
Nucleon charges from Lattice QCD and their implications for BSM physics

Rajan Gupta Theoretical Division, T-2 Los Alamos National Laboratory, USA

LA-UR: 23-27930

XVI Quark Confinement, 2024, Cairns, Australia

NME Collaboration:

Thirteen 2+1-flavor clover ensembles = clover-on-clover formulation

PNDME and NME members

- Tanmoy Bhattacharya (T-2)
- Vincenzo Cirigliano (T-2 \rightarrow INT, UW)
- Rajan Gupta (T-2)
- Emanuele Mereghetti (T-2)
- Boram Yoon (CCS-7 \rightarrow **NVIDIA**)
- Junsik Yoo (PD: 2022 May)
- Yong-Chull Jang (PD: 2017-2018)
- Sungwoo Park (PD: 2018-2021)
- Santanu Mondal (PD: 2019-2021)
- Huey-Wen Lin (MSU)
- Balint Joo (NVIDIA)
- Frank Winter (Jlab)

Acknowledgements for Computational Support: MILC for HISQ ensembles. DOE for computer allocations NERSC under ERDCAP OLCF under INCITE hep133 USQCD Institutional Computing at LANL

References

- Charges:
- AFF:
- AFF:
- AFF:
- AFF:
- VFF:
- $\sigma_{\pi N}$
- d_n from Θ -term
- d_n from qEDM
- d_n from qcEDM
- Moments of PDFs
- Proton spin:

NME

- Charges, FF:
- Moments of PDFs

Gupta et al, PRD.98(2018) 034503Gupta et al, PRD 96(2017) 114503

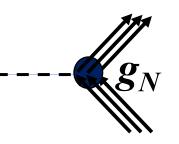
- Jang et al, PRL 124 (2020) 072002
- Jang et al, 11 KL 124 (2020) 072002
- Jang et al, PRD 109 (2024) 014503
- Tomalak et al, PRD 108 (2023) 074514
- Jang et al, PRD 100 (2020) 014507
- Gupta et al, PRL 127 (2021) 242002
- Bhattacharya etal, PRD 103 (2021) 114507
- Gupta et al, PRD 98 (2018) 091501
- Bhattacharya et al, PRD 98 (2018) 091501 Mondal et al, PRD 102 (2020) 054512
- Lin et al, PRD 98 (2018) 094512

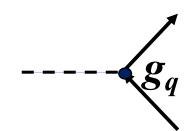
Park et al, PRD 105 (2022) 054505 Mondal et al, JHEP 04 (2021) 044

Outline

- What is Lattice QCD good for?
 - Properties of QCD: spectrum, EoS, ...
 - Matrix elements within hadronic states
- Nucleon charges
 - Isovector axial, scalar, tensor
 - Flavor diagonal axial
 - Flavor diagonal tensor
 - O-Term
 - Flavor diagonal scalar

This talk is will emphasize issues in the Lattice QCD calculations and connections to BSM

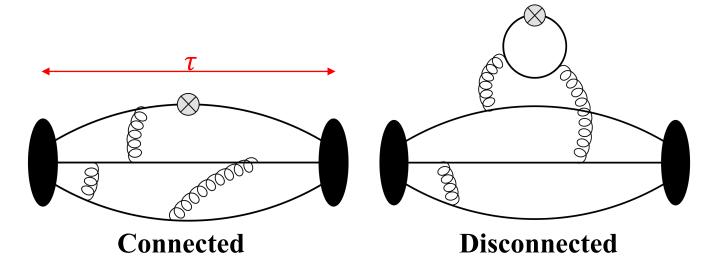

Lattice QCD results for nucleon charges are being reviewed by FLAG: 2019, 2021, 2024


To quote numbers, please use original articles or numbers in the FLAG report

Nucleon charges

- Standard Model specifies the coupling g_q of electroweak currents with quarks
- Similarly, EFT of BSM at few GeV is in terms of quark and gluon operators
- Experiments measure these interactions on hadrons
- QCD gives significant corrections: $g_{quark} \rightarrow g_{hadron}$
- Calculation is intrinsically non-perturbative

Example: axial charge of nucleons goes from $1 \rightarrow 1.276$


Nucleon charges: $\langle N | \overline{q} \Gamma q | N \rangle \propto g_{\Gamma}^{q} \Gamma$

- Standard Model
 - Vector charge (CVC) g_V^{u-d} $1 \rightarrow 1$
 - Axial charge g_A^{u-d} $1 \to 1.276$
 - Transversity $g_T^{u,d,s,c,b}$
 - Contribution of quark's spin to nucleon spin $g_A^{u,d,s,c,b}$
- BSM
 - Novel scalar and tensor interactions via g_S^{u-d} , g_T^{u-d} and precision measurements of neutron decay
 - Coupling to dark matter: $g_{A,P,S,T,V}^{u,d,s,c,b}$
 - Contribution of quark's EDM to nucleon EDM $g_T^{u,d,s,c,b}$
 - Contributions of the Θ-Term to nEDM

Many thanks to

- Raul Briceno:
 - Three-hadron systems
- Andreas Kronfeld:
 - Perturbation theory, power corrections, renormalons and precise evaluation of quark masses and α_S
- Huey-Wen Lin:
 - Parton distributions from lattice QCD and impacts on global QCD analysis
- Finn Stokes:
 - Review of muon g-2
- Andre Walker-Loud:
 - Beta decay as probe of new physics
- Michael Creutz, William Detmold, Xu Feng, Shoji Hashimoto, Martin Hoferichter, David Lin, Ross Young, James Zanotti, ...

