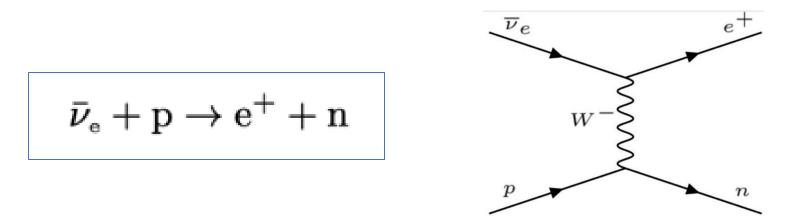
Theoretical evaluation of the IBD cross section

Giulia Ricciardi

XVIth Quark Confinement and the Hadron Spectrum Conference Cairns Convention Centre, Cairns, Queensland, Australia 19-24 August 2024 (inclusive) 22 August

Inverse beta decay (IBD)



by far the most important mechanism of interaction of low-energy antineutrinos precision of theoretical cross section crucial for high statistics experiments

Calculation of the amplitude

Theoretical uncertainties

Experimental relevance

THE SIX FORM FACTORS

Neutrino interactions with a free nucleon:

 $M = (m_n + m_p)/2.$

same basic characteristics of neutrino-lepton interactions
 generic Lorentz invariant hadronic current

$$\mathcal{M} = \bar{v}_{\nu}\gamma^{a}(1-\gamma_{5})v_{e} \times \bar{u}_{n}\left(f_{1}\gamma_{a}+g_{1}\gamma_{a}\gamma_{5}+if_{2}\sigma_{ab}\frac{q^{b}}{2M}+g_{2}\frac{q_{a}}{M}\gamma_{5}+f_{3}\frac{q_{a}}{M}+ig_{3}\sigma_{ab}\frac{q^{b}}{2M}\gamma_{5}\right)u_{p}$$

SECOND CLASS CURRENTS

$$GV_{\mu}G^{-1} = V_{\mu}, \quad GA_{\mu}G^{-1} = -A_{\mu}$$
 First Class Standard Model
 $GV_{\mu}G^{-1} = -V_{\mu}, \quad GA_{\mu}G^{-1} = A_{\mu}$ Second Class

SCC absent if SU(3) symmetry holds (or charge symmetry & time reversal)

(Weinberg, Ankovski, Giunti, Ivanov, ...) $_{5}$

THE CROSS SECTION

$$\overline{|\mathcal{M}^2|} = A_{\bar{\nu}}(t) - (s-u)B_{\bar{\nu}}(t) + (s-u)^2 C_{\bar{\nu}}(t)$$

Including the SCC currents

G.R., Vissanii & Vignaroli

$$\frac{d\sigma}{dt} = \frac{G_F^2 \cos^2 \theta_C}{64\pi (s - m_p^2)^2} \overline{|\mathcal{M}^2|} \qquad \cos \theta_C = V_{\rm ud}$$

$$d\sigma(E_{\nu}, E_e) \to d\sigma(E_{\nu}, E_e) \left[1 + \frac{\alpha}{\pi} \left(6.00 + \frac{3}{2} \log \frac{m_p}{2E_e} + 1.2 \left(\frac{m_e}{E_e} \right)^{1.5} \right) \right]$$

