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Increase in precision at M, with decreasing p (for fixed
precision at p):

[Sot (M%) ot y(MZ)] = [a (M) ay(n?)] [Sag(n?) /o (1?)]

[a,(MZ)/a (u?)] = 1/3 for p=m,_ = advantage for low-
scale T analysis

This talk: previously unrecognized issues with one of
the two main approaches to the T determination



INGREDIENTS OF THE Tt DETERMINATION (1)

¢ V and A vector two-point functions, scalar polarizations and spectral functions
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 Hadronic t decay in the SM in terms of V and A current spectral functions:
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INGREDIENTS OF THE T DETERMINATION (2)

* Polynomially weighted finite-energy sum rules (FESRs)

Polynomial w(s), kinematic-singularity-free MN(Q?) = Cauchy Theorem (FESR) relation

—1

f:j dsw(s)p(s) = ﬁj'&':m dsw(s)M(s)
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e tdecay a; determinations: experimental V, A (dR/ds) on LHS, theory (QCD) on RHS
* Theory side: approximate I1(Q%)= I1(Q2% )9PE (+11,,(Q?)) (a in perturbative part of OPE)
e Two common approaches: tOPE (ALEPH, OPAL, Pich et al), and DV-model (Boito et al)




T DETERMINATION INGREDIENTS (3): I=1, J=0+1 V+A SPECTRAL DATA

** ALEPH 2013 T, I=1 V+A spectral function,
showing “reduced” DVs above s ~1.5-2 GeV ?
(reduced c.f. those for V or A alone)

¢ In the literature: often used to argue for
neglect of DVs in this region/claim that PT
works “well” for V+A as low as s=1 GeV?

s C.f. the 1, I=1 V+A figure, now with the
non-dynamical, a.-independent parton
model contribution removed
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T DETERMINATION INGREDIENTS (4): I=1, J=0+1 V SPECTRAL DATA

 Improved I=1, V channel spectral distribution [Boito et al PRD103(2021) 034028]
e ALEPH KK, higher-multiplicity-mode Monte Carlo input replaced with

BaBar Tt » KKv., e*e + CVC input for higher-multiplicity modes

ALEPH 2013
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Experimental data (non-strange vector spectral function): [PRD103(2021) 034028]
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Residual modes from (mostly) electroproduction
(instead of Monte-Carlo) Boito et al. ‘20



Tt DETERMINATION INGREDIENTS (5): FESR THEORY-SIDE INPUT

> D=0 (perturbative) series known to O(a%) (Baikov et al ‘08; Herzog et al ‘17)
» D=0 OPE integrals ~1 + a /m+...
a,(m?)~0.3, hence a -dependent contributions numerically significant
> higher D: [M(Q2)]55% = 1., [C,/QP] with effective condensates Cj
(D=4: chiral and gluon condensates, D=6: 4-quark condensates,...)
Expansion in powers of 1/s; known to be asymptotic (at best)

> (up to a,-suppressed log corrections) for polynomial w(y) = w(s/s,) = Z,,, b,y*
~1
i Bist=sy (05/50) wiy) [N(QAZZE = Zioy (-1)*by Copn/sct*

2Tt
= dim D scales as 1/sOD/ ? ; degree N w(y) & OPE contributions to D=2N+2

» DVs: Resonance oscillations in experimental py 4(s) not captured by perturbation
theory/the OPE (believed localized to vicinity of timelike point on RHS contour)

» tOPE vs DV-model-strategy analysis option choice (more on this below)



tOPE vs. DV-MODEL ANALYSIS STRATEGY COMPARISONS

g0 1 o0

FESR: f dsw(s p(s) = —9m dz w(z) (Mpers.th. (2; n:uS]—l—HDpE{z})—l—f ds w(s) ppv(s)
0 |z|==0 20

tOPE: - set DV part equal to zero (this is a model for duality violationsl)