Lattice Methodology well established for "connected" and "disconnected" 3-point correlation functions

stochastic estimates of disconnected contributions are noisier for the same computational cost and smaller in value

Isoscalar
$$g_{A,S,T}^{u+d} = g_{A,S,T}^{u+d,conn} + 2g_{A,S,T}^{l,disc}$$

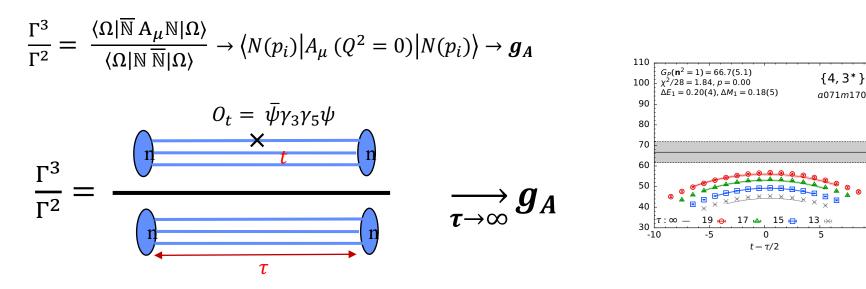
Isovector $g_{A,S,T}^{u-d} = g_{A,S,T}^{u-d,conn}$ In the isospin symmetric limit

Analysis: Spectral decomposition of Γ^2 and Γ^3

Three-point function for matrix elements of axial current \mathcal{A}_{μ} $\langle \Omega | N(\tau) \mathcal{A}_{\mu}(t) \overline{N}(0) | \Omega \rangle$

Insert $T = e^{-H\Delta t} \sum_i |n_i\rangle \langle n_i|$ at each Δt with $T |n_i\rangle = e^{-H\Delta t} |n_i\rangle = e^{-E\Delta t} |n_i\rangle$

$$\sum_{i,j} \langle \Omega | \overline{N}(\tau) \cdots e^{-H\Delta t} \sum_{j} |n_{j}\rangle \langle n_{j} | \mathcal{A}_{\mu} e^{-H\Delta t} \sum_{i} |n_{i}\rangle \langle n_{i} | \cdots N(0) | \Omega$$


$$\sum_{i,j} \langle \Omega | \overline{N} | n_{j}\rangle e^{-E_{j}(\tau-t)} \langle n_{j} | \mathcal{A}_{\mu} | n_{i}\rangle e^{-E_{i}t} \langle n_{i} | N | \Omega \rangle$$

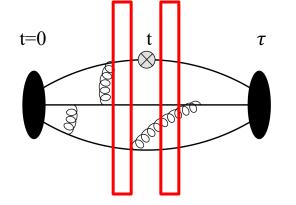
$$A_{j}^{*} \qquad \text{Matrix Elements} \qquad A_{i}$$

Extracting Nucleon Charges

$$\Gamma^2 = \sum_i A_i^* A_i e^{-E_i \tau} \qquad \Gamma^3 = \sum_{i,j} A_i^* A_j \langle N_i | O | N_j \rangle e^{-E_i t} e^{-E_j (\tau - t)}$$

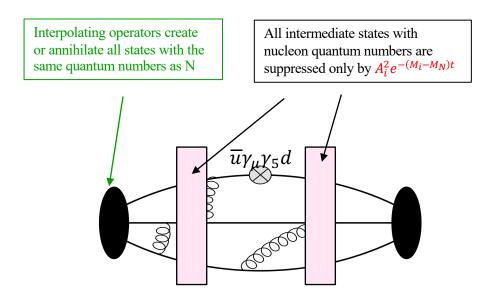
In the limit $(\tau \rightarrow \infty)$ only the ground state contributes. Then

10


Otherwise, need to make fits to Γ^3 . This requires knowing the spectrum (energies E_i) and amplitudes (A_0)

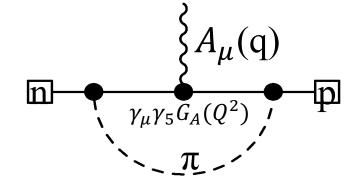
Spectral decomposition of 3-point function

All states with the same quantum numbers as the nucleon are created by N


$$\Gamma^{3pt} = \langle 0|\mathcal{O}|0\rangle |A_0|^2 e^{-M_0\tau} \times \left[1 + \frac{\langle 1|\mathcal{O}|1\rangle}{\langle 0|\mathcal{O}|0\rangle} \frac{|A_1|^2}{|A_0|^2} e^{-\Delta M_1\tau} + \frac{\langle 2|\mathcal{O}|2\rangle}{\langle 0|\mathcal{O}|0\rangle} \frac{|A_2|^2}{|A_0|^2} e^{-(\Delta M_2 + \Delta M_1)\tau} + \frac{\langle 0|\mathcal{O}|1\rangle}{\langle 0|\mathcal{O}|0\rangle} \frac{|A_1|}{|A_0|^2} e^{-\Delta M_1\frac{\tau}{2}} \times 2\cosh\left(\Delta M_1(t - \frac{\tau}{2})\right)$$

To isolate $\langle 0|O|0 \rangle$, the key quantities needed are A_0, M_i

Which excited states make significant contributions to a given correlation function?



Towers of multihadron states $N(\vec{p})\pi(-\vec{p})$ $N(0)\pi(\vec{p})\pi(-\vec{p})$ $N(\vec{p})2\pi(-\vec{p})$...


Starting at ~1220 MeV

Radial excitations N(1440) ...

 χ PT suggests that the contribution of a pion loop could be ~5% in all NME

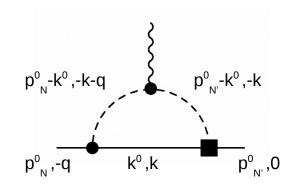
 χ PT: In all cases, there is excited-state contribution to nucleon charges from when the pion in pion loop is on shell

This, possibly 5%, contribution from $N\pi$ excited-state needs to be understood/resolved for each NME

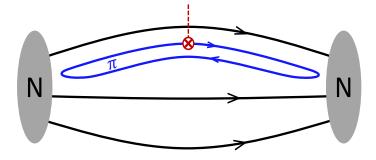
Need A_0 , M_i : but which M_i are significant?