Including radiative corrections

Towner, Beacom & Parke, Kurylov, Ramsey-Musolf & Vogel 6

CABIBBO ANGLE ANOMALY

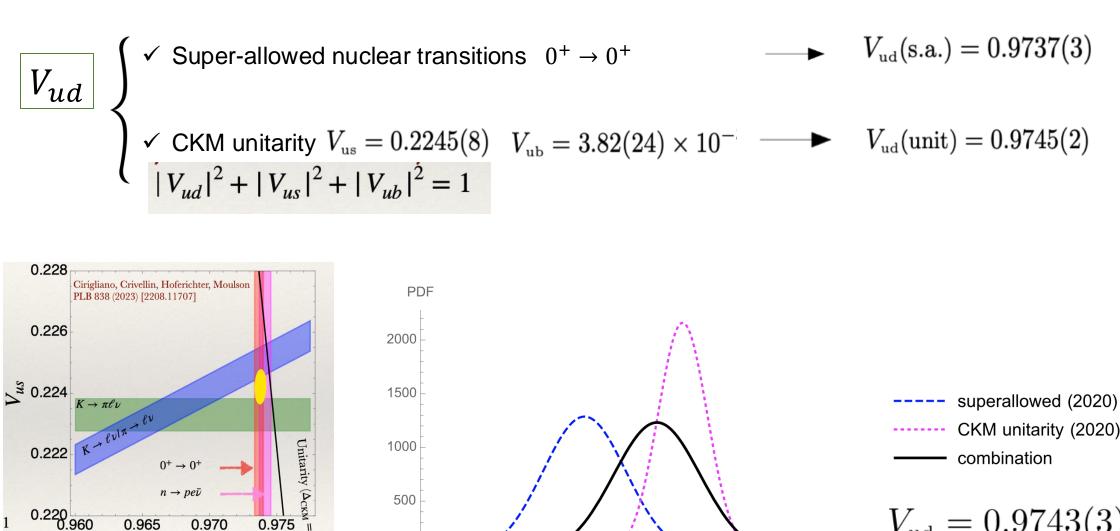
0.9730

0.9735

0.9740

0.9745

0.9750



$$V_{\rm ud} = 0.9743(3)$$

 V_{uu}

0.9755

GR, Vissani & Vignaroli

From talk by Andre Walker-Loud

0.965

0.970

Vud

0.975

0.220

NEUTRON LIFETIME

$$\frac{1}{\tau_{\rm n}} = \frac{V_{\rm ud}^2 \ (1+3\lambda^2)}{4906.4 \pm 1.7 {\rm s}}$$

$$\lambda = -\frac{g_1(0)}{f_1(0)} \quad \text{vector-axial/vector} \quad \bar{u}_n \Big(f_1 \gamma_a + g_1 \gamma_a \gamma_5 + i f_2 \sigma_{ab} \frac{q^b}{2M} + g_2 \frac{q_a}{M} \gamma_5 + f_3 \frac{q_a}{M} + i g_3 \sigma_{ab} \frac{q^b}{2M} \gamma_5 \Big) u_p$$

 $a^2 - 0$

 $au_{
m n}({
m SM})=878.38\pm0.89~{
m s.}$ Czarnecki, Marciano & Sirlin 2019

✓ ultra-cold neutrons are trapped their number is measured over time, determining the total average lifetime

 $\tau_{\rm n}({\rm tot}) = 878.52 \pm 0.46 \ {\rm s}$

✓ the products of the single decay channel predicted by the standard model are observed, using beam neutrons

$$\tau_{\rm n}({\rm beam}) = 888.0 \pm 2.0 \ {\rm s}$$

AXIAL FORM FACTOR AT $q^2 = 0$

 $\lambda = -\frac{g_1(0)}{f_1(0)}$ Direct measure of vector-axial form factor from polarized neutrons Eight different measurements available; more precise PERKEO-III (2019)

average
$$\lambda = 1.2755(5)$$
 $S = \sqrt{rac{\chi^2_{
m min}}{N-1}}$ $S = 2.3$

See also talk by Andre Walker-Loud

- \checkmark excluding the four measurements prior to 2002 S = 0.7
- \checkmark include them, but enlarging their error by a factor 2 S = 1.2.

$$\Sigma^2 = \left(\begin{array}{ccc} (\delta V_{\rm ud})^2 &, \ \rho \ \delta V_{\rm ud} \ \delta \lambda \\ \\ \rho \ \delta V_{\rm ud} \ \delta \lambda &, \quad (\delta \lambda)^2 \end{array} \right)$$

