NEW RESULTS ON α**s FROM HADRONIC** τ DECAY

Kim Maltman, York University (and CSSM, Adelaide) with Diogo Boito, Maarten Golterman and Santi Peris

Based on

(1) *"Quark-hadron duality and the determination of* α_s from hadronic τ *decay: facts vs. myths"* [arXiv: 2402.00588 [hep-ph]] (2) PRD103(2021) 034028 [arXiv:2012.10440]

CONTEXT: PDG NON-LATTICE α_s **DETERMINATIONS**

- Increase in precision at M_z with decreasing μ (for fixed precision at μ): $\left[\delta\alpha_{s}(M_{Z}^{2})/\alpha_{s}(M_{Z}^{2})\right] \simeq \left[\alpha_{s}(M_{Z}^{2})/\alpha_{s}(\mu^{2})\right] \left[\delta\alpha_{s}(\mu^{2})/\alpha_{s}(\mu^{2})\right]$
- $[\alpha_{s}(M_Z^2)/\alpha_{s}(\mu^2)] \simeq 1/3$ for $\mu \simeq m_{\tau} \Rightarrow$ advantage for lowscale τ analysis
- This talk: previously unrecognized issues with one of the two main approaches to the τ determination

INGREDIENTS OF THE τ **DETERMINATION (1)**

• **V and A vector two-point functions, scalar polarizations and spectral functions**

$$
\Pi_{\mu\nu}^{V/A}(q) = i \int d^4x e^{iq \cdot x} \langle 0|T \left\{ J_{\mu}^{(V/A)}(x) J_{\nu}^{(V/A)\dagger}(0) \right\} |0\rangle
$$

\n
$$
= (q_{\mu}q_{\nu} - q^2 g_{\mu\nu}) \Pi^{(1)}(q^2) + q_{\mu}q_{\nu} \Pi^{(0)}(q^2)
$$

\n
$$
= (q_{\mu}q_{\nu} - q^2 g_{\mu\nu}) \Pi^{(1+0)}(q^2) + q^2 g_{\mu\nu} \Pi^{(0)}(q^2)
$$

\n
$$
\rho^{(J)}(s) = \frac{1}{\pi} \text{Im}\Pi^{(J)}(s)
$$

• **Hadronic τ decay in the SM in terms of V and A current spectral functions:**

$$
R_{V/A;ud} = \frac{\Gamma[\tau \to (\text{hadrons})_{V/A;ud} \nu_{\tau}(\gamma)]}{\Gamma[\tau \to e\bar{\nu}_{e}\nu_{\tau}(\gamma)]}
$$

$$
\frac{dR_{V/A;ud}(s)}{ds} = 12\pi^{2}|V_{ud}|^{2}S_{EW}\frac{1}{m_{\tau}^{2}}\left[w_{T}(s; m_{\tau}^{2})\rho_{V/A;ud}^{(1+0)}(s) - w_{L}(s; m_{\tau}^{2})\rho_{V/A;ud}^{(0)}(s)\right]
$$

$$
W_{T}(s; s_{0}) = \left(1 - \frac{s}{s_{0}}\right)^{2}(1 + \frac{2s}{s_{0}}), \ \ W_{L}(s, s_{0}) = \frac{2s}{s_{0}}\left(1 - \frac{s}{s_{0}}\right)^{2}
$$

INGREDIENTS OF THE τ **DETERMINATION (2)**

• **Polynomially weighted finite-energy sum rules (FESRs)**

Polynomial w(s), kinematic-singularity-free $\Pi(Q^2) \Rightarrow$ Cauchy Theorem (FESR) relation

$$
\int_{s_{th}}^{s_0} ds \, w(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \Pi(s)
$$

- τ decay α_s determinations: experimental V, A (dR/ds) on LHS, theory (QCD) on RHS
- Theory side: approximate $\Pi(Q^2) \equiv \Pi(Q^2)^{OPE}$ (+ $\Pi_{DV}(Q^2)$) (α_s in perturbative part of OPE)
- **Two common approaches: tOPE (ALEPH, OPAL, Pich et al), and DV-model (Boito et al)**