- Mass gaps, ΔM_i , of $N\pi$, $N\pi\pi$, ... states are smaller than N(1440)
- Their spectrum gets dense as $\vec{p} \rightarrow 0$
- We approximately know their energies in a finite box
- Creating each extra state (π) is suppressed by a normalization factor 1/V
- In some cases, the transition ME are large and compensate for the 1/V factor

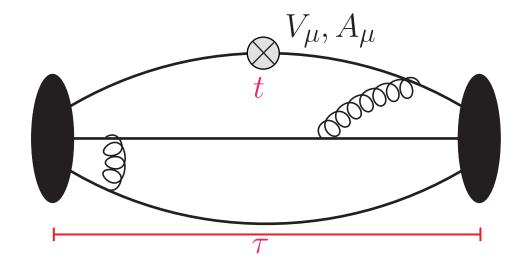
Issue: With current statistics, fits with $M_1 = M_{N\pi}$ versus $M_1 = M_{N(1440)}$ are not distinguished by the χ^2 !


Using priors is not the desired solution

What size statistics are needed to achieve data-driven (χ^2) selection?

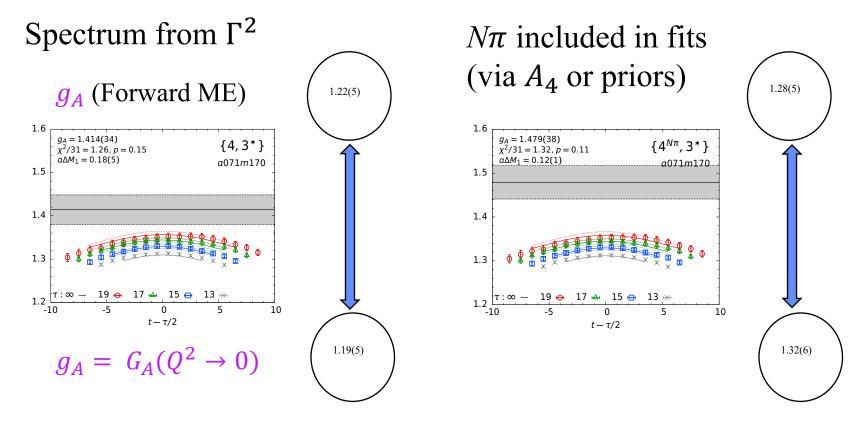

Examples of enhanced excited-state matrix elements

- Axial Form Factors must satisfy PCAC relation between them
 - Need to include $N(\vec{p})\pi(-\vec{p})$ states to satisfy PCAC
 - $\langle \Omega | N(\tau) \mathcal{A}_4(t) \overline{N}(0) | \Omega \rangle$ has very large ESC
 - Used $\langle \Omega | N A_4 \overline{N} | \Omega \rangle$ to include $N\pi$ state. Data-driven method
 - Enhanced ME: Manifestation of pion-pole dominance hypothesis


- χ PT predicts large contributions from $N\pi$ state in
 - nEDM from Θ -term
 - The pion-nucleon sigma term $\sigma_{\pi N} = m_{ud} g_S^{u+d}$

π

Isovector charges from forward matrix elements



All (A,P,S,T,V) done at the same time

Isovector axial charge g_A^{u-d}

- Benchmark quantity as it is very well measured $g_A^{u-d} = 1.276(1)$
- A fundamental parameter in nuclear physics

 G_A , \tilde{G}_P , G_P do not satisfy PCAC

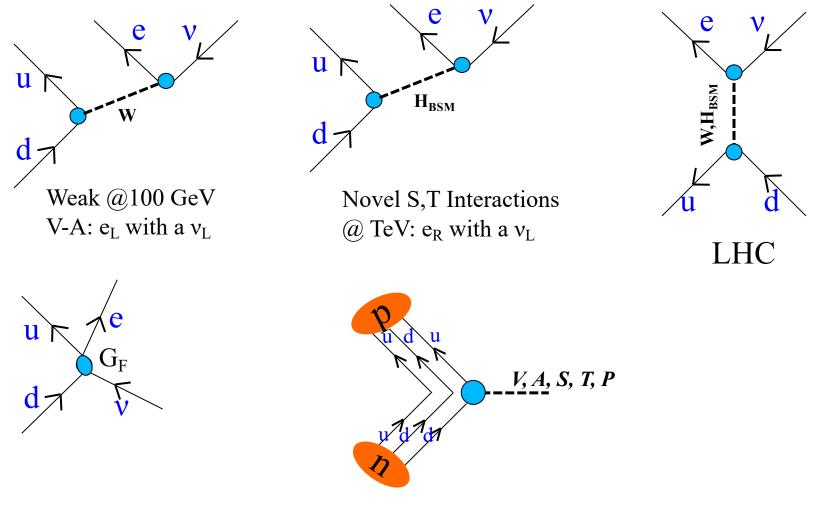
 G_A , \tilde{G}_P , G_P satisfy PCAC

Status

- Current lattice estimates are mostly in the range $g_A^{u-d} = [1.25 1.31]$
- Precision is improving steadily
- Resolve the possible ~5% excited-state contributions from $N\pi$... states
- Isospin breaking and electromagnetic corrections (talk by Walker-loud)

Implication for BSM

- Constraints on right-handed currents once Lattice QCD can provide g_A^{u-d} with few parts per mil precision (see talk by Walker-Loud)
- Neutron decay is a very promising opportunity for extracting V_{ud} and testing the unitarity of the first row of the CKM matrix.
 Need τ_n and g^{u-d} from experiments and lattice QCD input in calculating radiative corrections (see talks by Walker-Loud, Xu Feng)

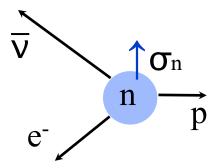

Isovector scalar and tensor charges g_S^{u-d} and g_T^{u-d}

• Combined with high precision measurements of neutron decay, they provide a low energy probe of novel scalar and tensor interactions

Bhattacharya et al, PRD 85, 054512 (2012)

Probing New Interactions: M_{BSM} >> M_W >> 1 GeV

Many BSM possibilities for novel Scalar & Tensor interactions: Higgs-like, leptoquark, loop effects, ...