Independent
$$V_{ud}$$
, λ

$$\begin{cases}
V_{ud} = 0.97427(32) \\
\lambda = 1.27601(52) \\
\rho = 0
\end{cases}$$

Constraints from τ_n ($V_{ud} = 0.97425(26)$) $\lambda = 1.27597(42)$ $\rho = -0.53$

FORM FACTORS $q^2 \neq 0$

Form factor linear expansion (at lower energies) in lieu of modelling (e.g. double dipole is untested at small E_{ν})

$$\frac{F(Q^2)}{F(0)} \equiv 1 - \frac{\langle r^2 \rangle \ Q^2}{6} + \mathcal{O}(Q^4) \qquad Q^2 = -t > 0.$$

VECTOR FORM FACTORS

$$\bar{u}_n \left(f_1 \gamma_a + g_1 \gamma_a \gamma_5 + i f_2 \sigma_{ab} \frac{q^b}{2M} + g_2 \frac{q_a}{M} \gamma_5 + f_3 \frac{q_a}{M} + i g_3 \sigma_{ab} \frac{q^b}{2M} \gamma_5 \right) u_p$$

$$f_1 \approx 1 + \frac{(2.41 \pm 0.02) t}{\text{GeV}^2}$$
 $f_2 \approx \xi \left(1 + \frac{(3.21 \pm 0.02) t}{\text{GeV}^2}\right)$

Lin, Hammer & Meissner 21 $(e^-N \rightarrow e^-N)$

Negligible source of uncertainty to the cross section

AXIAL FORM FACTOR

\checkmark Dipole approximation

$$g_1 = g_1(0)/(1 - t/M_A^2)^2$$

 $M_A = 1.014 \pm 0.014 \; {\rm GeV}$

Average: Bodek et al. 2008

$M_A \; [{ m GeV}]$	
1.07(11)	NOMAD [43]
1.08(19)	NOMAD [43]
$1.19^{+0.09(0.12)}_{-0.10(-0.14)}$	MINOS [44]
0.99	MINER ν A [45, 46]
1.20(12)	K2K [47]
1.36(6)	$MiniBooNE \ [41]$
1.31(3)	$MiniBooNE \ [41]$
$1.26\substack{+0.21 \\ -0.18}$	T2K [42]

\checkmark z-expansion

based on a conformal mapping: building the largest possible range of convergence for the form factors

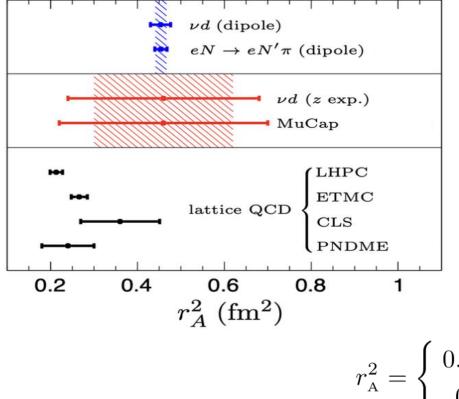
z-expans.	dipole approx.	
$M_A \; [{ m GeV}]$	$M_A [{ m GeV}]$	
$0.85^{+0.22}_{-0.07}\pm0.09$	1.29 ± 0.05	(ν_{μ}) MiniBooNE [50]
$0.84^{+0.12}_{-0.04}\pm0.11$	$1.27\substack{+0.03 \\ -0.04}$	$(\bar{\nu}_{\mu})$ MiniBooNE [51]
$0.92^{+0.12}_{-0.13}\pm0.08$	1.00 ± 0.02	(π) MiniBooNE [50]

$$rac{g_1(Q^2)}{g_1(0)} \equiv 1 - rac{\langle r_{
m A}^2
angle \; Q^2}{6} + \mathcal{O}(Q^4)$$

low SN & reactor neutrino energies

$$M_{\rm A}^2 \equiv -2\frac{g_1'(0)}{g_1(0)} = \frac{12}{\langle r_{\rm A}^2 \rangle}$$