τ **DETERMINATION INGREDIENTS (3)**: **I=1, J=0+1 V+A SPECTRAL DATA**

- $\cdot \cdot$ ALEPH 2013 τ, I=1 V+A spectral function, showing "reduced" DVs above s \sim 1.5-2 GeV ² (reduced c.f. those for V or A alone)
- \cdot In the literature: often used to argue for neglect of DVs in this region/claim that PT works "well" for V+A as low as $s \approx 1$ GeV²
- **C.f. the τ, I=1 V+A figure, now with the non-dynamical, αs-independent parton model contribution removed**

 0.16

(e.g. same figure with different

(larger) αs-independent contribution)

τ DETERMINATION INGREDIENTS (4): I=1, J=0+1 V SPECTRAL DATA

- **Improved I=1, V channel spectral distribution** [Boito et al PRD103(2021) 034028]
- ALEPH $K\overline{K}$, higher-multiplicity-mode Monte Carlo input replaced with **BaBar** $\tau \rightarrow K\overline{K}v_{\tau}$, e^+e^- + CVC input for higher-multiplicity modes

ALEPH 2013

Residual modes from (mostly) electroproduction

(instead of Monte-Carlo) Boito et al. '20

OPAL: Ackerstaff et al. '98 ALEPH: Schael et al. '05, Davier et al. '14 Combination: Boito et al. '20

Experimental data (non-strange vector spectral function): [PRD103(2021) 034028]

τ DETERMINATION INGREDIENTS (5): FESR THEORY-SIDE INPUT

 \triangleright D=0 (perturbative) series known to O(α_s^4) (Baikov et al '08; Herzog et al '17) \triangleright D=0 OPE integrals \sim 1 + α_s/π +...

 $\alpha_s(m_\tau^2)$ ~0.3, hence α_s -dependent contributions numerically significant

 \triangleright higher D: $[\Pi(Q^2)]_{D \geq 4}^{OPE}$ = Σ_{D≥4} [C_D/Q^D] with effective condensates C_D (D=4: chiral and gluon condensates, D=6: 4-quark condensates,…) **Expansion in powers of 1/s; known to be asymptotic (at best)**

 \triangleright (up to α_{s} -suppressed log corrections) for polynomial w(y) = w(s/s₀) = $\Sigma_{k>0}$ b_ky^k $-\frac{1}{2\pi i}$ ∮_{|s|=s</sup>0} (ds/s₀) w(y) [Π(Q²)] $_{D≥4}^{OPE} = \sum_{k≥1} (-1)^k b_k C_{2(k+1)}/s_0^{k+1}$ \Rightarrow dim D scales as $1/s_0^{D/2}$; degree N w(y) \leftrightarrow OPE contributions to D=2N+2

 \triangleright DVs: Resonance oscillations in experimental $\rho_{V,A}(s)$ not captured by perturbation theory/the OPE (believed localized to vicinity of timelike point on RHS contour)

tOPE vs DV-model-strategy analysis option choice (more on this below)

tOPE vs. DV-MODEL ANALYSIS STRATEGY COMPARISONS

$$
\text{FESR:} \quad \int_0^{s_0} ds \, w(s \, \rho(s) = -\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \left(\Pi_{\text{pert.th.}}(z; \alpha_s) + \Pi_{\text{OPE}}(z) \right) + \int_{s_0}^{\infty} ds \, w(s) \, \rho_{\text{DV}}(s)
$$

- tOPE: - set DV part equal to zero (this is a model for duality violations!) - include high-degree polynomials (with DVs suppressed via zeros at $z = s_0$) ("pinched" weights) - use a single s_0 value, as close as possible to m_τ^2 , dropping OPE parameters until # fit parameters < # FESRs; OPE treated as if convergent to very high order (up to $1/z^8$)
- Since OPE is asymptotic, use only to low orders (max $1/z^5$), don't drop OPE parameters DV: \geq 1 FESR with unsuppressed DVs, model with QCD-motivated ansatz (Regge theory and $1/N_c$)

$$
\rho_{\rm DV}(s) = e^{-\delta - \gamma s} \sin(\alpha + \beta s + \mathcal{O}(\log s)) \left(1 + \mathcal{O}\left(\frac{1}{s}, \frac{1}{N_c}, \frac{1}{\log s} \right) \right)
$$

use, and test consistency of approach by varying, s_0 between $\sim 1.5 \text{ GeV}^2$ and m_τ^2 (Catà et al. '05, Boito et al. '17)

