NEW RESULTS ON $\alpha_{\rm s}$ FROM HADRONIC τ DECAY

Kim Maltman, York University (and CSSM, Adelaide) with Diogo Boito, Maarten Golterman and Santi Peris

Based on

(1) "Quark-hadron duality and the determination of α_s from hadronic τ decay: facts vs. myths" [arXiv: 2402.00588 [hep-ph]]
 (2) PRD103(2021) 034028 [arXiv:2012.10440]

CONTEXT: PDG NON-LATTICE α_s DETERMINATIONS

- Increase in precision at M_Z with decreasing μ (for fixed precision at μ): $[\delta \alpha_s(M_Z^2)/\alpha_s(M_Z^2)] \simeq [\alpha_s(M_Z^2)/\alpha_s(\mu^2)] [\delta \alpha_s(\mu^2)/\alpha_s(\mu^2)]$
- $[\alpha_s(M_Z^2)/\alpha_s(\mu^2)] \simeq 1/3$ for $\mu \simeq m_{\tau} \Rightarrow$ advantage for low-scale τ analysis
- This talk: previously unrecognized issues with one of the two main approaches to the τ determination

INGREDIENTS OF THE τ DETERMINATION (1)

• V and A vector two-point functions, scalar polarizations and spectral functions

$$\begin{split} \mathrm{I}^{V/A}_{\mu\nu}(q) &= i \int d^4x \, e^{iq \cdot x} \langle 0 | T \left\{ J^{(V/A)}_{\mu}(x) J^{(V/A)\dagger}_{\nu}(0) \right\} | 0 \rangle \\ &= \left(q_{\mu} q_{\nu} - q^2 g_{\mu\nu} \right) \Pi^{(1)}(q^2) + q_{\mu} q_{\nu} \Pi^{(0)}(q^2) \\ &= \left(q_{\mu} q_{\nu} - q^2 g_{\mu\nu} \right) \Pi^{(1+0)}(q^2) + q^2 g_{\mu\nu} \Pi^{(0)}(q^2) \\ &\rho^{(J)}(s) = \frac{1}{\pi} \mathrm{Im} \Pi^{(J)}(s) \end{split}$$

• Hadronic τ decay in the SM in terms of V and A current spectral functions:

$$\begin{split} R_{V/A;ud} &= \frac{\Gamma[\tau \to (\text{hadrons})_{V/A;ud}\nu_{\tau}(\gamma)]}{\Gamma[\tau \to e\bar{\nu}_{e}\nu_{\tau}(\gamma)]} \\ \frac{dR_{V/A;ud}(s)}{ds} &= 12\pi^{2}|V_{ud}|^{2}S_{\text{EW}}\frac{1}{m_{\tau}^{2}}\left[w_{T}(s;m_{\tau}^{2})\rho_{V/A;ud}^{(1+0)}(s) - w_{L}(s;m_{\tau}^{2})\rho_{V/A;ud}^{(0)}(s)\right] \\ w_{T}(s;s_{0}) &= \left(1 - \frac{s}{s_{0}}\right)^{2}\left(1 + \frac{2s}{s_{0}}\right), \ w_{L}(s,s_{0}) = \frac{2s}{s_{0}}\left(1 - \frac{s}{s_{0}}\right)^{2} \end{split}$$

INGREDIENTS OF THE τ DETERMINATION (2)

Polynomially weighted finite-energy sum rules (FESRs)

Polynomial w(s), kinematic-singularity-free $\Pi(Q^2) \Rightarrow$ Cauchy Theorem (FESR) relation

$$\int_{s_{th}}^{s_0} ds \, w(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \Pi(s)$$

- τ decay α_s determinations: experimental V, A (dR/ds) on LHS, theory (QCD) on RHS
- Theory side: approximate $\Pi(Q^2) \equiv \Pi(Q^2)^{OPE}(+\Pi_{DV}(Q^2))$ (α_s in perturbative part of OPE)
- Two common approaches: tOPE (ALEPH, OPAL, Pich et al), and DV-model (Boito et al)

