p⌅�, this situation
does not change qualitatively as discussed in Appendix C.)

Scanning through the y-axis by changing the system size R
would provide further experimental information on the sign of
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FIG. 7. The contour plot of the correlation function C(q) in the LL
analytic model at re↵ = 0 as a function of x = qR and y = R/a0.

y. To demonstrate this, we show the p⌅� and ⇤⇤ correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,,
and 3 fm) in Fig. 8 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p⌅� correlation function, Fig. 8 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consis-
tent with the fact that we are in the negative y region as indi-
cated by Fig. 7. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots
the Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p⌅� correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the ⇤⇤ correlation function, Fig. 8 shows that the en-
hancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic non-monotonic behavior
for q smaller than the N⌅ threshold. However, to make quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow ef-
fect need to be taken into account [7], since the effect of quan-
tum statistics is particularly important in the ⇤⇤ correlation.

We note here that a high-momentum tail of the ⇤⇤ cor-
relation function above the N⌅ threshold was observed in
Au+Au collisions at RHIC [42], and a residual source hav-
ing a small size (Rres ' 0.5 fm) was introduced in previous
works [7, 22, 42]. Although it was suggested in Ref. [43] that
the coupled-channel effects may explain the high-momentum
tail in Au+Au collisions, the present analysis shows that such
a tail does not appear unless R is smaller than 1 fm as shown
in Fig. 8. Thus this issue is still left open for future studies.

Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, 
PRC 105,  014915 (2022)

LL formula with re = 0
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Higher partial waves and resonance contributions
Resonances in  and in  are seenℓ = 0 ℓ ≠ 0

Questions
- Contribution from higher partial waves?
- Is Breit-Wigner function fine for resonance?

 : d-waveΛ(1520)
 : p-wave (weak decay)Ω

: d-waveΞ(1820)
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Fig. 1. Upper: measured correlation function for !–K− pairs (empty points) with 
statistical (line) and systematic (gray boxes) uncertainties. Lower: invariant mass 
spectrum of !–K− pairs used to build the measured correlation function. Only the 
statistical uncertainties are shown. The upper x-axis indicates the energy at rest 
E =

√
(k∗)2 + m2

! +
√

(k∗)2 + m2
K of the pair written as a function of the relative 

momentum of the !–K− pair. The quantity E corresponds to the invariant mass 
M of the !–K− pairs. The colored vertical dashed lines indicate the values of the 
relative momentum k∗ (upper panel) and the value of the energy E at rest of each 
resonance (lower panel) corresponding to its nominal mass extracted in the final 
femtoscopic fit.

strong decay to !–K− . In order to help the convergence of the fi-
nal femtoscopic fit, a fit of the total Cbackground(k∗) correlation to 
the data is performed in the k∗ region of 190 − 600 MeV/c to es-
timate the weights α# , αi as well as the masses and widths of the 
resonances. A change of ±10% in the upper limit of the prefit range 
is included in the evaluation of the final systematic uncertainties. 
These parameters are then kept free in the final femtoscopic fit of 
Ctot(k∗) to the data and the values obtained for the masses and 
widths are found to be compatible with the available PDG val-
ues [31] and recent measurements [29,30]. The orange band in 
Figs. 2 and 3 shows the total Cbackground(k∗) correlation function 
extracted in the final femtoscopic fit, multiplied by the normaliza-
tion factor ND , for !–K+ and !–K− pairs, respectively.

The last ingredient needed to model the data is the strong in-
teraction of the !–K+ and !–K− pairs entering in the Cmodel(k∗)
in Eq. (2) via the genuine correlation function Cgen(k∗). This is 
modeled for both pairs using the Lednický–Lyuboshits analytical 
formula [70], following the approach used in Ref. [46],

C(k∗)LL = 1 +
[

1
2

∣∣∣∣∣
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∣∣∣∣∣

2(
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2
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π R
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+ 2ℜ f (k∗)√
π R
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R

F2(2k∗R)

]

. (4)

The scattering amplitude f (k∗) is the quantity embedding the scat-
tering parameters and providing information on the underlying 
interaction. Typically, f (k∗) is expressed via the effective-range 
expansion (ERE) f (k∗) =