- include high-degree polynomials (with DVs suppressed via zeros at 2 = s5) (“pinched” weights)
- use a single sg value, as close as possible to mg , dropping OPE parameters
until # fit parameters < # FESRs; OPE treated as if convergent to very high order (up to 1;"33]

DV: Since OPE is asymptotic, use only to low orders (max 1,",35 ), don’t drop OPE parameters
> 1 FESR with unsuppressed DVs, model with QCD-motivated ansatz (Regge theory and 1/N_)

ppov (s) = e ° " sin(a + Bs + O(log s)) (1 + O (%, f"'rlr.:j lc;s))

use, and test consistency of approach by varying, so between ~ 1.5 GeV? and mf

(Cata et al. ‘05, Boito et al. “17)

Advantage of such multi-s, analysis approaches: variable s, and D-dependent OPE,
oscillatory DV scalings with sy < non-trivial internal self-consistency tests



NECESSITY OF OPE TRUNCATION IN SINGLE-s, tOPE ANALYSES

OPE sides of doubly (or higher) pinched-weight FESRs needed to suppress DV
contributions involve not just a but higher D non-perturbative condensates Cp

E.g.,the J=0+1 kinematic weight w;(y) = 1 — 3y2 + Zy3 = theory representation of non-strange
inclusive t decay width depends on D = 6 and 8 condensates as well as «;

= fit of a; impossible using only a single FESR (needs Cp input)

Classic tOPE analysis “solution”: add higher-degree-weight FESRs to fit needed Cj
E.g. classic “(km) spectral weights” wy,,,,(x) = (1 — x)?(1 + 2x)(1 — x)*¥x™, km=00, 10, 11,
12, 13 (ALEPH, OPAL, Pich et al.): 5 FESRs to fit 4 OPE parameters ag, C4, C¢, Cg

Basic problem: new higher degree weights add new unknown C_D = must drop

OPE terms in principle present to keep # fit parameters< # spectral integral inputs

E.g. classic “(km) spectral weight” analyses truncate OPE at D=8, dropping €1, C12, C14, C16
counting on assumed suppression by additional powers of 1/s, to make this safe

Basic truncation assumption issue: with only single s,, impossible to use D-
dependent scaling with s, to test self-consistency of assumed truncation



“REDUNDANCY” AND THE tOPE AND DV STRATEGY APPROACHES (1)

Theory-side sy-dependence self-consistency tests need multi-weight, multi-s, analyses

If all sq > sI" for given experimental binning used, only one of a 2nd-weight spectral
integral set {l(w,,sq)} is independent of the corresponding 1st-weight set {l(w4,5¢)}

= In fit to data {d} } with theory representations {t; (n,,,)} involving parameters {n,, },
either give up sy-dependent multi-weight, multi-s, self-consistency tests to use standard
x fit (as in single-s, tOPE analyses), or keep multi-weight, multi-s, set and use non-y ?fit
(propagating full set of correlations separately). Generally

Q2(¥) = [d-t(M)]" C-d-E(x)

E.g. Boito et al. V+A, V channel DV-strategy multi-weight, multi-s, spectral integral set fits:
block-diagonal Q2 with single-weight, multi-s, covariance matrices on the diagonal



“REDUNDANCY” AND THE tOPE AND DV STRATEGY APPROACHES (2)

Redundancy Theorem: Consider a data set {d;, k=1...N} with non-singular covariance
matrix D, and associated theory representations {t, (n,,), k=1...N} involving parameters
N, m=1..M, M<N}. Now add a single new data point dy; such that (i) the extended
(N+1)-point data set covariance matrix C is also non-singular and (ii) only one
additional theory parameter, 1,1, enters the theory representation, ty ., of dy 1.