Advantage of such multi- s_0 analysis approaches: variable s_0 and D-dependent OPE, **oscillatory DV scalings with** $s_0 \leftrightarrow$ **non-trivial internal self-consistency tests**

NECESSITY OF OPE TRUNCATION IN SINGLE- tOPE ANALYSES

• OPE sides of doubly (or higher) pinched-weight FESRs needed to suppress DV contributions involve not just α_s but higher D non-perturbative condensates C_D

E.g., the J=0+1 kinematic weight $w_\tau(y) = 1 - 3y^2 + 2y^3 \Rightarrow$ **theory representation of non-strange inclusive** *τ* **decay width depends on D = 6 and 8 condensates as well as** α_s

\Rightarrow fit of α_s impossible using only a single FESR (needs C_D input)

- Classic tOPE analysis "solution": add higher-degree-weight FESRs to fit needed C_D **E.g. classic "(km) spectral weights"** $w_{km}(x) = (1 - x)^2 (1 + 2x)(1 - x)^k x^m$, km=00, 10, 11, **12, 13 (ALEPH, OPAL, Pich et al.): 5 FESRs to fit 4 OPE parameters** α_s **,** C_4 **,** C_6 **,** C_8
- **Basic problem: new higher degree weights add new unknown C_D** ⇒ **must drop OPE terms in principle present to keep # fit parameters< # spectral integral inputs E.g. classic "(km) spectral weight" analyses truncate OPE at D=8, dropping** C_{10} **,** C_{12} **,** C_{14} **,** C_{16} **counting on assumed suppression by additional powers of 1/ to make this safe**
- Basic truncation assumption issue: with only single s_0 , impossible to use D**dependent scaling with to test self-consistency of assumed truncation**

"REDUNDANCY" AND THE tOPE AND DV STRATEGY APPROACHES (1)

- Theory-side s_0 -dependence self-consistency tests need multi-weight, multi- s_0 analyses
- If all $s_0 > s_0^{min}$ for given experimental binning used, only one of a 2nd-weight spectral integral set $\{(w_2,s_0)\}\$ is independent of the corresponding 1st-weight set $\{(w_1,s_0)\}\$
- \Rightarrow In fit to data ${d_k}$ with theory representations ${t_k(\eta_m)}$ involving parameters ${\eta_m}$, either give up s_0 -dependent multi-weight, multi- s_0 self-consistency tests to use standard χ^2 fit (as in single- s_0 tOPE analyses), or keep multi-weight, multi- s_0 set and use non- χ^2 fit (propagating full set of correlations separately). Generally

 $Q^2(\vec{\eta}) = [\vec{d}\cdot\vec{t}(\vec{\eta})]^T \tilde{C}^{-1} [\vec{d}\cdot\vec{t}(\vec{\eta}) \rightarrow$ If data covariance matrix C non-singular, can set $\tilde{\mathcal{C}} = \mathsf{C}, Q^2 = \chi^2$
If C singular, alternate choice for $\widetilde{\mathcal{C}}, Q^2 \neq \chi^2$ and must **propagate full covariances separately**

• E.g. Boito et al. V+A, V channel DV-strategy multi-weight, multi- s_0 spectral integral set fits: block-diagonal Q^2 with single-weight, multi- s_0 covariance matrices on the diagonal

"REDUNDANCY" AND THE tOPE AND DV STRATEGY APPROACHES (2)

Redundancy Theorem: Consider a data set $\{d_k, k=1...N\}$ with non-singular covariance matrix D, and associated theory representations $\{t_k(n_m), k=1...N\}$ involving parameters ${\eta_{m}}$, m=1...M, M<N}. Now add a single new data point d_{N+1} such that (i) the extended $(N+1)$ -point data set covariance matrix C is also non-singular and (ii) only one additional theory parameter, η_{M+1} , enters the theory representation, t_{N+1} , of d_{N+1} .