(
1
f0

+ 1
2 d0k∗2 − ik∗

)−1
, in which f0 is 

the scattering length and d0 is the effective range. The parame-
ter R is the size of the emitting source with a Gaussian profile. 
In this work it was fixed using the core-resonance model taken 
from Ref. [53], already employed in several previous femtoscopic 
analyses performed in small colliding systems as pp collisions 
and anchored to p–p correlations. The core radius for !–K+ and 
!–K− pairs is rcore(⟨mT⟩ = 1.35 GeV/c2) = 1.11 ± 0.04 fm. In or-
der to use the core-resonance total source in Eq. (4), this must be 
parametrized with a Gaussian distribution. The presence of long-
lived strong resonances feeding to ! and kaons introduces a sig-
nificant exponential tail for large r∗ , which cannot be described 
with a single Gaussian [5,6,8,10,13]. The total source is hence mod-
eled with a weighted sum of two Gaussians, leading to an effective 
emitting source Seff(r∗) = λS [ωS S1(r∗) + (1 − ωS)S2(r∗)], in which 
r1 = 1.202+0.043

−0.042 fm, r2 = 2.330+0.050
−0.045 fm, λS = 0.9806+0.0006

−0.0008, and 
ωS = 0.7993+0.0037

−0.0027. As systematic variation of the source function, 
these values are varied within the uncertainties. Due to the addi-
tive property of correlation functions, the final genuine correlation 
is then taken as the sum of two correlations evaluated with the 
two properly weighted Gaussian sources. To preserve the correct 
normalization of the emitting source and the unitarity of the λ pa-
rameters [2] in Cmodel(k∗), a (1−λS ) contribution is added.

The understanding of the !K− interaction, particularly in the 
low k∗ region, is strictly connected to the '(1620) state. In prin-
ciple, since '(1620) shares the same quantum numbers as the 
!–K− pair, the two systems can couple strongly. The Belle collab-
oration recently published the observation of the '(1620) state in 
the 'π decay channel (Ethr.1 = mπ + m' = 1461.3 MeV/c2) [28]. 
The reported mass and widths in Ref. [28] are M'(1620) = 1610.4 ±
6.0 MeV/c2, ('(1620) = 60.0 ± 4.8 MeV, which indicates that the 
decay of '(1620) into !K− (Ethr.2 = mK− + m! = 1609.4 MeV/c2) 
is kinematically allowed. No experimental evidence of this decay 
channel has been observed so far. The presented work provides 
quantitative evidence of this process.

The '(1620) state can be clearly seen in the peak at k∗ ≈
80 MeV/c in the lower panel of Fig. 1. Hence, to model the !K−

interaction at low k∗ , the '(1620) must be taken into account 
in the Lednický–Lyuboshits approach. Similar scenarios, with res-
onances contributing to the signal in the low k∗ region, were 
observed in K0

S − K± correlations measured in pp and Pb–Pb colli-
sions, in which the interaction mainly goes through the formation 
of the a0 resonance. A way to properly include such a resonant in-
teraction is to write the scattering amplitude in Eq. (4) in terms of 
the probability distribution describing the state. Due to the vicin-
ity of the !K− decay-channel threshold, the '(1620) resonance 
must be described with a Flatté-like distribution [71] such as the 
Sill distribution used in Ref. [72]. The corresponding scattering am-
plitude can be written as

f (k∗) =
−2(̃!K−

E2 − M2 + i(̃'π

√
E2 − E2

thr.'π + i(̃!K−
√

E2 − Ethr.!K−
2

(5)

in which M is the mass of the '(1620) state, (̃i='π,!K− are the 
effective partial widths as defined in Ref. [72], and Ethr.i='π,!K−

are the threshold energies for the two channels, as defined above.

4

- Simple Breit-Wigner function has been used

Resonance contributions

the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.
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Fig. 4 (K−p ⊕ K+p) correlation functions obtained in pp collisions at√
s = 13 TeV. The measured data points are taken from [38] and have

been corrected for finite experimental momentum resolution and for
residual correlations as described in Sect. 4.1. Measured data are shown
by the black markers, the vertical error bars and the boxes represent
the statistical and systematic uncertainties, respectively. The red and
blue bands in the upper panels represents the model calculations and
its systematic uncertainty as described in the text. The rcore and reff
values of the source are reported with their statistical and systematical
uncertainties. Bottom panels represent the data-to-model comparison
as described in the text

tra of particles not measured by ALICE (e.g. neutrons and
!s). The parameters used for the most peripheral p–Pb cen-
trality intervals are also used to describe the spectra of par-
ticles produced in pp collisions at

