Effective field theory for $\mu \rightarrow e$ conversion in nuclei

Martin Hoferichter

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

Aug 20, 2024

XVIth Quark Confinement and the Hadron Spectrum Conference

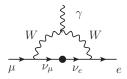
Cairns, Australia

MH, Menéndez, Noël PRL 130 (2023) 131902

Noël, MH JHEP 08 (2024) 052

Heinz, MH, Miyagi, Noël, Schwenk in preparation

Why lepton flavor violation?



Lepton flavor symmetry

- Lepton flavor conserved in SM with massless neutrinos
- Neutrino oscillations sign of lepton flavor violation (LFV) in neutral sector
- Propagates to charged sector via mass insertions in loops, but, e.g.,

$$\mathsf{Br}[\mu o e\gamma] \simeq \left(rac{\Delta m_
u^2}{M_W^2}
ight)^2 \simeq 10^{-50}$$

 \hookrightarrow unobservably small in SM!

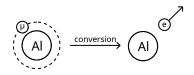
- Lepton flavor "accidental" symmetry of SM
 - $\hookrightarrow \mathsf{LFV}$ expected to occur for a wide range of BSM scenarios
- In practice: LFV highly sensitive null test

LFV process	current limit on Br	(planned) experiments	
$\mu ightarrow {m e} \gamma$	$< 4.2 imes 10^{-13}$ MEG	MEG II	
$\mu ightarrow$ 3e	$< 1.0 imes 10^{-12}$ SINDRUM	Mu3e	
$ au o \ell \gamma, 3\ell, \ell P, \dots$	$\lesssim 10^{-8}$ Belle, LHCb,	Belle 2,	
$K ightarrow \mu e, \mu e \pi, \mu e \pi \pi$	$\lesssim 10^{-11}$ KTeV, NA62, BNL	KOTO, LHCb	
$\pi^0 ightarrow ar{\mu} e$	$< 3.6 imes 10^{-10}$ KTeV		
$\eta ightarrow ar{\mu} {m e}$	$< 6 imes 10^{-6}$ spec		
$\eta' ightarrow ar{\mu} oldsymbol{e}$	$< 4.7 imes 10^{-4}$ CLEO II	JEF, REDTOP (?)	
$\operatorname{Au}\mu^- o \operatorname{Au} e^-$	$< 7 imes 10^{-13}$ SINDRUM II		
${\rm Ti}\mu^- \to {\rm Ti}{\it e}^-$	$< 6.1 imes 10^{-13}$ SINDRUM II		
${\sf Al}\mu^- o {\sf Al}{\it e}^-$	$\lesssim 10^{-17}$ (projected)	Mu2e, COMET	

 \hookrightarrow major experimental improvements expected in coming years!

æ

What is $\mu \rightarrow e$ conversion?



- What is $\mu \rightarrow e$ conversion? A theorist's perspective:
 - Muon bound in 1s level of nucleus
 - Muon converts to electron within Coulomb field of nucleus

$$\bar{\mathbf{e}}\sigma^{\alpha\beta}\mu F_{\alpha\beta}, \quad \bar{\mathbf{e}}\mu\,\bar{\mathbf{q}}\mathbf{q}, \quad \dots$$

 \hookrightarrow both long- and short-range BSM mechanisms possible

- Electron ejected with energy of muon-electron mass difference (minus binding energy)
 - \hookrightarrow very clear experimental signature
- Background: muon decay in orbit $\mu
 ightarrow e
 u_{\mu} \bar{
 u}_{e}$
- Normalization: muon capture $\mu(A, Z) \rightarrow \nu_{\mu}(A, Z-1)$

- For theory description, many different scales matter:
 - BSM scale: LFV operators ⇒ Standard Model EFT (SMEFT)
 - Electroweak scale: integrate out $W, Z \Rightarrow$ low-energy EFT (LEFT)
 - Hadronic scales: $\Lambda_{\chi} \simeq 4\pi F_{\pi} \simeq m_N \Rightarrow$ chiral perturbation theory
 - Nuclear scales: $M_{\pi} \simeq k_F \simeq \gamma \Rightarrow$ chiral EFT, pionless EFT
 - Atomic scales: atomic binding ⇒ Dirac equation, Coulomb distortions
- Objectives of EFT approach:
 - Compare different probes of LFV

 \hookrightarrow example: $\mu \to e$ conversion in nuclei vs. $P \to \overline{\mu}e$ decays, $P = \pi^0, \eta, \eta'$