τ DETERMINATION INGREDIENTS (3): I=1, J=0+1 V+A SPECTRAL DATA

- ALEPH 2013 τ, I=1 V+A spectral function, showing "reduced" DVs above s ~1.5-2 GeV ² (reduced c.f. those for V or A alone)
- In the literature: often used to argue for neglect of DVs in this region/claim that PT works "well" for V+A as low as s≃1 GeV²
- C.f. the τ, I=1 V+A figure, now with the non-dynamical, α_s-independent parton model contribution removed

(e.g. same figure with different

(larger) α_s -independent contribution)

τ DETERMINATION INGREDIENTS (4): I=1, J=0+1 V SPECTRAL DATA

- Improved I=1, V channel spectral distribution [Boito et al PRD103(2021) 034028]
- ALEPH $K\overline{K}$, higher-multiplicity-mode Monte Carlo input replaced with BaBar $\tau \rightarrow K\overline{K}\upsilon_{\tau}$, e^+e^- + CVC input for higher-multiplicity modes

ALEPH 2013

Experimental data (non-strange vector spectral function): [PRD103(2021) 034028]

OPAL: Ackerstaff *et al.* '98 ALEPH: Schael *et al.* '05, Davier *et al.* '14 Combination: Boito *et al.* '20 Residual modes from (mostly) electroproduction (instead of Monte-Carlo) Boito *et al.* '20

τ DETERMINATION INGREDIENTS (5): FESR THEORY-SIDE INPUT

> D=0 (perturbative) series known to O(α_s^4) (Baikov et al '08; Herzog et al '17) > D=0 OPE integrals ~1 + α_s/π +...

 $\alpha_s(m_\tau^2)$ ~0.3, hence α_s -dependent contributions numerically significant

➢ higher D: [Π(Q²)]^{OPE}_{D≥4} ≡ Σ_{D≥4} [C_D/Q^D] with effective condensates C_D (D=4: chiral and gluon condensates, D=6: 4-quark condensates,...) Expansion in powers of 1/s; known to be asymptotic (at best)

> (up to α_s-suppressed log corrections) for polynomial w(y) = w(s/s₀) = Σ_{k≥0} b_ky^k $\frac{-1}{2\pi i} \oint_{|s|=s_0} (ds/s_0) w(y) [\Pi(Q^2)]_{D\geq 4}^{OPE} = Σ_{k\geq 1} (-1)^k b_k C_{2(k+1)}/s_0^{k+1}$ ⇒ dim D scales as 1/s₀^{D/2}; degree N w(y) ↔ OPE contributions to D=2N+2

> DVs: Resonance oscillations in experimental $\rho_{V,A}(s)$ not captured by perturbation theory/the OPE (believed localized to vicinity of timelike point on RHS contour)

> tOPE vs DV-model-strategy analysis option choice (more on this below)

tOPE vs. DV-MODEL ANALYSIS STRATEGY COMPARISONS

$$\text{FESR:} \quad \int_{0}^{s_{0}} ds \, w(s \, \rho(s) = -\frac{1}{2\pi i} \oint_{|z|=s_{0}} dz \, w(z) \left(\Pi_{\text{pert.th.}}(z;\alpha_{s}) + \Pi_{\text{OPE}}(z) \right) + \int_{s_{0}}^{\infty} ds \, w(s) \, \rho_{\text{DV}}(s)$$

- tOPE:- set DV part equal to zero (this is a model for duality violations!)- include high-degree polynomials (with DVs suppressed via zeros at $z = s_0$) ("pinched" weights)- use a single s_0 value, as close as possible to m_{τ}^2 , dropping OPE parametersuntil # fit parameters < # FESRs; OPE treated as if convergent to very high order (up to $1/z^8$)
- DV: Since OPE is asymptotic, use only to low orders (max $1/z^5$), don't drop OPE parameters \geq 1 FESR with unsuppressed DVs, model with QCD-motivated *ansatz* (Regge theory and $1/N_c$)

$$\rho_{\rm DV}(s) = e^{-\delta - \gamma s} \sin(\alpha + \beta s + \mathcal{O}(\log s)) \left(1 + \mathcal{O}\left(\frac{1}{s}, \frac{1}{N_c}, \frac{1}{\log s}\right)\right)$$

use, and test consistency of approach by varying, s_0 between $\sim 1.5~{
m GeV}^2$ and m_{τ}^2 (Catà *et al.* '05, Boito *et al.* '17)