Effective Theory (a) $\sim 2 \text{ GeV}$ Characterized by G_F

New S, T Interactions $(\varepsilon_S, \varepsilon_T)$

Measure in [Ultra]Cold Neutron Decay: Parameters sensitive to new physics

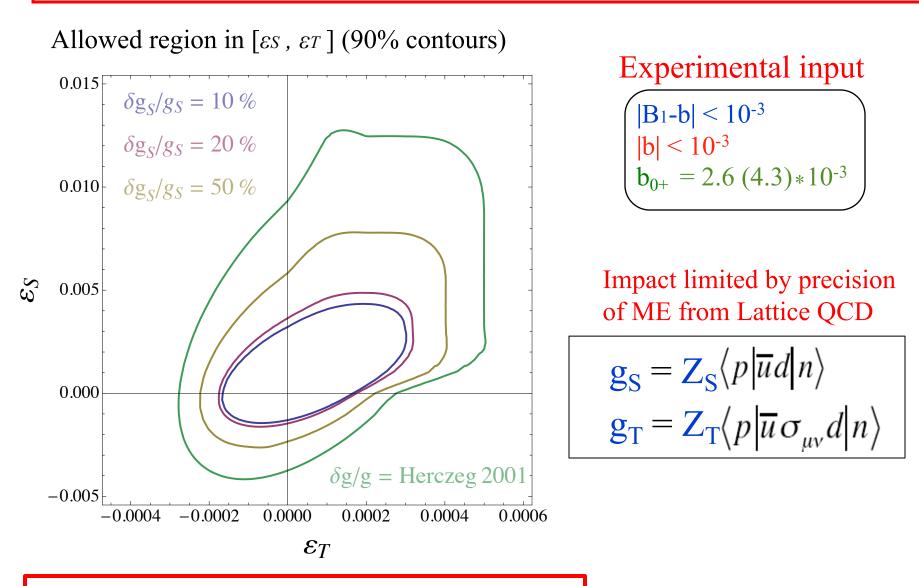
Neutron decay can be parameterized as

$$d\Gamma \propto F(E_e) \left[1 + \frac{b}{E_e} \frac{m_e}{E_e} + \left(B_0 + \frac{B_1}{E_e} \frac{m_e}{E_e} \right) \frac{\vec{\sigma}_n \cdot \vec{p}_\nu}{E_\nu} + \cdots \right]$$

- *b*: Deviations from the leading order electron spectrum: Fierz interference term
- B_1 : Energy dependent part of the correlation of antineutrino momentum with the neutron spin

Relating b, B_1 to $g_{S,T}$ & BSM couplings $\varepsilon_{S,T}$

$$H_{eff} \supset G_{F} \left[\varepsilon_{S} \overline{u} d \ \overline{e} (1 - \gamma_{5}) v_{e} + \varepsilon_{T} \overline{u} \sigma_{\mu\nu} d \ \overline{e} \sigma^{\mu\nu} (1 - \gamma_{5}) v_{e} \right]$$


$$g_{S} = Z_{S} \left\langle p \left| \overline{u} d \right| n \right\rangle \quad g_{T} = Z_{T} \left\langle p \left| \overline{u} \sigma_{\mu\nu} d \right| n \right\rangle \quad \begin{bmatrix} \text{Lattice} \\ QCD \end{bmatrix}$$

Analysis of $n \rightarrow p \ e \ \overline{v}$ decay at leading order in $\varepsilon_{S,T}$ gives the linear relations

$$b_{v}^{BSM} \approx 0.34 g_{s} \varepsilon_{s} - 5.22 g_{T} \varepsilon_{T}$$
$$b_{v}^{BSM} \equiv B_{1}^{BSM} = E_{e} \frac{\partial B^{BSM} (E_{e})}{\partial m_{e}} \approx 0.44 g_{s} \varepsilon_{s} - 4.85 g_{T} \varepsilon_{T}$$

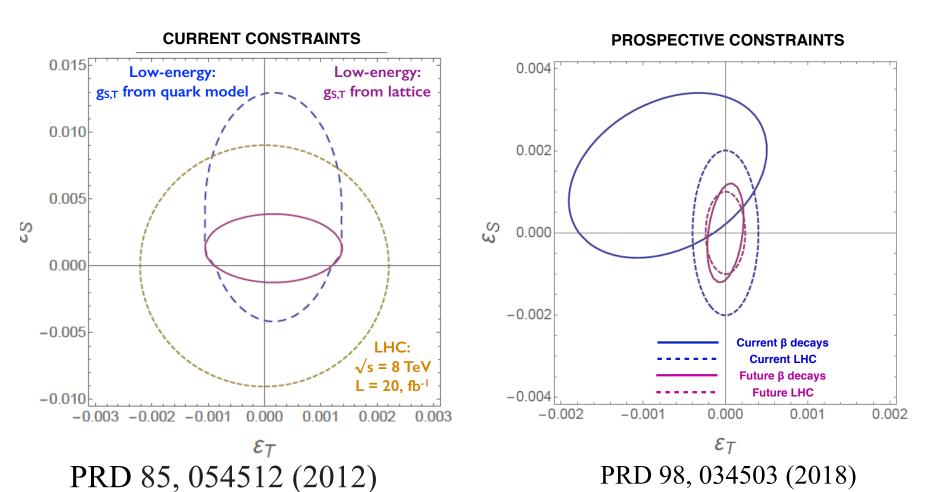
Bhattacharya et al, PRD 85, 054512 (2012)