In this situation
% the parameters 14,..., )y obtained from the extended (N+1)-point y?fit are
identical to those obtained from the unextended N-point y?fit,

¢ the minimum x? of the extended (N+1)-point fit is identical to that of the original
N-point fit and

** the extended-fit result for n,,, ; serves only to make the theory representation

ty.1exactly reproduce dy ., regardless of the form chosen for ty ¢

The extended fit is entirely “redundant”, producing no new information on the parameters
of the original fit, and no physically meaningful constraint on the new parameter 1,4



“REDUNDANCY” AND THE tOPE AND DV STRATEGY APPROACHES (3)

e Single-sy tOPE spectral integrals involving a set of linearly independent weights are
linearly independent, and hence have a non-singular covariance matrix.
Results obtained from the associated standard y? tOPE fits in the literature are thus
subject to the results of the Redundancy Theorem. (More on this below.)

e |n contrast, for the block-diagonal, multi-weight, multi-s, DV-strategy fits in the
literature, which cannot, even in principle, be of the standard y? form,
¢ the conclusions of the Redundancy Theorem do not hold”
¢ the multi-weight, multi-sy nature of the fit and differing sy- and weight-
dependences of the different theory contributions lead to highly non-trivial

self-consistency checks on the form chosen for the theory representations
(More on this below.)

*A claim to the contrary by Pich and Rodrigues-Sanchez rests on the (unexamined) assumption that the proof for the
standard y?fit case (which is valid) carries over to the case of non-y? block-diagonal fits, which do not satisfy the
conditions on which that proof is based, and for which it turns out the theorem does not hold



NON-REDUNDANCY OF MULTI-WEIGHT, MULTI-s; BLOCK-DIAGONAL DV-STRATEGY FITS

A two-weight, wy(x) = 1, wo(x) = 1 — x%, V-channel block-diagonal fit example
e First weight fit: ag, ay, By, Yy, Oy from a multi-s,, single-weight w, standard x? fit
e In QCD, the w, FESR adds one further NP theory parameter, Cg, in the form C¢/sg
e Consider also an alternate, non-QCD NP form, C’/Sg, on the w, theory side
 Adding the w, FESR , the two-weight wy&w, x? fit returns unchanged «a,
ay, By, Vv, Oy, regardless of the w, form used [as per the Redundancy Theorem]

e |n contrast: wy and wy&w, fits with w, FESR

0.3

: { { { } } : » Blue: from the single-weight w, fit
053¢ E { ] » Green: from the wy&w, fit with QCD w, form
_ 0.32} » Red: from the wy&w, fit with non-QCD w, form
"t' |:-.31§- + + % % } + } * Bue-red differences: non-applicability of the

o Redundancy Theorem for block-diagonal non-x?fits

':"3:';' : e Close (but not exact) blue-green agreement: (i) non-
0.29} redundancy and (ii) non-trivial self-consistency tests
| of the use of the QCD NP form from adding the

55 e e aam s w, FESR also a multiple s,

2 (el



REDUNDANCY OF MULTI-WEIGHT, SINGLE-s tOPE STRATEGY FITS (1)

OPAL, ALEPH, Baikov et al., Pich et al.: classic km=00, 10, 11, 12, 13 spectral weights, V
and V+A channel fits with sg=m?, Cp~g=0 tOPE truncation
Pich and Rodrigues-Sanchez ‘16/°22 (PRS), three 5-weight tOPE fits, ALEPH 2013 V+A
data, omitting last two large-error bins, hence s, = 2.8 GeV*:
¢ km=00, 10, 11, 12, 13 spectral weights, Cp-g=0 tOPE truncation
“* Modified km=00, 10, 11, 12, 13 spectral weights, W, (x)=(1 — x)¥*?2x™, Cp~g=0
tOPE truncation
< m=1,..,5 “optimal weights”, w?™ (x) = 1 — (m + 2)x™ L +(m+1)x™*2,
Cp>10=0 tOPE truncation

Technical note: basis transformations: A multi-weight {W, } fit, and fit with alternate

weight basis {W, }, W, (x) = X, Axm Win(x) and equivalently transformed minimizer
(Q)2()=ld - ()] (C) [d-Em)Y, (€ =AT CA

yield identical results for the fit parameters {n,,)



REDUNDANCY OF MULTI-WEIGHT, SINGLE-s, tOPE STRATEGY FITS (2)