In this situation

- $\hat{\mathbf{v}}$ the parameters η_1 ,..., η_M obtained from the extended (N+1)-point χ^2 fit are **identical to those obtained from the unextended N-point** χ^2 **fit,**
- \hat{P} the minimum χ^2 of the extended (N+1)-point fit is identical to that of the original **N-point fit and**
- \div the extended-fit result for η_{M+1} serves only to make the theory representation t_{N+1} exactly reproduce d_{N+1} , regardless of the form chosen for t_{N+1}

The extended fit is entirely "redundant", producing no new information on the parameters of the original fit, and no physically meaningful constraint on the new parameter η_{M+1}

"REDUNDANCY" AND THE tOPE AND DV STRATEGY APPROACHES (3)

- Single- s_0 tOPE spectral integrals involving a set of linearly independent weights are linearly independent, and hence have a non-singular covariance matrix. *Results obtained from the associated standard 2 tOPE fits in the literature are thus subject to the results of the Redundancy Theorem.* (More on this below.)
- In contrast, for the block-diagonal, multi-weight, multi- S_0 DV-strategy fits in the literature, which cannot, even in principle, be of the standard χ^2 form,
	- \diamond **the conclusions of the Redundancy Theorem do not hold**^{*}
	- **☆** the multi-weight, multi-s₀ nature of the fit and differing s_0 and weight**dependences of the different theory contributions lead to highly non-trivial self-consistency checks on the form chosen for the theory representations** (More on this below.)

*A claim to the contrary by Pich and Rodrigues-Sanchez rests on the (unexamined) assumption that the proof for the standard χ^2 fit case (which is valid) carries over to the case of non- χ^2 block-diagonal fits, which do not satisfy the conditions on which that proof is based, and for which it turns out the theorem does not hold

NON-REDUNDANCY OF MULTI-WEIGHT, MULTI- BLOCK-DIAGONAL DV-STRATEGY FITS

A two-weight, $w_0(x) = 1$, $w_2(x) = 1 - x^2$, V-channel block-diagonal fit example

- First weight fit: α_s , α_V , β_V , γ_V , δ_V from a multi- s_0 , single-weight w_0 standard χ^2 fit
- In QCD, the w_2 FESR adds one further NP theory parameter, C_6 , in the form C_6/S_0^3
- Consider also an alternate, non-QCD NP form, C'/s_0^5 , on the w_2 theory side
- Adding the w_2 FESR at a single s_0 , the two-weight $w_0 \& w_2 \chi^2$ fit returns unchanged α_s , α_V , β_V , γ_V , δ_V , regardless of the w_2 form used [as per the Redundancy Theorem]
- In contrast: w_0 and w_0 & w_2 fits with w_2 FESR at the same multi- s_0 \gg_0^{min} set as w_0 :

• $\alpha_s(m_\tau^2)$ as a function of s_0^{min}

- \triangleright **Blue:** from the single-weight w_0 fit
- **Green:** from the $w_0 \& w_2$ fit with QCD w_2 form
- **Red:** from the $w_0 \& w_2$ fit with non-QCD w_2 form
- **Bue-red** differences: non-applicability of the Redundancy Theorem for block-diagonal non- χ^2 fits
- Close (but not exact) **blue**-**green** agreement: (i) nonredundancy and (ii) non-trivial self-consistency tests of the use of the QCD NP form from adding the w_2 FESR also a multiple s_0

REDUNDANCY OF MULTI-WEIGHT, SINGLE- tOPE STRATEGY FITS (1)

- OPAL, ALEPH, Baikov et al., Pich et al.: classic *km=00, 10, 11, 12, 13* spectral weights, V and V+A channel fits with s_0 = m_{τ}^2 , $C_{D>8}$ =0 tOPE truncation
- Pich and Rodrigues-Sanchez '16/'22 (PRS), three 5-weight tOPE fits, ALEPH 2013 V+A data, omitting last two large-error bins, hence s_0 = 2.8 Ge V^2 :