Impact of reducing errors in g_S and g_T from 50 \rightarrow 10%

Goal: 10% accuracy in g_S and g_T

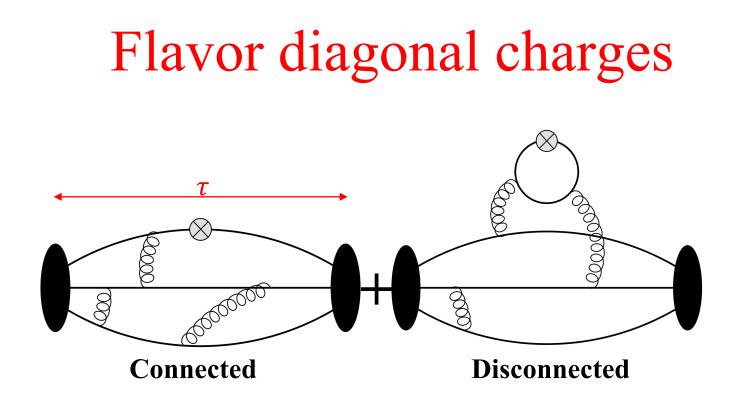
PRD 85, 054512 (2012)

Constraints on $[\varepsilon_S, \varepsilon_T]$: β -decay versus LHC

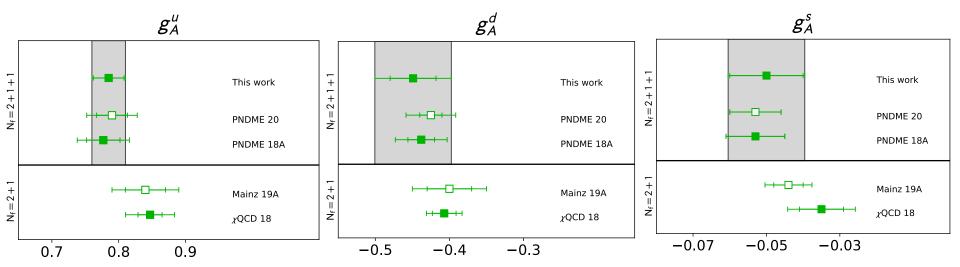

• LHC: $(u+d \rightarrow e+v)$ look for events with an electron and missing energy at high transverse mass

W,H_{BSM}

11


LHC

• low-energy experiments + lattice with $\delta g_S/g_S \sim 10\%$


Implication for BSM

- For next generation low energy search for novel scalar and tensor interactions, the main improvement needed is in neutron decay experiments to get *b* and B_1 to 10^{-4} precision.
- Need g_S^{u-d} and g_T^{u-d} to within a few percent, which is on track
- LHC constraints are currently stronger

- All (A,P,S,T,V) done at the same time
- Calculation of disconnected contributions is more costly and noisy

FD axial charges $g_A^{u,d,s,c}$

Issues

- Disconnected contribution is small, $\sim 5\%$
- Need much higher statistics to reduce uncertainty to ~1%

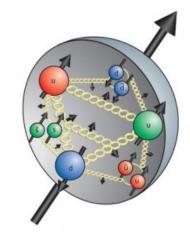
FD axial charges Intrinsic quark spin contribution to proton spin

gauge invariant decomposition of the proton spin is given by

$$\frac{1}{2} = \sum_{\{u,d,s,c\}} \left(\frac{1}{2}\Delta q + L_q\right) + J_g$$

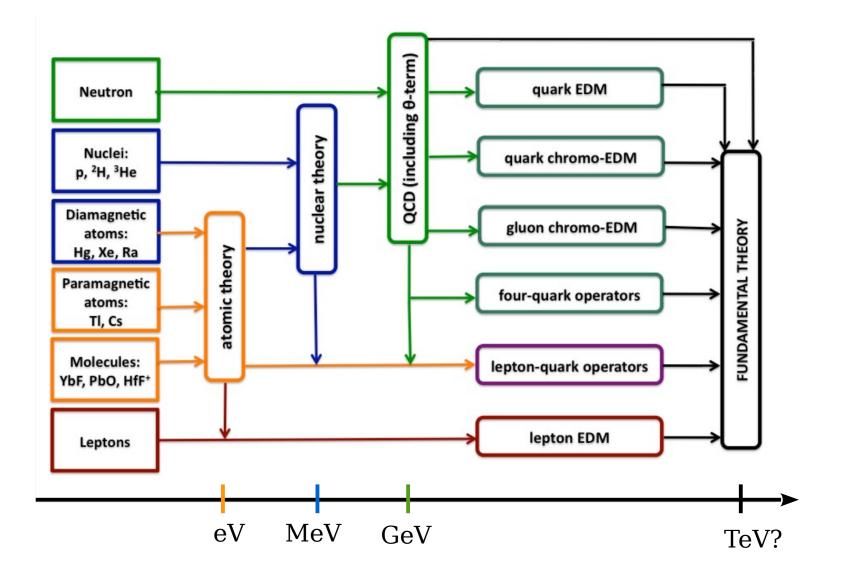
$$\frac{1}{2} = \sum_{\{u,d,s,c\}} \left(\frac{1}{2} \Delta q + L_q \right) + J_g$$