Advantage of such multi- s_0 analysis approaches: variable s_0 and D-dependent OPE, oscillatory DV scalings with $s_0 \leftrightarrow$ non-trivial internal self-consistency tests

NECESSITY OF OPE TRUNCATION IN SINGLE- s_0 **tOPE ANALYSES**

• OPE sides of doubly (or higher) pinched-weight FESRs needed to suppress DV contributions involve not just α_s but higher D non-perturbative condensates C_D

E.g.,the J=0+1 kinematic weight $w_{\tau}(y) = 1 - 3y^2 + 2y^3 \Rightarrow$ theory representation of non-strange inclusive τ decay width depends on D = 6 and 8 condensates as well as α_s

\Rightarrow fit of α_s impossible using only a single FESR (needs C_D input)

- Classic tOPE analysis "solution": add higher-degree-weight FESRs to fit needed C_D
 E.g. classic "(km) spectral weights" w_{km}(x) = (1 x)²(1 + 2x)(1 x)^kx^m, km=00, 10, 11, 12, 13 (ALEPH, OPAL, Pich et al.): 5 FESRs to fit 4 OPE parameters α_s, C₄, C₆, C₈
- Basic problem: new higher degree weights add new unknown C_D ⇒ must drop OPE terms in principle present to keep # fit parameters< # spectral integral inputs
 E.g. classic "(km) spectral weight" analyses truncate OPE at D=8, dropping C₁₀, C₁₂, C₁₄, C₁₆ counting on assumed suppression by additional powers of 1/s₀ to make this safe
- Basic truncation assumption issue: with only single s₀, impossible to use Ddependent scaling with s₀ to test self-consistency of assumed truncation

"REDUNDANCY" AND THE tOPE AND DV STRATEGY APPROACHES (1)

- Theory-side s_0 -dependence self-consistency tests need multi-weight, multi- s_0 analyses
- If all $s_0 > s_0^{min}$ for given experimental binning used, only one of a 2nd-weight spectral integral set {I(w_2, s_0)} is independent of the corresponding 1st-weight set {I(w_1, s_0)}
- \Rightarrow In fit to data $\{d_k\}$ with theory representations $\{t_k(\eta_m)\}$ involving parameters $\{\eta_m\}$, either give up s_0 -dependent multi-weight, multi- s_0 self-consistency tests to use standard χ^2 fit (as in single- s_0 tOPE analyses), or keep multi-weight, multi- s_0 set and use non- χ^2 fit (propagating full set of correlations separately). Generally

 $Q^{2}(\vec{\eta}) = [\vec{d} \cdot \vec{t}(\vec{\eta})]^{T} \tilde{C}^{-1}[\vec{d} \cdot \vec{t}(\vec{\eta})] \stackrel{\succ}{\to} \frac{\text{If data covariance matrix C non-singular, can set } \tilde{C} = C, Q^{2} = \chi^{2}$ \succ If C singular, alternate choice for \widetilde{C} , $Q^2 \neq \chi^2$ and must propagate full covariances separately

• E.g. Boito et al. V+A, V channel DV-strategy multi-weight, multi- s_0 spectral integral set fits: block-diagonal Q^2 with single-weight, multi- s_0 covariance matrices on the diagonal

"REDUNDANCY" AND THE tOPE AND DV STRATEGY APPROACHES (2)

Redundancy Theorem: Consider a data set $\{d_k, k=1...N\}$ with non-singular covariance matrix D, and associated theory representations $\{t_k(\eta_m), k=1...N\}$ involving parameters $\{\eta_m, m=1...M, M < N\}$. Now add a single new data point d_{N+1} such that (i) the extended (N+1)-point data set covariance matrix C is also non-singular and (ii) only one additional theory parameter, η_{M+1} , enters the theory representation, t_{N+1} , of d_{N+1} .