Post-redundancy-theorem revisions of the conventional understanding of tOPE output (for
definiteness, starting from the classic km spectral weight example)

Conventional understanding
* «a, largely from lowest degree km=00 FESR
* (4¢6g from remaining, higher degree FESRs
 Small central condensate values support
OPE truncation at D=8
e Similar ag from modified km spectral
weight and (2m) optimal weight analyses
represent non-trivial tests “because of
their very different dependence on NP
condensate contributions”

Post-redundancy-theorem revisions
a, from FESRs of two degree
combinations,

a, of all three 5-weight PRS tOPE fits from
w(23) w24 w(25) FESR combinations
(Redundantly) determined Cp

-weight FESRSs,

Generic very large Cp uncertainties from
even small NP contaminations in the
perturbative-only a; determinations



REDUNDANCY OF MULTI-WEIGHT, SINGLE-s tOPE STRATEGY FITS (3)

A few details of the classic km spectral weight analysis case (tOPE truncation Cp-g=0)

M 5 - a
e Alternate basis: iz - 1_1?"+ 1215_%:&3:- = gwfﬂl{:]_w”]{:]+%wi5?[:}, wa(r) =  by(r) .
3. . 3.

ig(s) =1-024120% dof %w"ﬂ][r] - %w[m{:]- wyp(x) = 515':1{1] + i) — if-ﬂ's{f] :
iig(z) =1+20%—0r* 4 = —%w‘m[f} i %w[ﬂ]{IL wyy(x) = —%ﬁ'ﬂi‘] + %ﬁu{ﬂ'} 1 %tﬁs{’—'] .
ig(s) =1- 3% + 22 —wl(e) . - .
ﬂ 2By wia(r) =  gun(r) - Fia(r) — gu(r)
uy(z) =1+4zr——r 462

Y l 3 wiglx) =  —iy (z) + wia(z) + iia(z)

_ —iw[mj{:} _Ew{.zi] (x) - Ew{.zﬂ] (2) + iwmj{z}_ 1VE = 3 1 B 2 2'—!‘-':1 .

e With Cp-g=0 tOPE truncation:
* No theory-side Cp, contributions to w, , FESRs = combined w,&w, fit fixes a
“* Add W, FESR (theory side: a5 and Cg): ag unchanged, redundant determination of Cg
“* Add w, (theory side: a;, Cg and Cg): ag, Cg unchanged, redundant determination of Cg
% Add w. (theory side: a;, C,): ag unchanged, redundant determination of C,



REDUNDANCY OF MULTI-WEIGHT, SINGLE-s, tOPE STRATEGY FITS (4)

Details of the modified (W, ) spectral weight analysis case (tOPE truncation Cp-.g=0)

e Alternate basis: {w(®™(x),m = 0, ..., 4} related to original {iV,..(x)} basis by

Woo (X) =w (29 (x) w0 (x) =1 — 2x + x?

W10 () =[3w @0 (x)-w 2D (x)]/2 w@D(x) =1 — 3x2 + 2x3
W, (x) =[—3w O (x)+5w D (x)-2w (22 (x) /6 w2 (x) = 1 — 4x3 + 3x*
W1, (X) =[—4W(21)(X)+7W(22)(X)'3W(23)(x)]/12 W(23)(x) — 1 — 5x% 4+ 4x5
W45 (x) =[—5w @2 (x)+9w 23 (x)-4w (25) (x)1/20 w@(x) =1 — 6x° + 5x°

 With Cp-g=0 tOPE truncation:
% No theory-side w(?3), w(24) FESR C}, contributions = combined 2-weight fit fixes
< Add w(??) (theory side: a;, Cg): @ unchanged, redundant determination of Cg
< Add w? (theory side: ag, Cg, Cg): a5, Cg unchanged, redundant determination of Cj
< Add w0 (theory side: as, C4, Cg): @, Cs unchanged, redundant determination of C,