$$S_P^q = \sum_q S_q \equiv \sum_q \frac{\Delta q}{2} \equiv 0.5 \sum_q g_A^q$$

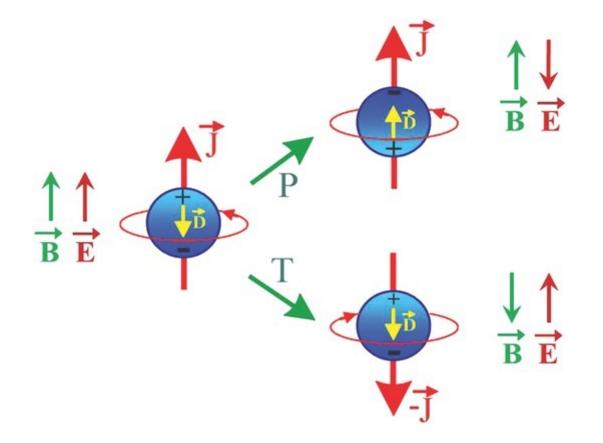

[X. Ji, PRL 78 (1997) 610]

$$g_A^q = \langle N(p_i) | Z_A A_\mu^q(0) | N(p_i) \rangle$$

LANL (PNDME) result (PRD 98 (2018) 094512):


$$0.5\sum_{q} g_{A}^{q} = (0.777(39) - 0.438(35) - 0.053(8))/2 = 0.143(31)(36)$$

COMPASS result: $0.13 \le \sum_q S_q \equiv 0.5 \sum_q g_A^q \le 0.18$



$g_T^{u,d,s,c}$ Contribution of the quark EDM to neutron EDM

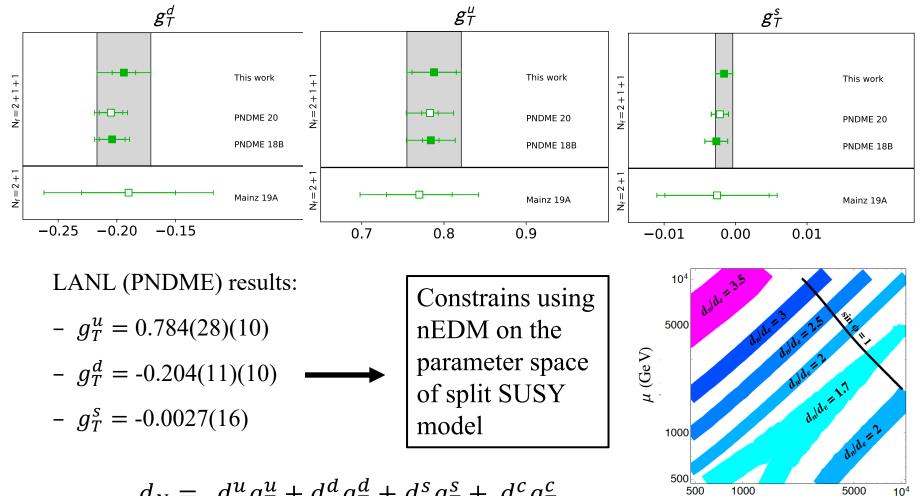
Novel CP violation in BSM \rightarrow EDMs

EDMs violate P and T invariance

CP(T)-violation and EDMs

Effective CPV Lagrangian at Hadronic Scale

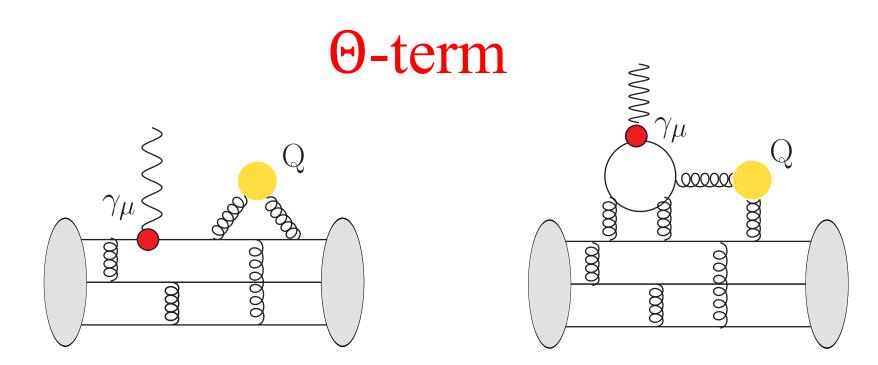
$$\begin{split} \mathcal{L}_{\text{CPV}}^{d \leq 6} &= -\frac{g_s^2}{32\pi^2} \overline{\theta} G \tilde{G} & \text{dim}{=}4 \text{ QCD } \theta\text{-term} \\ &- \frac{i}{2} \sum_{q=u,d,s,c} d_q \overline{q} (\sigma \cdot F) \gamma_5 q & \text{dim}{=}5 \text{ Quark EDM (qEDM)} \\ &- \frac{i}{2} \sum_{q=u,d,s,c} \tilde{d}_q g_s \overline{q} (\sigma \cdot G) \gamma_5 q & \text{dim}{=}5 \text{ Quark Chromo EDM (CEDM)} \\ &+ d_w \frac{g_s}{6} G \tilde{G} G & \text{dim}{=}6 \text{ Weinberg's 3g operator} \\ &+ \sum_i C_i^{(4q)} O_i^{(4q)} & \text{dim}{=}6 \text{ Four-quark operators} \end{split}$$

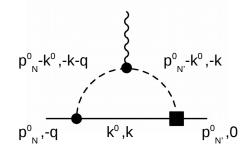

- $\overline{\theta} \leq \mathcal{O}(10^{-8} 10^{-11})$: Strong CP problem
- Dim=5 terms suppressed by $d_q \approx \langle v \rangle / \Lambda_{BSM}^2$; effectively dim=6
- All terms up to d = 6 are leading order