Dipole approximation



 νN direct measurements of charged current interactions

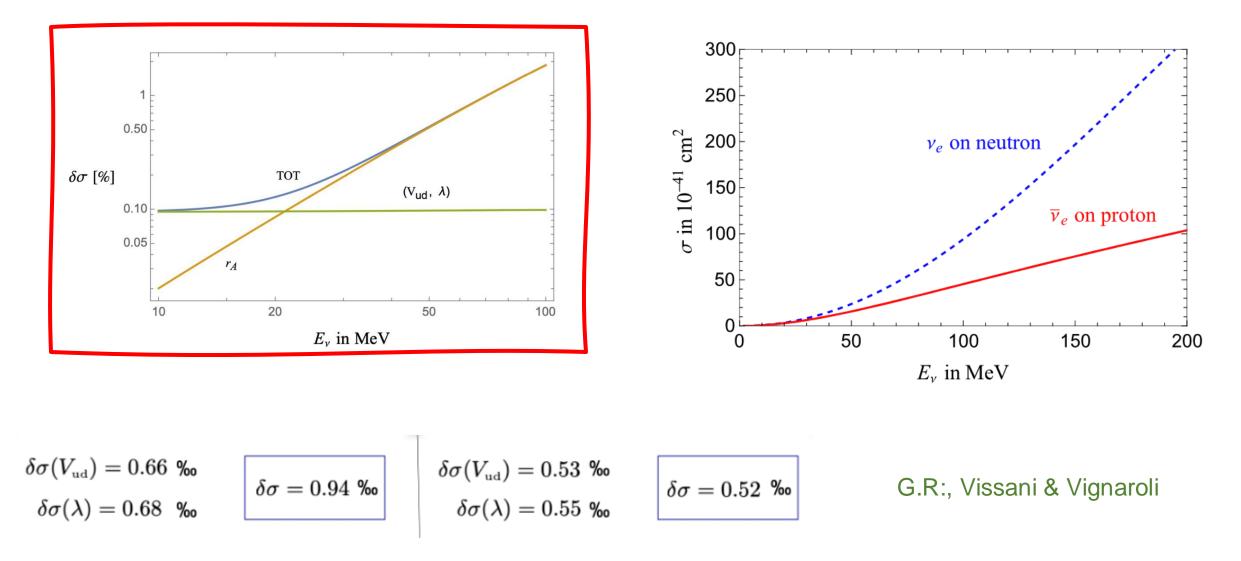
MuCap muon capture on proton

 $e \rightarrow \pi$ single pion production by electrons on nucleons

$$f_{\rm A}^2 = \begin{cases} 0.454 \pm 0.012 \ {\rm fm}^2 \\ 0.46 \pm 0.16 \ {\rm fm}^2 \end{cases}$$

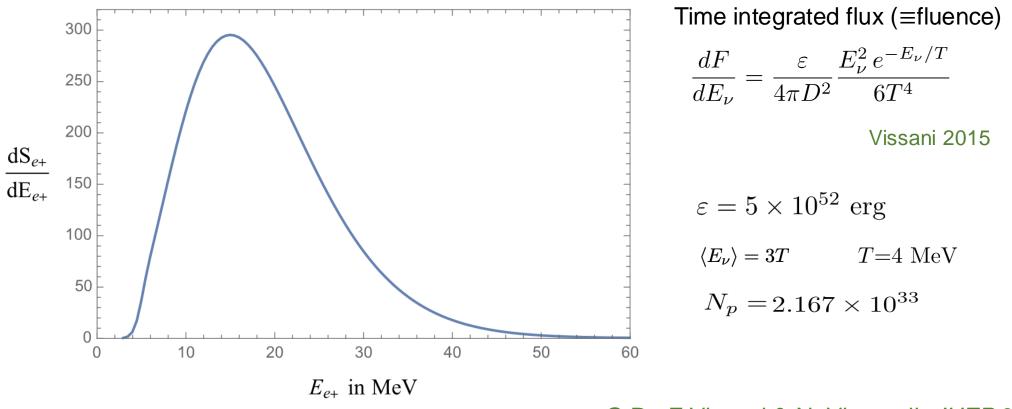
 $u N(dipole) \& e \rightarrow \pi$ Bodek et al 2008 $u N \& \mu Cap, Hill et al 2018$