√
s = 13 TeV. Once

the momentum distributions of the two particles are gener-
ated, only pairs in the j channel with relative momentum k∗

below 200 MeV/c were selected and taken into consideration.
The obtained distribution is then integrated over transverse-
momentum space and the BW yields are extracted. These
yields, for the K−p and different j-pairs, are finally rescaled
by the primary TF N j results in order to account for the proper
produced abundances in each colliding system. The corre-
sponding production weights ω

prod
j are obtained by dividing

these final yields with the total production of K−p pairs, con-
sidered as the reference for this study. The relative production
weights ω

prod
j are reported in Table 2 for the different cen-

tralities and collision systems. The systematic uncertainties
on the ω

prod
j reported in the table were evaluated by vary-

ing the parameters in the γs-CSM model implemented in TF
(σTF) by ±1σTF and by varying the upper limit of the rel-
ative momenta k∗ of the produced pairs by ±100 MeV/c.
The latter variation represents the dominant contribution to
the uncertainty for pairs produced below the K−p threshold.
The systematic uncertainty assigned to the ω

prod
j is around

20% for K−p and K
0
n pairs and around 50% for the other

coupled channel pairs. Since the productions of the three dif-
ferent species in the isospin triplet of π and ! particles are
similar in TF, in the following analysis a single ω

prod
j for π!,

evaluated as the average of the three channels, will be used.

4.3 Experimental characterization of the emitting source
S(r∗)

A fundamental ingredient entering in the evaluation of the
theoretical correlation function in Eq. (3) is the emitting
source for the elastic part S(r∗) and for the inelastic terms
S j (r∗). Recently, a data-driven analysis based on p–p corre-
lations measured in pp collisions provided a model for the
emitting source of baryon–baryon pairs in small colliding
systems [72]. The source is composed of two components: a
Gaussian core with a common radius rcore, which scales with
the transverse mass mT of the pair due to possible collective
effects (e.g. radial flow) and an exponential tail stemming
from short-lived resonances (cτ ≈ 1–2 fm) strongly decay-
ing into the particles composing the pair of interest. In the
baryon–baryon sector, the determination of rcore is anchored
to the p–p correlation since its underlying strong interac-
tion is the best known. The emitting source obtained with
this model was used in several baryon–baryon and baryon–
antibaryon femtoscopic measurements [43,45,60] to study
the underlying strong interaction.

In the meson–baryon sector the role played by the p–
p interaction in constraining the source for baryon–baryon
pairs is overtaken in this study by the K+p system since
the interaction is well known [49] and coupled channels are
not present [38]. The influence of short-lived resonances
(cτ < 5 fm) on the source is quantified by evaluating the
yields of each resonance with TF [73] and by extracting
the decay kinematics using transport model dynamics imple-
mented in EPOS [64]. According to these calculations, which
entail the full decay chain from heavy to light particles,
around 52% (36%) of the total K+(p) yield is primordial.
The relevant contributions of short-lived resonances decay-
ing into K+are summarised in Table 3. For these calculations,
every hadron consisting of light and strange quarks was taken
into account. As already introduced in Sect. 4, due to its large
lifetime of 46 fm, the φ (1020) is considered in this analysis as
a primary particle, and its contribution is taken into account
as done for secondary particles. The resonance yields for the
proton are the same as reported in Ref. [72].

The weighted average of the lifetimes of the resonances
feeding into K+(p) is 3.66 fm/c (1.65 fm/c), while the
weighted average of the masses is 1.05 GeV/c2 (1.36 GeV/c2).
The decay kinematics are extracted from the EPOS trans-
port model by generating high-multiplicity pp events at√
s = 13 TeV and selecting primordial K+(p) and the reso-
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Fig. 5 (K−p ⊕ K+p) correlation functions obtained in p–Pb collisions
at

√
sNN = 5.02 TeV in the 0–20% (left), 20–40% (middle) and 40–

100% (right) centrality intervals. The measurement is shown by the
black markers, the vertical error bars and the boxes represent the statis-
tical and systematic uncertainties, respectively. The red and blue bands

in the upper panels represent the model calculations and their system-
atic uncertainty as described in the text. The rcore and reff values of the
source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as
described in the text