REDUNDANCY OF MULTI-WEIGHT, SINGLE-s tOPE STRATEGY FITS (5)

Details of the w(?™ optimal weight analysis case (with W, tOPE truncation Cp-g=0)
¢ The {w(®™)(x), m=1,...,5} basis:
w@D(x) =1 — 3x2 + 2x3
w2 (x) =1 — 4x3 + 3x*
w@3(x) =1 — 5x* + 4x°
w@(x) =1 — 6x° + 5x°
w@5)(x) =1 — 7x° + 6x7

 With Cp-g=0 tOPE truncation:
% No theory-side w®3), w24 25 C contributions = combined 3-weight fit fixes o
< Add w2 (theory side: ag, Cg): a5 unchanged, redundant determination of Cq
< Add w?D (theory side: a, Cg, Cg): ag, Cg unchanged, redundant determination of Cg



REDUNDANCY THEOREM ILLUSTRATION: tOPE OPTIMAL WEIGHT FIT CASE

Redundancy of tOPE strategy

* Consider “optimal weights”:

* Results: was, wos :

Wag, ... Wos !
Wag, ... Wos !
Way, ... Wos !

as = 0.3168(27).
a, = 0.3168(27).
a, = 0.3168
a, = 0.3168(27).

irrelevant (PRS 22)

(PRS,16) | wa1(y) =1 —3y* + 24° s, Cs, Cs adds Cg
woa(y) =1 —4y® + 3y* s, Cg, Cio adds Cy
wog(y) =1 — Eyd + 4y5 a,, Cip adds Cqg
woy(y) = 1 —6y° + Eyﬁ as 5

¢ . fixes o (m2)
was(y) = 1 — T4 + 6y a,

. x° = 3.06933
X2 = 3.06033, Cyo = —0.0041(25)

. x2 = 3.06033, C19 = —0.0041(25), Cs = 0.0016(14)

. x? = 3.06933, Cyp = —0.0041(25), Cs = 0.0016(14), Cg = 0.00054(53)

« a,(m?) purely from perturbation theory, no effect from OPE; OPE coefficients not fitted

Can also get o, (m?2) from only was (not a fitl): a, = 0.3228(43) tests only pert.th., not the OPE!

18



g (m%) FROM THE V+A-CHANNEL tOPE OPTIMAL WEIGHT FIT ANALYSIS

From (i) 3-weight w(?3), w(24) w(25) fit (PT only), redundant Cg, C¢; (ii) 2-weight w(?%),
w(2>) fit (PT only), redundant C4,, Cg, C¢; (iii) single-weight w(?>) determination (PT only)
e 50=2.8 GeV? (asin PRS 2016/22):

¢ 3-weight fit: 0.3125(23).., x?/dof =11.6/2 [p-value 0.3%]

% 2-weight fit: 0.3168(22),,, x*/dof =3.1 [p-value 7.8%]

< w25 determination: 0.3228(43),, [(25) -3-weight difference: 0.0103(37),, (10),,]

ex’

* Non-trivial tensions/self-consistency/fit quality issues
¢ If due to propagating NP contamination of PT-only a; determination will show up
as increasing discrepancy at lower s
*+ = Consider lower s still in range where spectral data consistent with neglect of
DVs (for ALEPH data, sy = 2.6 GeV? or 2.4 GeV?



o (m%) FROM THE V+A-CHANNEL tOPE OPTIMAL WEIGHT FIT ANALYSIS

From (i) 3-weight w(?3), w(24) w(25) fit (PT only), redundant Cg, C¢; (ii) 2-weight w(?%),
w(2>) fit (PT only), redundant C4,, Cg, C¢; (iii) single-weight w(?>) determination (PT only)

e 50=2.8 GeV? (asin PRS 2016/22):

¢ 3-weight fit: 0.3125(23).., x?/dof =11.6/2 [p-value 0.3%]

% 2-weight fit: 0.3168(22),,, x*/dof =3.1 [p-value 7.8%]