- Discriminate among different underlying BSM operators
- Control theoretical uncertainties
 - \hookrightarrow hadronic matrix elements, nuclear responses, Coulomb distortions
- RG corrections

Very schematic master formula for $\mu \rightarrow e$ conversion

 $\Gamma[\mu(A, Z) \to e(A, Z)] \simeq BSM \text{ Wilson coefficients } \otimes \text{ hadronic matrix elements}$ $\otimes \text{ nuclear responses } \otimes \text{ bound-state solution}$

Latter two traditionally combined into overlap integrals Kitano et al. 2002

$$S^{(N)} = \frac{\#N}{2\sqrt{2}} \int_0^\infty dr \,\rho_N(r) [g_{-1}^{(e)}(r)g_{-1}^{\mu}(r) - t_{-1}^{e}(r)t_{-1}^{\mu}(r)] \qquad V^{(N)} = \frac{\#N}{2\sqrt{2}} \int_0^\infty dr \,\rho_N(r) [g_{-1}^{(e)}(r)g_{-1}^{\mu}(r) + t_{-1}^{e}(r)t_{-1}^{\mu}(r)]$$
$$D = \frac{-4m_{\mu}}{\sqrt{2}} \int_0^\infty dr \, E(r) [g_{-1}^{e}(r) t_{-1}^{\mu}(r) + t_{-1}^{e}(r) g_{-1}^{\mu}(r)]$$

- \hookrightarrow covers coherently enhanced spin-independent responses, $\Gamma_{SI} \propto \# \textit{N}^2$
- Similarly, dominant **spin-dependent** contribution from nuclear responses finite for q = 0, e.g., for axial-vector operators $\Gamma_{SD} \propto g_A^2$ Davidson et al. 2018
- Further subleading responses from multipole decomposition Serot 1978
 - \hookrightarrow need to combine with solution of Dirac equation see below and following talk by Evan Rule

Application: indirect limits for $P \rightarrow \bar{\mu} e$

• Same operators probed in SD $\mu
ightarrow e$ conversion and $P
ightarrow ar{\mu} e$ decays Gan et al. 2022

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{\Lambda^2} \sum_{\substack{Y = L, R \\ q = u, d, s}} \left[C_Y^{P, q}(\overline{e_Y}\mu) \left(\bar{q}\gamma_5 q \right) + C_Y^{A, q}(\overline{e_Y}\gamma^{\mu}\mu) \left(\bar{q}\gamma_{\mu}\gamma_5 q \right) \right] + \frac{i\alpha_s}{\Lambda^3} \sum_{Y = L, R} C_Y^{G\bar{G}}(\overline{e_Y}\mu) G_{\mu\nu}^a \tilde{G}_a^{\mu\nu} + \text{h.c.}$$

 \hookrightarrow axial-vector, pseudoscalar, $G\tilde{G}$ operators

- Can use $\mu
 ightarrow e$ conversion limits to derive indirect limits for ${\it P}
 ightarrow ar{\mu} e$
- In general, not the same linear combinations appear
 - \hookrightarrow consider first a single operator at a time, account for matrix elements

$\mu ightarrow$ e (exp)	${\it P} ightarrow ar{\mu} {\it e}$ (derived)	current limit
	$Br[\pi^0 o ar{\mu} e] \lesssim 4 imes 10^{-17}$	< 3.6 $ imes$ 10 ⁻¹⁰
${ m Br}[\mu{ m Ti} ightarrow { m eTi}] < 6.1 imes 10^{-13}$	$Br[\eta ightarrow ar{\mu}e] \lesssim 5 imes 10^{-13}$	$< 6.0 imes 10^{-6}$
	$Br[\eta' o ar{\mu} e] \lesssim 7 imes 10^{-14}$	$<4.7\times10^{-4}$

General sensitivity orders of magnitude better, but could there be cancellations?

- For a rigorous limit one needs to scan over all Wilson coefficients

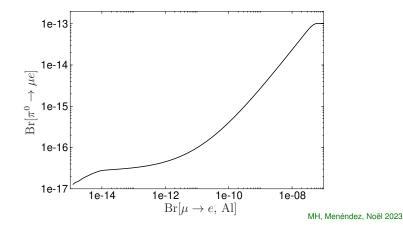
 → there are (fine-tuned) scenarios in which the μ → e rate vanishes exactly
- For $\pi^0 \rightarrow \bar{\mu}e$: decay rate vanishes as well!

rigorous limit: $Br[\pi^0 \rightarrow \bar{\mu}e] < 1.0 \times 10^{-13}$ (direct limit: $< 3.6 \times 10^{-10}$)