In this situation

- ★ the parameters $\eta_1, ..., \eta_M$ obtained from the extended (N+1)-point χ^2 fit are identical to those obtained from the unextended N-point χ^2 fit,
- the minimum χ² of the extended (N+1)-point fit is identical to that of the original N-point fit and
- * the extended-fit result for η_{M+1} serves only to make the theory representation t_{N+1} exactly reproduce d_{N+1} , regardless of the form chosen for t_{N+1}

The extended fit is entirely "redundant", producing no new information on the parameters of the original fit, and no physically meaningful constraint on the new parameter η_{M+1}

"REDUNDANCY" AND THE tOPE AND DV STRATEGY APPROACHES (3)

- Single-s₀ tOPE spectral integrals involving a set of linearly independent weights are linearly independent, and hence have a non-singular covariance matrix.
 Results obtained from the associated standard χ² tOPE fits in the literature are thus subject to the results of the Redundancy Theorem. (More on this below.)
- In contrast, for the block-diagonal, multi-weight, multi- s_0 DV-strategy fits in the literature, which cannot, even in principle, be of the standard χ^2 form,
 - the conclusions of the Redundancy Theorem do not hold*
 - the multi-weight, multi-s₀ nature of the fit and differing s₀- and weightdependences of the different theory contributions lead to highly non-trivial self-consistency checks on the form chosen for the theory representations (More on this below.)

*A claim to the contrary by Pich and Rodrigues-Sanchez rests on the (unexamined) assumption that the proof for the standard χ^2 fit case (which is valid) carries over to the case of non- χ^2 block-diagonal fits, which do not satisfy the conditions on which that proof is based, and for which it turns out the theorem does not hold

NON-REDUNDANCY OF MULTI-WEIGHT, MULTI- s_0 BLOCK-DIAGONAL DV-STRATEGY FITS

A two-weight, $w_0(x) = 1$, $w_2(x) = 1 - x^2$, V-channel block-diagonal fit example

- First weight fit: α_s , α_V , β_V , γ_V , δ_V from a multi- s_0 , single-weight w_0 standard χ^2 fit
- In QCD, the w_2 FESR adds one further NP theory parameter, C_6 , in the form C_6/s_0^3
- Consider also an alternate, non-QCD NP form, C'/s_0^5 , on the w_2 theory side
- Adding the w_2 FESR at a single s_0 , the two-weight $w_0 \& w_2 \chi^2$ fit returns unchanged α_s , α_V , β_V , γ_V , δ_V , regardless of the w_2 form used [as per the Redundancy Theorem]
- In contrast: w_0 and $w_0 \& w_2$ fits with w_2 FESR at the same multi- $s_0 > s_0^{min}$ set as w_0 :

• $\alpha_s(m_{ au}^2)$ as a function of s_0^{min}

- > **Blue:** from the single-weight w_0 fit
- > Green: from the $w_0 \& w_2$ fit with QCD w_2 form
- **Red:** from the $w_0 \& w_2$ fit with non-QCD w_2 form
- Bue-red differences: non-applicability of the Redundancy Theorem for block-diagonal non-χ² fits
- Close (but not exact) blue-green agreement: (i) non-redundancy and (ii) non-trivial self-consistency tests of the use of the QCD NP form from adding the w₂ FESR also a multiple s₀

REDUNDANCY OF MULTI-WEIGHT, SINGLE- s_0 **tOPE STRATEGY FITS (1)**

- OPAL, ALEPH, Baikov et al., Pich et al.: classic *km=00, 10, 11, 12, 13* spectral weights, V and V+A channel fits with $s_0 = m_{\tau}^2$, $C_{D>8} = 0$ tOPE truncation
- Pich and Rodrigues-Sanchez '16/'22 (PRS), three 5-weight tOPE fits, ALEPH 2013 V+A data, omitting last two large-error bins, hence $s_0 = 2.8 \text{ GeV}^2$:

* *km=00, 10, 11, 12, 13* spectral weights, $C_{D>8}=0$ tOPE truncation

- ✤ Modified km=00, 10, 11, 12, 13 spectral weights, $\hat{w}_{km}(x)=(1-x)^{k+2}x^m$, $C_{D>8}=0$ tOPE truncation
- * m=1,...,5 "optimal weights", $w^{(2m)}(x) = 1 (m+2)x^{m+1} + (m+1)x^{m+2}$, $C_{D>10}=0$ tOPE truncation
- Technical note: basis transformations: A multi-weight $\{W_k\}$ fit, and fit with alternate weight basis $\{W'_k\}, W_k(x) = \sum_m A_{km} W'_m(x)$ and equivalently transformed minimizer $(Q')^2(\vec{\eta}) = [\vec{d}' \cdot \vec{t}'(\vec{\eta})']^T (\tilde{C}^{-1})' [\vec{d}' \cdot \vec{t}(\vec{\eta})'], (\tilde{C}^{-1})' = A^T \tilde{C}^{-1} A$ yield identical results for the fit parameters $\{\eta_m\}$