Each CP violating interaction gives a contribution to neutron EDM

- Θ -term
- Quark EDM \rightarrow Flavor diagonal tensor charges $g_T^{u,d,s,c}$

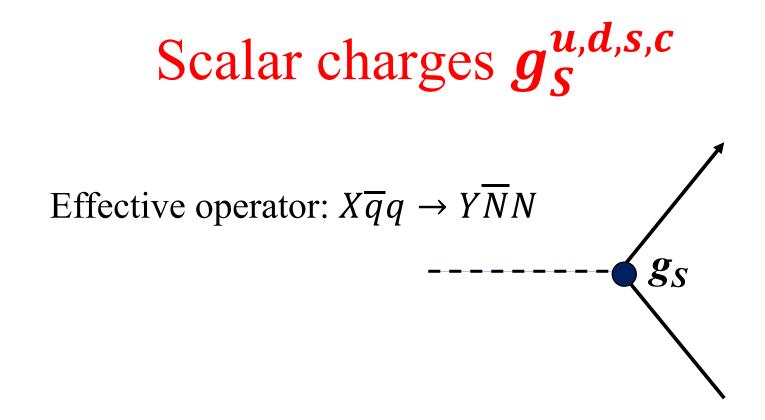
$$\begin{aligned} d_n &= \overline{\Theta} \langle N \mid J_{EM} \int d^4 x \frac{G_{\mu\nu} \tilde{G}^{\mu\nu}}{32\pi^2} \mid N \rangle |_{CPV} \\ &+ d^u g_T^u + d^d g_T^d + d^s g_T^s + d^c g_T^c \\ &+ \cdots \end{aligned}$$

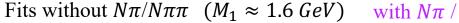

$J_{T}^{u,d,s,c}$: Contribution of the quark EDM to neutron EDM


$$d_N = d^u g^u_T + d^d g^d_T + d^s g^s_T + d^c g^c_T$$

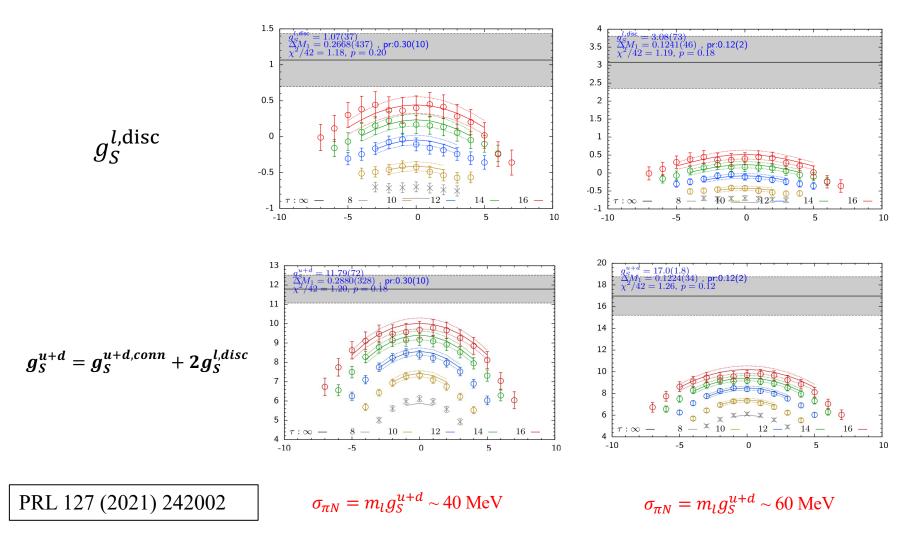
PRD 98 (2018) 091501

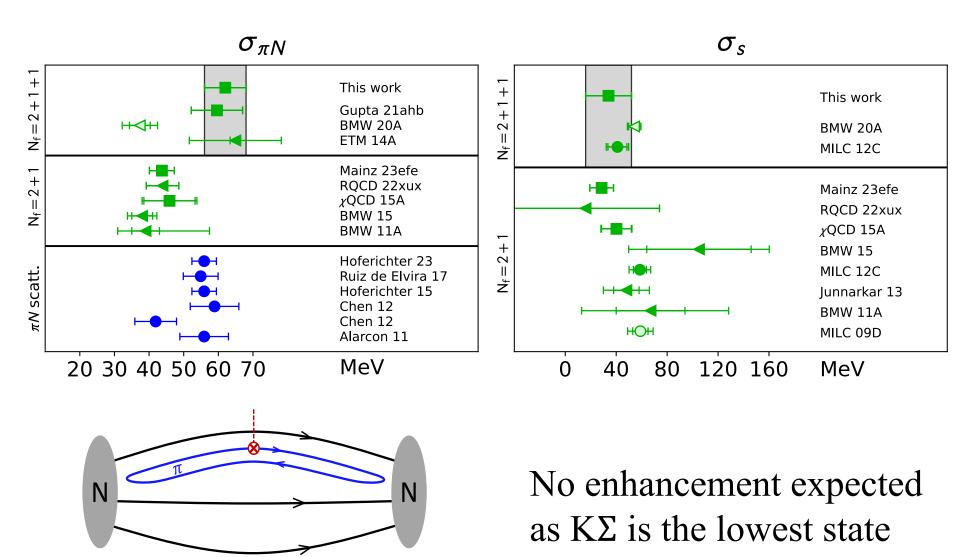
 M_2 (GeV)


- Weight Γ^3 with the topological charge
- Remove excited-state contributions
- Expand ME in terms of form factors
- Extract the contribution to the CP violating FF F_3
- Status
 - Large error in the extraction of F_3 (statistics)
 - Resolving and controlling $N\pi$ contributions