 \cdot *km=00, 10, 11, 12, 13* spectral weights, $C_{D>8}=0$ tOPE truncation

- **→** Modified *km=00, 10, 11, 12, 13* spectral weights, $\hat{w}_{km}(x)=(1-x)^{k+2}x^m$, $C_{D>8}=0$ tOPE truncation
- * $m=1,...,5$ "optimal weights", $w^{(2m)}(x) = 1 (m + 2)x^{m+1}+(m+1)x^{m+2}$, $C_{D>10}$ =0 tOPE truncation
- Technical note: basis transformations: A multi-weight $\{W_k\}$ fit, and fit with alternate weight basis $\{W_k'\}, W_k(x) = \sum_m A_{km} W_m'(x)$ and equivalently transformed minimizer $(Q')^2(\vec{\eta}) = [d' \cdot \vec{t}'(\vec{\eta})']^T (\tilde{C}^{-1})' [d' \cdot \vec{t}(\vec{\eta})']$, $(\tilde{C}^{-1})' = A^T \tilde{C}^{-1} A$ yield identical results for the fit parameters ${η_m}$

REDUNDANCY OF MULTI-WEIGHT, SINGLE- tOPE STRATEGY FITS (2)

Post-redundancy-theorem revisions of the conventional understanding of tOPE output (for definiteness, starting from the classic km spectral weight example)

Conventional understanding

- α_s largely from lowest degree *km=00* FESR
- $C_{4,6,8}$ from remaining, higher degree FESRs
- Small central condensate values support OPE truncation at D=8
- Similar α_s from modified km spectral weight and (2m) optimal weight analyses represent non-trivial tests "because of their very different dependence on NP condensate contributions"

Post-redundancy-theorem revisions

- α_s from FESRs of two **highest** degree combinations, **with only perturbative contributions on the theory sides**
- α_{s} of all three 5-weight PRS tOPE fits from $w^{(23)}$, $w^{(24)}$, $w^{(25)}$ FESR combinations
- (Redundantly) determined C_D from lower**degree**-weight FESRs, **and play no role in** the corresponding α_s determinations
- Generic very large C_D uncertainties from even small NP contaminations in the perturbative-only α_s determinations

REDUNDANCY OF MULTI-WEIGHT, SINGLE- tOPE STRATEGY FITS (3)

A few details of the classic km spectral weight analysis case (tOPE truncation $C_{D>8}=0$)

• **Alternate basis:**
$$
\hat{w}_1(x) = 1 - \frac{15}{2}x^4 + 12x^5 - \frac{17}{2}x^6 + 3x^7 = \frac{3}{2}w^{(23)}(x) - w^{(24)}(x) + \frac{1}{2}w^{(25)}(x),
$$

$$
\hat{w}_2(s) = 1 - 9x^4 + 12x^5 - 4x^6 = \frac{9}{5}w^{(23)}(x) - \frac{4}{5}w^{(24)}(x),
$$

$$
\hat{w}_3(x) = 1 + 2x^3 - 9x^4 + 6x^5 = -\frac{1}{2}w^{(22)}(x) + \frac{3}{2}w^{(23)}(x),
$$

$$
\hat{w}_4(s) = 1 - 3x^2 + 2x^3 = w^{(21)}(x),
$$

$$
\hat{w}_5(x) = 1 + \frac{2}{3}x - \frac{23}{3}x^4 + 6x^5
$$

$$
= -\frac{1}{3}w^{(20)}(x) - \frac{1}{9}w^{(21)}(x) - \frac{1}{18}w^{(22)}(x) + \frac{3}{2}w^{(23)}(x).
$$

$$
w_{12}(x) = 1 + \frac{2}{9}w^{(21)}(x) - \frac{1}{9}w^{(22)}(x) + \frac{3}{2}w^{(23)}(x).
$$

• With $C_{D>8}$ =0 tOPE truncation:

❖ No theory-side C_D contributions to $\widehat{w}_{1,2}$ FESRs \Rightarrow combined $\widehat{w}_1 \& \widehat{w}_2$ fit fixes α_S

 \clubsuit Add \widehat{w}_3 FESR (theory side: α_s and C_8): α_s unchanged, redundant determination of C_8

 \clubsuit Add \widehat{w}_4 (theory side: α_s , C_8 and C_6): α_s , C_8 unchanged, redundant determination of C_6

 \clubsuit Add \widehat{w}_5 (theory side: α_s , C_4): α_s unchanged, redundant determination of C_4

REDUNDANCY OF MULTI-WEIGHT, SINGLE- tOPE STRATEGY FITS (4)

Details of the modified (\widehat{w}_{km}) spectral weight analysis case (tOPE truncation $C_{D>8}$ =0)

• Alternate basis: $\{w^{(2m)}(x), m = 0, ..., 4\}$ related to original $\{\widehat{w}_{\mathsf{k} \mathsf{m}}(\mathsf{x})\}$ basis by

 $\widehat{W}_{00} (x) = W^{(20)} (x)$ \widehat{w}_{10} (x) =[3 $w^{(20)}$ (x)- $w^{(21)}$ (x)]/2 \widehat{w}_{11} (x) =[-3w⁽²⁰⁾(x)+5w⁽²¹⁾(x)-2w⁽²²⁾(x)]/6 $\widehat{w}_{12}(x) = [-4w^{(21)}(x)+7w^{(22)}(x)-3w^{(23)}(x)]/12$ $\widehat{w}_{13}(x) = [-5w^{(22)}(x)+9w^{(23)}(x)-4w^{(25)}(x)]/20$

 $w^{(20)}(x) = 1 - 2x + x^2$ $w^{(21)}(x) = 1 - 3x^2 + 2x^3$ $w^{(22)}(x) = 1 - 4x^3 + 3x^4$ $w^{(23)}(x) = 1 - 5x^4 + 4x^5$ $w^{(24)}(x) = 1 - 6x^5 + 5x^6$

• With $C_{D>8}$ =0 tOPE truncation:

***** No theory-side $w^{(23)}$, $w^{(24)}$ FESR C_D contributions ⇒ combined 2-weight fit fixes α_s \clubsuit Add $w^{(22)}$ (theory side: α_s , C_8): α_s unchanged, redundant determination of C_8 \clubsuit Add $w^{(21)}$ (theory side: α_s , C_8 , C_6): α_s , C_8 unchanged, redundant determination of C_6 \clubsuit Add $w^{(20)}$ (theory side: α_s , C_4 , C_6): α_s , C_6 unchanged, redundant determination of C_4

REDUNDANCY OF MULTI-WEIGHT, SINGLE- tOPE STRATEGY FITS (5)

Details of the $w^{(2m)}$ optimal weight analysis case (with w_{km} tOPE truncation $C_{D>8}$ =0)

• The $\{w^{(2m)}(x), m=1,...,5\}$ basis:

$$
w^{(21)}(x) = 1 - 3x^2 + 2x^3
$$

\n
$$
w^{(22)}(x) = 1 - 4x^3 + 3x^4
$$

\n
$$
w^{(23)}(x) = 1 - 5x^4 + 4x^5
$$

\n
$$
w^{(24)}(x) = 1 - 6x^5 + 5x^6
$$

\n
$$
w^{(25)}(x) = 1 - 7x^6 + 6x^7
$$

With $C_{D>8}$ **=0 tOPE truncation:**

***** No theory-side $w^{(23)}$, $w^{(24)}$, $w^{(25)}$ C_p contributions ⇒ combined 3-weight fit fixes α_s \bullet Add $w^{(22)}$ (theory side: α_s , C_8): α_s unchanged, redundant determination of C_8 \bullet Add $w^{(21)}$ (theory side: α_s , C_s , C_s): α_s , C_s unchanged, redundant determination of C_6