REDUNDANCY OF MULTI-WEIGHT, SINGLE- s_0 **tOPE STRATEGY FITS (2)**

Post-redundancy-theorem revisions of the conventional understanding of tOPE output (for definiteness, starting from the classic km spectral weight example)

Conventional understanding

- α_s largely from lowest degree *km=00* FESR
- $C_{4,6,8}$ from remaining, higher degree FESRs
- Small central condensate values support OPE truncation at D=8
- Similar α_s from modified km spectral weight and (2m) optimal weight analyses represent non-trivial tests "because of their very different dependence on NP condensate contributions"

Post-redundancy-theorem revisions

- α_s from FESRs of two highest degree combinations, with only perturbative contributions on the theory sides
- α_s of all three 5-weight PRS tOPE fits from $w^{(23)}$, $w^{(24)}$, $w^{(25)}$ FESR combinations
- (Redundantly) determined C_D from lowerdegree-weight FESRs, and play no role in the corresponding α_s determinations
- Generic very large C_D uncertainties from even small NP contaminations in the perturbative-only α_s determinations

REDUNDANCY OF MULTI-WEIGHT, SINGLE- s_0 **tOPE STRATEGY FITS (3)**

A few details of the classic km spectral weight analysis case (tOPE truncation $C_{D>8}=0$)

• Alternate basis:
$$\hat{w}_{1}(x) = 1 - \frac{15}{2}x^{4} + 12x^{5} - \frac{17}{2}x^{6} + 3x^{7} = \frac{3}{2}w^{(23)}(x) - w^{(24)}(x) + \frac{1}{2}w^{(25)}(x),$$

 $\hat{w}_{2}(s) = 1 - 9x^{4} + 12x^{5} - 4x^{6} = \frac{9}{5}w^{(22)}(x) - \frac{4}{5}w^{(24)}(x),$
 $\hat{w}_{2}(s) = 1 - 9x^{4} + 12x^{5} - 4x^{6} = \frac{9}{5}w^{(22)}(x) - \frac{4}{5}w^{(24)}(x),$
 $\hat{w}_{3}(x) = 1 + 2x^{3} - 9x^{4} + 6x^{5} = -\frac{1}{2}w^{(22)}(x) + \frac{3}{2}w^{(23)}(x),$
 $\hat{w}_{4}(s) = 1 - 3x^{2} + 2x^{3} = w^{(21)}(x),$
 $\hat{w}_{4}(s) = 1 - 3x^{2} + 2x^{3} = w^{(21)}(x),$
 $\hat{w}_{5}(x) = 1 + \frac{2}{3}x - \frac{23}{3}x^{4} + 6x^{5}$
 $= -\frac{1}{3}w^{(20)}(x) - \frac{1}{9}w^{(21)}(x) - \frac{1}{18}w^{(22)}(x) + \frac{3}{2}w^{(23)}(x).$
 $w_{10}(x) = \frac{\hat{w}_{4}(x) ,$
 $w_{10}(x) = \frac{3}{2}\hat{w}_{3}(x) + \hat{w}_{4}(x) - \frac{3}{2}\hat{w}_{5}(x) ,$
 $w_{11}(x) = -\frac{11}{6}\hat{w}_{3}(x) + \frac{1}{3}\hat{w}_{4}(x) + \frac{3}{2}\hat{w}_{5}(x) ,$
 $w_{12}(x) = \frac{1}{2}\hat{w}_{2}(x) - \frac{1}{6}\hat{w}_{3}(x) - \frac{1}{3}\hat{w}_{4}(x) ,$
 $w_{12}(x) = -\frac{2}{3}\hat{w}_{1}(x) + \frac{1}{6}\hat{w}_{2}(x) + \frac{1}{2}\hat{w}_{3}(x) .$

• With $C_{D>8}$ =0 tOPE truncation:

★ No theory-side C_D contributions to $\hat{w}_{1,2}$ FESRs \Rightarrow combined $\hat{w}_1 \& \hat{w}_2$ fit fixes α_s Add $\hat{w}_1 \in SR$ (theory side: α_1 and C_2): α_2 unchanged redundant determination of C_2