Implication for BSM

- Knowing the bound [value] on nucleon EDM d_n and $g_T^{u,d,s,c}$, we can constrain BSM models in which quark EDM is the dominant CP violating operator.
- The coupling $\overline{\Theta}$ is the sum of the SM and BSM. LQCD provides the contribution of the CP violating $G_{\mu\nu}\tilde{G}^{\mu\nu}$ operator to the nucleon EDM.
 - To disentangle sources of $\overline{\Theta}$, need to measure EDMs of many systems


Flavor diagonal scalar charges $g_{s}^{u,d,s,c}$

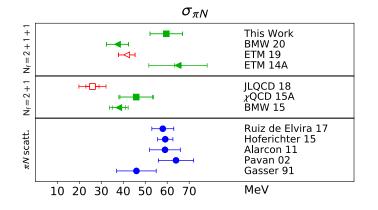

 g_S^{u-d} : novel scalar interaction measured in neutron decay $g_S^{u,d,s,c}$: flavor independent interactions (dark matter) g_S^{u+d} : rate of change of nucleon mass with *u,d* quark mass $g_S^{u,d}$: Excited-state effects are large and results very sensitive to $N\pi / N\pi\pi$ states

Sigma terms

Enhanced contribution

The pion-nucleon sigma term:

Resolving tension between Lattice QCD and Phenomenology


$$\sigma_{\pi N} \equiv m_{ud} g_S^{u+d} \equiv m_{ud} \langle N \big| \bar{u}u + \bar{d}d \big| N \rangle$$

FLAG Reports 2019, 2021:

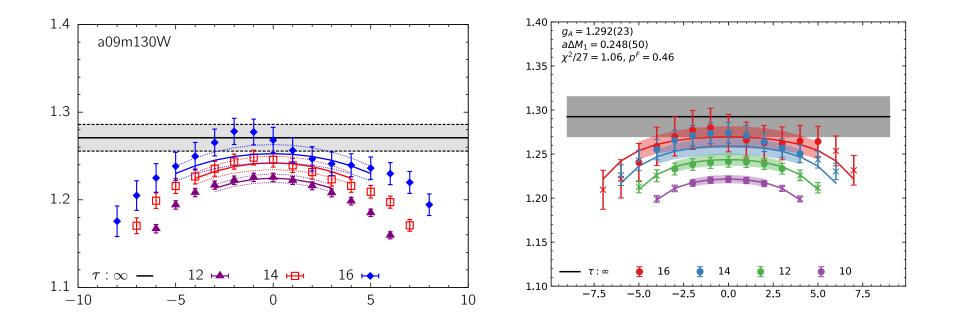
- Lattice results ~40 MeV
- Phenomenology favors ~60 MeV

Post FLAG 2021 results

BMW (arXiv:2007.03319) $\sigma_{\pi N} = 37.4(5.1)$ MeV (FH) RQCD (JHEP 05 (2023) 035) $\sigma_{\pi N} = 43.9(4.7)$ MeV (FH) Mainz (PRL 131 (2023) 261902) $\sigma_{\pi N} = 43.7(3.6)$ MeV (FH) ETM (PRD **102**, 054517) $\sigma_{\pi N} = 41.6(3.8)$ MeV (Direct)

LANL Results: PRL 127 (2021) 242002; e-Print: 2105.12095

- Without including $N(\vec{k})\pi(-\vec{k})$ and $N(0)\pi(\vec{k})\pi(-\vec{k})$ states: = 41.9 (4.9) MeV
- Including $N(\vec{k})\pi(-\vec{k})$ and $N(0)\pi(\vec{k})\pi(-\vec{k})$ states: = 59.6 (7.4) MeV

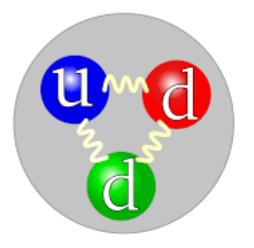

See talk by M. Hoferichter

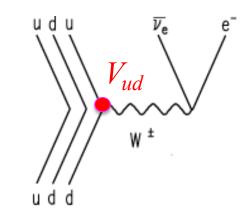
Implication for BSM

- Whether $\sigma_{\pi N} \equiv m_{ud} g_S^{u+d}$ is ≈ 40 MeV or 60 MeV comes from whether g_S^{u+d} is 12 or 18
- This factor of 1.5 in coupling translates to 2.25 in cross-section for the favored scalar channel, and thus the reach of the dark matter direct detection experiments
- Enters in the analysis of $\mu \rightarrow e$ conversion
- $\sigma_{\pi N}$ is a fundamental parameter in nuclear physics

Future

- Brute force: increase statistics to get to larger τ
 - Will 5X in statistics yield data-driven fits that resolve excited state contributions?
- Variational basis of interpolating operators including $N\pi$ to get results from smaller τ




The neutron is a clean but challenging system

Decays weakly \Rightarrow a stable bound state of QCD

Properties:

- Charges g_A , g_P , g_S , g_T , g_V
- Spin content
 - Quark contribution
 - Gluon contribution
- Contributions to nEDM
- Form factors
 - Electric, Magnetic
 - Axial
- Distribution functions, moments
 - PDF
 - GPD
- Radiative corrections to n-decay $\rightarrow V_{ud}$

Acknowledgements

- MILC collaboration for providing the 2+1+1-flavor HISQ lattices.
- The calculations used the CHROMA software suite.
- DOE HEP for support
- For computer allocations we thank
- DOE NERSC through ERDCAP
- DOE INCITE project hep133 @OLCF
- USQCD collaboration
- Institutional Computing at LANL