REDUNDANCY THEOREM ILLUSTRATION: tOPE OPTIMAL WEIGHT FIT CASE

- Results: w_{24} , w_{25} : $\alpha_s = 0.3168(27)$, $\chi^2 = 3.06933$ $w_{23}, \ldots w_{25}$: $\alpha_s = 0.3168(27), \chi^2 = 3.06933, C_{10} = -0.0041(25)$ $w_{22}, \ldots w_{25}$: $\alpha_s = 0.3168(27), \ \chi^2 = 3.06933, \ C_{10} = -0.0041(25), \ C_8 = 0.0016(14)$ $w_{21}, \ldots w_{25}$: $\alpha_s = 0.3168(27), \chi^2 = 3.06933, C_{10} = -0.0041(25), C_8 = 0.0016(14), C_6 = 0.00054(53)$
- $\alpha_s(m_\tau^2)$ purely from perturbation theory, no effect from OPE; OPE coefficients not fitted Can also get $\alpha_s(m_\tau^2)$ from only w_{25} (not a fit!): $\alpha_s = 0.3228(43)$ tests only pert.th., not the OPE!

$\alpha_s(m_\tau^2)$ FROM THE V+A-CHANNEL tOPE OPTIMAL WEIGHT FIT ANALYSIS

From (i) 3-weight $w^{(23)}$, $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_8 , C_6 ; (ii) 2-weight $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_{10} , C_{8} , C_{6} ; (iii) single-weight $w^{(25)}$ determination (PT only)

- S_0 =2.8 *GeV*² (as in PRS 2016/22): \cdot 3-weight fit: 0.3125(23)_{ex}, χ^2 /dof =11.6/2 [p-value 0.3%] \cdot 2-weight fit: 0.3168(22)_{ex}, χ^2 /dof =3.1 [p-value 7.8%] $\cdot \cdot \cdot$ w⁽²⁵⁾ determination: 0.3228(43)_{ex} [(25) -3-weight difference: 0.0103(37)_{ex} (10)_{th}]
	- **Non-trivial tensions/self-consistency/fit quality issues**
		- \div If due to propagating NP contamination of PT-only α_s determination will show up **as increasing discrepancy at lower**
		- \div **⇒ Consider lower** s_0 **still in range where spectral data consistent with neglect of DVs (for ALEPH data,** $s_0 = 2.6$ *GeV***² or 2.4** *GeV***²**

$\alpha_s(m_\tau^2)$ FROM THE V+A-CHANNEL tOPE OPTIMAL WEIGHT FIT ANALYSIS

From (i) 3-weight $w^{(23)}$, $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_8 , C_6 ; (ii) 2-weight $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_{10} , C_{8} , C_{6} ; (iii) single-weight $w^{(25)}$ determination (PT only)

- $S_0 = 2.8$ *GeV*² (as in PRS 2016/22): \cdot 3-weight fit: 0.3125(23)_{ex}, χ^2 /dof =11.6/2 [p-value 0.3%] \cdot 2-weight fit: 0.3168(22)_{ex}, χ^2 /dof =3.1 [p-value 7.8%] $\cdot \cdot \cdot$ $w^{(25)}$ determination: 0.3228(43)_{ex} [(25) -3-weight difference: 0.0103(37)_{ex} (10)_{th}]
- $S_0 = 2.6$ *GeV*² [experimental ρ_{DV} (s) compatible with 0 within errors] \cdot 3-weight fit: 0.3100(22)_{ex}, χ^2 /dof =18.7/2 [p-value ~0.0001] \cdot 2-weight fit: 0.3153(26)_{ex}, χ^2 /dof =4.5 [p-value 3.4%] \clubsuit w⁽²⁵⁾ determination: 0.3202(34)_{ex} [(25) -3-weight difference: 0.0102(27)_{ex} (10)_{th}]
- $S_0 = 2.4$ *GeV*² [experimental ρ_{DV} (s) compatible with 0 within errors] \cdot 3-weight fit: 0.3064(22)_{ex}, χ^2 /dof =31.9/2 [p-value ~10⁻⁷] \cdot 2-weight fit: 0.3136(28)_{ex}, χ^2 /dof =6.3 [p-value 1.2%] $\cdot \cdot \cdot$ $w^{(25)}$ determination: 0.3178(30)_{ex} [(25) -3-weight difference: 0.0114(22)_{ex} (11)_{th}]
	- **Deterioration with decreasing as expected if NP contamination present**