Add \hat{w}_3 FESR (theory side: α_s and C_8): α_s unchanged, redundant determination of C_8

- Add \hat{w}_4 (theory side: α_s , C_8 and C_6): α_s , C_8 unchanged, redundant determination of C_6
- Add \hat{w}_5 (theory side: α_s , C_4): α_s unchanged, redundant determination of C_4

REDUNDANCY OF MULTI-WEIGHT, SINGLE- s_0 **tOPE STRATEGY FITS (4)**

Details of the modified (\hat{w}_{km}) spectral weight analysis case (tOPE truncation $C_{D>8}$ =0)

• Alternate basis: $\{w^{(2m)}(x), m = 0, ..., 4\}$ related to original $\{\widehat{w}_{km}(x)\}$ basis by

$$\begin{split} \widehat{w}_{00} &(\mathbf{x}) = w^{(20)}(\mathbf{x}) \\ \widehat{w}_{10} &(\mathbf{x}) = [3w^{(20)}(\mathbf{x}) - w^{(21)}(\mathbf{x})]/2 \\ \widehat{w}_{11} &(\mathbf{x}) = [-3w^{(20)}(\mathbf{x}) + 5w^{(21)}(\mathbf{x}) - 2w^{(22)}(\mathbf{x})]/6 \\ \widehat{w}_{12} &(\mathbf{x}) = [-4w^{(21)}(\mathbf{x}) + 7w^{(22)}(\mathbf{x}) - 3w^{(23)}(\mathbf{x})]/12 \\ \widehat{w}_{13} &(\mathbf{x}) = [-5w^{(22)}(\mathbf{x}) + 9w^{(23)}(\mathbf{x}) - 4w^{(25)}(\mathbf{x})]/20 \end{split}$$

 $w^{(20)}(x) = 1 - 2x + x^{2}$ $w^{(21)}(x) = 1 - 3x^{2} + 2x^{3}$ $w^{(22)}(x) = 1 - 4x^{3} + 3x^{4}$ $w^{(23)}(x) = 1 - 5x^{4} + 4x^{5}$ $w^{(24)}(x) = 1 - 6x^{5} + 5x^{6}$

• With $C_{D>8}$ =0 tOPE truncation:

★ No theory-side w⁽²³⁾, w⁽²⁴⁾ FESR C_D contributions ⇒ combined 2-weight fit fixes α_s
★ Add w⁽²²⁾ (theory side: α_s, C₈): α_s unchanged, redundant determination of C₈
★ Add w⁽²¹⁾ (theory side: α_s, C₈, C₆): α_s, C₈ unchanged, redundant determination of C₆
★ Add w⁽²⁰⁾ (theory side: α_s, C₄, C₆): α_s, C₆ unchanged, redundant determination of C₄

REDUNDANCY OF MULTI-WEIGHT, SINGLE- s_0 **tOPE STRATEGY FITS (5)**

Details of the $w^{(2m)}$ optimal weight analysis case (with w_{km} tOPE truncation $C_{D>8}$ =0)

• The { $w^{(2m)}(x)$, m=1,...,5} basis:

$$w^{(21)}(x) = 1 - 3x^{2} + 2x^{3}$$

$$w^{(22)}(x) = 1 - 4x^{3} + 3x^{4}$$

$$w^{(23)}(x) = 1 - 5x^{4} + 4x^{5}$$

$$w^{(24)}(x) = 1 - 6x^{5} + 5x^{6}$$

$$w^{(25)}(x) = 1 - 7x^{6} + 6x^{7}$$

• With $C_{D>8}$ =0 tOPE truncation:

★ No theory-side w⁽²³⁾, w⁽²⁴⁾, w⁽²⁵⁾ C_D contributions ⇒ combined 3-weight fit fixes α_s
 ★ Add w⁽²²⁾ (theory side: α_s, C₈): α_s unchanged, redundant determination of C₈
 ★ Add w⁽²¹⁾ (theory side: α_s, C₈, C₆): α_s, C₈ unchanged, redundant determination of C₆