< w25 determination: 0.3228(43),, [(25) -3-weight difference: 0.0103(37),, (10).]
¢ 50=2.6 GeV? [experimental ppy(s) compatible with O within errors]

* 3-weight fit: 0.3100(22).., x?/dof =18.7/2 [p-value ~0.0001]

% 2-weight fit: 0.3153(26),,, x*/dof =4.5 [p-value 3.4%]

< w25 determination: 0.3202(34),, [(25) -3-weight difference: 0.0102(27),, (10).]
¢ 5p=2.4 GeV? [experimental ppy(s) compatible with O within errors]

% 3-weight fit: 0.3064(22) ., x2/dof =31.9/2 [p-value ~1077]

% 2-weight fit: 0.3136(28),,, x*/dof =6.3 [p-value 1.2%]

< w(25) determination: 0.3178(30). [(25) -3-weight difference: 0.0114(22),, (11),,]

ex’

ex’

ex’



ag PT-ONLY NP-CONTAMINATION-INDUCED UNCERTAINTY IMPACT ON tOPE C),

E.g., tOPE optimal weight Cp-10=0 truncation analysis (a from w24 &w!23) part of fit)

a .= result for ag from underling combined w24 &w!2>) fit
Addition of w(23) FESR yields (redundant) C;, determination, C;,:
C10 =-[55/5] [Ie(azcz)( 0)- 15233:0(50} as)
Strong D=0 dominance of (23) FESR theory side = strong cancellation on RHS, hence strong
sensitivity to any NP contamination in w?4 &w(?3) . determination
Similarly: NP contamination of &, , C19 = strongly enhanced NP contamination of

(redundant) Cg determination from (22) FESR; NP & , C19, Cg contamination = strongly
enhanced NP contamination of (redundant) Cg determmatlon from (21) FESR

0.3168 -0.0041(41) 0.0016(26)  0.0005(12) [tOPE fit results]
0.3077 -0.0151(41) -0.0093(26)  -0.0036(12)
0.3228 0.0033(41) -0.0037(26)  0.0033(12)



tOPE c.f. DV-STRATEGY V CHANNEL OPTIMAL-WEIGHT ANALYSES

S0=2.882 GeV? tOPE analysis

e Sizeable PT-only a(m?) discrepancies
le.g., w23 w5 difference 0.0142(16)]

e Discrepancies so large no combined 3-
weight fit possible

 Even doable 2-weight w(?Y & w(2>) fit
yields disastrous x2/dof=43.1

Multi-weight, multi-sy DV-strategy fits

All so>s", variable sI*™

wo(x) = 1, wy(x)=1-x2, ws(x) =1 —3x2% + 2
x3, wa(x) =1—2x% + x*

1-, 2- and 3-weight fits, all including w,

a, DV parametersin all; Cg in w,, w3 and w,
FESRs, hence non-trivial self-consistency tests
(all successful)

a'® (m?) from 7-point s™™ stability window:
0.3077(75) & a’’ (m%)=0.1171(10)



SUMMARY/CONCLUSIONS

Multi-weight, single-s, tOPE determinations suffer from redundancy-induced issues not
guantifiable within the tOPE approach

s determinations from highest degree weight FESRs with only PT included

+* limited self-consistency tests showing significant tensions

¢ unconstrained (redundant) Cp determinations with high sensitivity to unidentified

NP contamination in the PT-only a; determination

Dramatic breakdown (huge ¥?/dof =43.1) in optimal weight V channel tOPE analysis
V channel DV-strategy analysis with improved py (s) in upper part of spectrum from
electroproduction+CVC input, in contrast,

s Passes internal self-consistency tests

¢ Yields current best t determination a§3)(m%) =0.3077(75) & a§5) (m2) =0.1171(10)
Multi-weight, multi-s, analyses required to test tOPE OPE truncation and DV omission
assumptions for self-consistency, even in analyses assuming DVs negligible



BACKUP



DV-STRATEGY w(x)=1-x* THEORY COMPONENT SELF-CONSISTENCY CHECK
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