Fig. 6 (K−p ⊕ K+p) correlation functions obtained in Pb–Pb colli-
sions at

√
sNN = 5.02 TeV in the 60–70% (left), 70–80% (middle) and

80–90% (right) centrality intervals. The measurement is shown by the
black markers, the vertical error bars and the boxes represent the statis-
tical and systematic uncertainties respectively. The red and blue bands

in the upper panels represent the model calculations and their system-
atic uncertainty as described in the text. The rcore and reff values of the
source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as
described in the text

Table 1 Parameters used in the
γs-CSM model of
Thermal- FIST [73,74] for
different colliding systems and
centrality intervals. The average
dNch/dη (M = ⟨dNch/dη⟩) and
the associated systematic
uncertainties corresponding to
the various colliding systems are
taken from Refs. [75–77]. The
total uncertainties assigned to
Tch, γs and dV /dy are obtained
as described in the text

System M Tch (MeV) γs dV /dy (fm3)

pp,
√
s =13 TeV 6.94+0.10

−0.08 171 ± 1 0.78 ± 0.06 16.66 ± 1.39

p–Pb, 0–20% 35.42 ± 1.44 167 ± 1 0.86 ± 0.33 85.01 ± 7.08

p–Pb, 20–40% 23.12 ± 0.52 168 ± 1 0.83 ± 0.20 55.49 ± 4.62

p–Pb, 40–100% 9.88 ± 0.42 170 ± 1 0.79 ± 0.09 23.71 ± 1.98

Pb–Pb, 60–70% 96.3 ± 5.8 164 ± 1 0.95 ± 0.59 231.12 ± 19.26

Pb–Pb, 70–80% 44.9 ± 3.4 166 ± 1 0.88 ± 0.43 107.76 ± 8.98

Pb–Pb, 80–90% 17.52 ± 1.89 169 ± 1 0.81 ± 0.15 42.05 ± 3.50
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Fig. 5 (K−p ⊕ K+p) correlation functions obtained in p–Pb collisions
at

√
sNN = 5.02 TeV in the 0–20% (left), 20–40% (middle) and 40–

100% (right) centrality intervals. The measurement is shown by the
black markers, the vertical error bars and the boxes represent the statis-
tical and systematic uncertainties, respectively. The red and blue bands

in the upper panels represent the model calculations and their system-
atic uncertainty as described in the text. The rcore and reff values of the
source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as
described in the text

Fig. 6 (K−p ⊕ K+p) correlation functions obtained in Pb–Pb colli-
sions at

√
sNN = 5.02 TeV in the 60–70% (left), 70–80% (middle) and

80–90% (right) centrality intervals. The measurement is shown by the
black markers, the vertical error bars and the boxes represent the statis-
tical and systematic uncertainties respectively. The red and blue bands

in the upper panels represent the model calculations and their system-
atic uncertainty as described in the text. The rcore and reff values of the
source are reported with their statistical and systematical uncertainties,
respectively. Bottom panels represent the data-to-model comparison as
described in the text

Table 1 Parameters used in the
γs-CSM model of
Thermal- FIST [73,74] for
different colliding systems and
centrality intervals. The average
dNch/dη (M = ⟨dNch/dη⟩) and
the associated systematic
uncertainties corresponding to
the various colliding systems are
taken from Refs. [75–77]. The
total uncertainties assigned to
Tch, γs and dV /dy are obtained
as described in the text

System M Tch (MeV) γs dV /dy (fm3)

pp,
√
s =13 TeV 6.94+0.10

−0.08 171 ± 1 0.78 ± 0.06 16.66 ± 1.39

p–Pb, 0–20% 35.42 ± 1.44 167 ± 1 0.86 ± 0.33 85.01 ± 7.08

p–Pb, 20–40% 23.12 ± 0.52 168 ± 1 0.83 ± 0.20 55.49 ± 4.62

p–Pb, 40–100% 9.88 ± 0.42 170 ± 1 0.79 ± 0.09 23.71 ± 1.98

Pb–Pb, 60–70% 96.3 ± 5.8 164 ± 1 0.95 ± 0.59 231.12 ± 19.26

Pb–Pb, 70–80% 44.9 ± 3.4 166 ± 1 0.88 ± 0.43 107.76 ± 8.98

Pb–Pb, 80–90% 17.52 ± 1.89 169 ± 1 0.81 ± 0.15 42.05 ± 3.50
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