REDUNDANCY THEOREM ILLUSTRATION: tOPE OPTIMAL WEIGHT FIT CASE

- Results: $w_{24}, w_{25}: \alpha_s = 0.3168(27), \chi^2 = 3.06933$ $w_{23}, \dots w_{25}: \alpha_s = 0.3168(27), \chi^2 = 3.06933, C_{10} = -0.0041(25)$ $w_{22}, \dots w_{25}: \alpha_s = 0.3168(27), \chi^2 = 3.06933, C_{10} = -0.0041(25), C_8 = 0.0016(14)$ $w_{21}, \dots w_{25}: \alpha_s = 0.3168(27), \chi^2 = 3.06933, C_{10} = -0.0041(25), C_8 = 0.0016(14), C_6 = 0.00054(53)$
- $\alpha_s(m_{\tau}^2)$ purely from perturbation theory, *no* effect from OPE; OPE coefficients not fitted Can also get $\alpha_s(m_{\tau}^2)$ from *only* w_{25} (not a fit!): $\alpha_s = 0.3228(43)$ tests only pert.th., not the OPE!

$lpha_s(m_{ au}^2)$ FROM THE V+A-CHANNEL tOPE OPTIMAL WEIGHT FIT ANALYSIS

From (i) 3-weight $w^{(23)}$, $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_8 , C_6 ; (ii) 2-weight $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_{10} , C_8 , C_6 ; (iii) single-weight $w^{(25)}$ determination (PT only)

- s₀=2.8 GeV² (as in PRS 2016/22):
 ★ 3-weight fit: 0.3125(23)_{ex}, χ²/dof =11.6/2 [p-value 0.3%]
 ★ 2-weight fit: 0.3168(22)_{ex}, χ²/dof =3.1 [p-value 7.8%]
 ★ w⁽²⁵⁾ determination: 0.3228(43)_{ex} [(25) -3-weight difference: 0.0103(37)_{ex} (10)_{th}]
 - Non-trivial tensions/self-consistency/fit quality issues
 - * If due to propagating NP contamination of PT-only α_s determination will show up as increasing discrepancy at lower s_0
 - ✤ ⇒ Consider lower s_0 still in range where spectral data consistent with neglect of DVs (for ALEPH data, $s_0 = 2.6 \ GeV^2$ or 2.4 GeV^2

$lpha_s(m_{ au}^2)$ FROM THE V+A-CHANNEL tOPE OPTIMAL WEIGHT FIT ANALYSIS

From (i) 3-weight $w^{(23)}$, $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_8 , C_6 ; (ii) 2-weight $w^{(24)}$, $w^{(25)}$ fit (PT only), redundant C_{10} , C_8 , C_6 ; (iii) single-weight $w^{(25)}$ determination (PT only)

s₀=2.8 GeV² (as in PRS 2016/22):
 ★ 3-weight fit: 0.3125(23)_{ex}, χ²/dof =11.6/2 [p-value 0.3%]
 ★ 2-weight fit: 0.3168(22)_{ex}, χ²/dof =3.1 [p-value 7.8%]

* $w^{(25)}$ determination: 0.3228(43)_{ex} [(25) -3-weight difference: 0.0103(37)_{ex} (10)_{th}]

- $s_0=2.6 \ GeV^2$ [experimental $\rho_{DV}(s)$ compatible with 0 within errors] • 3-weight fit: $0.3100(22)_{ex}$, $\chi^2/dof = 18.7/2$ [p-value ~0.0001] • 2-weight fit: $0.3153(26)_{ex}$, $\chi^2/dof = 4.5$ [p-value 3.4%] • $w^{(25)}$ determination: $0.3202(34)_{ex}$ [(25) -3-weight difference: $0.0102(27)_{ex}$ (10)_{th}]
- $s_0=2.4 \ GeV^2$ [experimental $\rho_{DV}(s)$ compatible with 0 within errors] • 3-weight fit: 0.3064(22)_{ex}, χ^2 /dof =31.9/2 [p-value ~10⁻⁷] • 2-weight fit: 0.3136(28)_{ex}, χ^2 /dof =6.3 [p-value 1.2%] • $w^{(25)}$ determination: 0.3178(30)_{ex} [(25) -3-weight difference: 0.0114(22)_{ex} (11)_{th}]
 - Deterioration with decreasing s₀ as expected if NP contamination present