CROSS SECTION & TOTAL UNCERTAINTY



POSITRON SPECTRUM IN SUPERKAMIOKANDE

$$\frac{dS_e}{dE_e} = N_p \int_{E_\nu^{max}}^{E_\nu^{min}} dE_\nu \frac{dF}{dE_\nu} (E_\nu) \frac{d\sigma}{dE_e} (E_\nu, E_e) \epsilon(E_e)$$



G.R., F Vissani & N. Vignaroli, *JHEP* 08 (2022) 212

DIFFUSE SUPERNOVA NEUTRINO BACKGROUND

DSNB: Diffuse neutrino flux from past core-collapse supernovae

Existing and future large water-Cherenkov and LS detectors have good potential to observe the DSNB signal (up to a few tens of MeV) via IBD (primary observation channel)

- Putting Gd into Super-K enables highly efficient neutron tagging & provides powerful background rejection
- ✓ LS detectors such as JUNO have intrinsically high neutron tagging efficiencies for neutron capture on free protons

 R_{SN} Core collapse SN rate $E_{\nu} = E'_{\nu}/(1+z)$ red-shifted neutrino energy upon detection $|dt/dz|^{-1} = H_0(1+z)[\Omega_{\Lambda} + \Omega_m(1+z)^3]^{\frac{1}{2}}$ JUNO collab Prog.Part.Nucl.Phys. 123 (2022) 103927

15

REACTOR ANTINEUTRINO EVENTS

$$N_{ev} = \epsilon N_p \tau \sum_{r=1}^{N_{react}} \frac{P_r}{4\pi L_r^2} < LF_r > \times \int dE_{\bar{\nu}_e} \sum_{i=1}^4 \frac{p_i}{Q_i} \phi_i(E_{\bar{\nu}_e}) \sigma(E_{\bar{\nu}_e}) P_{ee}(E_{\bar{\nu}_e}, \hat{\theta}, L_r),$$

where ϵ is the detection efficiency, N_p is the number of target protons, and τ is the data-taking time. The index r cycles over the number of reactors considered: P_r is the nominal thermal power, L_r is the reactor-detector distance, $\langle LF_r \rangle$ indicates the average Load Factor (LF)³ in the period τ , $E_{\bar{\nu}_e}$ is the antineutrino energy. The index i stands for the different nuclear-fuel components (²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu), p_i is the power fraction, Q_i is the energy released per fission of the component i, and $\phi_i(E_{\bar{\nu}})$ is the antineutrino energy spectrum originated by the fission of component i. $\sigma(E_{\bar{\nu}_e})$ is the inverse-beta-decay cross section. P_{ee} is the energy-dependent survival probability of electron antineutrinos traveling the baseline L_r , for mixing parameters $\hat{\theta} = (\delta m^2, \Delta m^2, \sin^2 \theta_{12}, \sin^2 \theta_{13})$.

JUNO collab., J.Phys.G 43 (2016) 3, 030401

CONCLUSIONS

- Improved determination of the cross section and assessment of uncertainty
 - □ Impact on od SCC current negligible on cross sections
 - □ At lower energy
 - overall uncertainty at the 1 permil level
 - (from Cabibbo angle and axial coupling)
 - □ At higher energies
 - uncertainty grows up to percent level (from axial form factor)

✓ important for current and future high statistic experiments
 e.g. SN observations, DSNB, …