$\alpha_{\rm S}$ PT-ONLY NP-CONTAMINATION-INDUCED UNCERTAINTY IMPACT ON tOPE C_D

E.g., tOPE optimal weight $C_{D>10}$ =0 truncation analysis (α_s from w⁽²⁴⁾ &w⁽²⁵⁾ part of fit)

- $\bar{\alpha}_{s}$ = result for α_{s} from underling combined w⁽²⁴⁾ &w⁽²⁵⁾ fit
- Addition of $w^{(23)}$ FESR yields (redundant) \mathcal{C}_{10} determination, $\bar{\mathcal{C}}_{10}$:

 \bar{C}_{10} = -[S₀⁵/5] [$I_{exp}^{(23)}(s_0)$ - $I_{th;D=0}^{(23)}(s_0; \bar{\alpha}_s)$

- Strong D=0 dominance of (23) FESR theory side ⇒ strong cancellation on RHS, hence strong sensitivity to any NP contamination in $w^{(24)}$ &w⁽²⁵⁾ α_s determination
- Similarly: NP contamination of $\overline{\alpha}_s$, $C_{10} \Rightarrow$ strongly enhanced NP contamination of (redundant) C_8 determination from (22) FESR; NP $\bar{\alpha}_s$, C_{10} , C_8 contamination \Rightarrow strongly enhanced NP contamination of (redundant) C_6 determination from (21) FESR

tOPE c.f. DV-STRATEGY V CHANNEL OPTIMAL-WEIGHT ANALYSES

s_0 =2.882 *GeV*² **tOPE** analysis

- Sizeable PT-only $\alpha_s(m_\tau^2)$ discrepancies
- Discrepancies so large no combined 3 weight fit possible
- Even doable 2-weight $w^{(24)}$ & $w^{(25)}$ fit **yields disastrous χ2/dof=43.1**

Multi-weight, multi-s₀ DV-strategy fits

- All $s_0 > s_0^{min}$, variable s_0^{min}
- [e.g., $w^{(23)}$, $w^{(25)}$ difference 0.0142(16)] $w_0(x) = 1$, $w_2(x)=1-x^2$, $w_3(x) = 1-3x^2+2$ x^3 , $w_3(x) = 1 - 2x^2 + x^4$
	- 1-, 2- and 3-weight fits, all including W_0
	- α_s , DV parameters in all; C_6 in W_2 , W_3 and W_4 FESRs, hence non-trivial self-consistency tests (all successful)
	- $\alpha_s^{(3)}$ (m_{τ}^2) from 7-point s_0^{min} stability window: **0.3077(75)** ↔ $\alpha_S^{(5)}(m_Z^2)$ =**0.1171(10)**

SUMMARY/CONCLUSIONS

- Multi-weight, single- s_0 tOPE determinations suffer from redundancy-induced issues not quantifiable within the tOPE approach
	- determinations from highest degree weight FESRs with only PT included
	- ❖ limited self-consistency tests showing significant tensions
	- \cdot unconstrained (redundant) C_D determinations with high sensitivity to unidentified NP contamination in the PT-only α_s determination
- Dramatic breakdown (huge χ^2 /dof =43.1) in optimal weight V channel tOPE analysis
- V channel DV-strategy analysis with improved $\rho_V(s)$ in upper part of spectrum from electroproduction+CVC input, in contrast,
	- ❖ Passes internal self-consistency tests

 \cdot Yields current best τ determination $\alpha_s^{(3)}$ $(m_{\tau}^2) = 0.3077(75) \leftrightarrow \alpha_s^{(5)}$ $(m_Z^2) = 0.1171(10)$

• Multi-weight, multi- S_0 analyses required to test tOPE OPE truncation and DV omission assumptions for self-consistency, even in analyses assuming DVs negligible

BACKUP

DV-STRATEGY w(x)=1- x^2 **THEORY COMPONENT SELF-CONSISTENCY CHECK**