α_S PT-ONLY NP-CONTAMINATION-INDUCED UNCERTAINTY IMPACT ON tOPE C_D

E.g., tOPE optimal weight $C_{D>10}$ =0 truncation analysis (α_s from w⁽²⁴⁾ &w⁽²⁵⁾ part of fit)

- $\bar{\alpha}_s \equiv \text{result for } \alpha_s \text{ from underling combined } w^{(24)} \& w^{(25)} \text{ fit}$
- Addition of $w^{(23)}$ FESR yields (redundant) C_{10} determination, \overline{C}_{10} :

 $\bar{C}_{10} = -[s_0^5/5] \left[I_{exp}^{(23)}(s_0) - I_{th;D=0}^{(23)}(s_0; \bar{\alpha}_s) \right]$

- Strong D=0 dominance of (23) FESR theory side \Rightarrow strong cancellation on RHS, hence strong sensitivity to any NP contamination in w⁽²⁴⁾ & w⁽²⁵⁾ α_s determination
- Similarly: NP contamination of $\bar{\alpha}_s$, $\bar{C}_{10} \Rightarrow$ strongly enhanced NP contamination of (redundant) \bar{C}_8 determination from (22) FESR; NP $\bar{\alpha}_s$, \bar{C}_{10} , \bar{C}_8 contamination \Rightarrow strongly enhanced NP contamination of (redundant) \bar{C}_6 determination from (21) FESR

$\overline{\alpha}_{s}$	\overline{C}_{10} [GeV ¹⁰]	\overline{C}_8 [GeV ⁸]	\overline{C}_6 [GeV ⁶]	
0.3168	-0.0041(41)	0.0016(26)	0.0005(12)	[tOPE fit results]
0.3077	-0.0151(41)	-0.0093(26)	-0.0036(12)	
0.3228	0.0033(41)	-0.0037(26)	0.0033(12)	

tOPE c.f. DV-STRATEGY V CHANNEL OPTIMAL-WEIGHT ANALYSES

s_0 =2.882 GeV² tOPE analysis

- Sizeable PT-only $\alpha_s(m_\tau^2)$ discrepancies
- Discrepancies so large no combined 3weight fit possible
- Even doable 2-weight $w^{(24)}$ & $w^{(25)}$ fit yields disastrous χ^2 /dof=43.1

Multi-weight, multi- s_0 DV-strategy fits

- All $s_0 > s_0^{min}$, variable s_0^{min}
- [e.g., $w^{(23)}$, $w^{(25)}$ difference 0.0142(16)] $w_0(x) = 1$, $w_2(x) = 1 x^2$, $w_3(x) = 1 3x^2 + 2$ $x^3, w_3(x) = 1 - 2x^2 + x^4$
 - 1-, 2- and 3-weight fits, all including w_0
 - α_s , DV parameters in all; C_6 in w_2 , w_3 and w_4 FESRs, hence non-trivial self-consistency tests (all successful)
 - $\alpha_s^{(3)}(m_\tau^2)$ from 7-point s_0^{min} stability window: $0.3077(75) \leftrightarrow \alpha_s^{(5)}(m_Z^2) = 0.1171(10)$

SUMMARY/CONCLUSIONS

- Multi-weight, single-s₀ tOPE determinations suffer from redundancy-induced issues not quantifiable within the tOPE approach
 - determinations from highest degree weight FESRs with only PT included
 - Iimited self-consistency tests showing significant tensions
 - * unconstrained (redundant) C_D determinations with high sensitivity to unidentified NP contamination in the PT-only α_s determination
- Dramatic breakdown (huge χ^2 /dof =43.1) in optimal weight V channel tOPE analysis
- V channel DV-strategy analysis with improved $\rho_V(s)$ in upper part of spectrum from electroproduction+CVC input, in contrast,

Passes internal self-consistency tests

♦ Yields current best τ determination $\alpha_s^{(3)}(m_\tau^2) = 0.3077(75) \leftrightarrow \alpha_s^{(5)}(m_Z^2) = 0.1171(10)$

• Multi-weight, multi-s₀ analyses required to test tOPE OPE truncation and DV omission assumptions for self-consistency, even in analyses assuming DVs negligible

BACKUP

DV-STRATEGY w(x)=1- x^2 **THEORY COMPONENT SELF-CONSISTENCY CHECK**