- For η, η' → μ
 *μ*e: in principle, no strict limits, but required cancellations easily lifted by RG corrections
- RG produces SI operators, even when only starting with SD ones at high scale Cirigliano et al. 2017, Crivellin et al. 2017

$$C_Y^{V,q}\simeq -3 {\cal Q}_q rac{lpha}{\pi} \log rac{M_W}{m_N} C_Y^{A,q}$$

Future projection for $\pi^0 \rightarrow \bar{\mu} e$



- Combining AI and Ti limits, the single-operator sensitivity is restored
 - \hookrightarrow complementarity of different target nuclei

Uncertainty quantification for nuclear responses

- So far: nuclear responses calculated in (phenomenological) nuclear shell model
 - \hookrightarrow uncertainty estimates difficult, especially for neutron responses

Ab-initio approaches

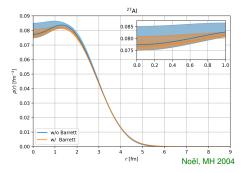
- Often uncertainties dominated by chiral Hamiltonian, not by many-body solution
- Often correlations between different responses much more stable Hagen et al. 2015, Payne et al. 2019
- Need for charge distributions with quantified uncertainties
 - Solution of the Dirac equation
 - Input for correlation analysis in ab-initio approaches
- Charge distributions extracted from electron scattering without uncertainties (!)
 - \hookrightarrow Fourier–Bessel expansions Dreher et al. 1974, de Vries et al. 1987

$$\rho(r) = \begin{cases} \sum_{n=1}^{N} a_n j_0(q_n r) & r \le R \\ 0 & r > R \end{cases} \quad \text{with} \quad q_n = \frac{\pi n}{R} \end{cases}$$

Extracting charge distributions from electron scattering

- Practical challenges of re-analysis:
 - Most data taken in the 70s+80s
 - Many data sets not available at all ("private communication"), or only published in PhD theses
 - Documentation of uncertainties rudimentary
- Propagation of uncertainties computationally intensive
 - \hookrightarrow truncation errors in *R*, *N*
- Carried this program out for ²⁷Al, ^{40,48}Ca, and ^{48,50}Ti
- Results available as python notebook

2406.06677



Solving the Coulomb problem

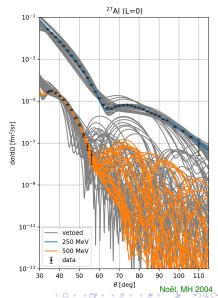
• For a realistic description, need to resum Coulomb phase shifts

 $\hookrightarrow \text{phase shift model}$

- Fits carried out over large grid of (*N*, *R*), using veto on oscillations and asymptotics to prevent overparameterization
- Constraints from Barrett moments measured in 2p → 1s transitions of muonic atoms

$$\left\langle r^{k}e^{-\alpha r}\right\rangle =\frac{4\pi}{Z}\int_{0}^{\infty}dr\,r^{k+2}\rho(r)e^{-\alpha r}$$

- Similar approach also applies to Coulomb corrections elsewhere
 - \hookrightarrow parity-violating electron scattering



Dipole overlap integrals

 $D(^{27}\text{Al}) = 0.0359(2)$ $D(^{40}\text{Ca}) = 0.07531(5)$ $D(^{48}\text{Ca}) = 0.07479(10)$ $D(^{48}\text{Ti}) = 0.0864(1)$ $D(^{50}\text{Ti}) = 0.0870(3)$

Dipole overlap integrals

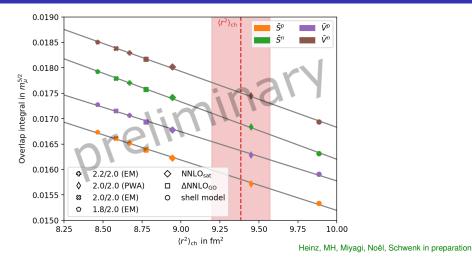
$$D = \frac{-4m_{\mu}}{\sqrt{2}} \int_0^\infty dr \, E(r) \big[g_{-1}^{\theta}(r) \, f_{-1}^{\mu}(r) + f_{-1}^{\theta}(r) \, g_{-1}^{\mu}(r) \big]$$

 \hookrightarrow only depends on charge distributions, electric field $E(r) = \frac{\sqrt{4\pi\alpha}}{r^2} \int_0^r dr' r'^2 \rho(r')$

- For the first time, fully quantified uncertainties
- For $S^{(N)}$, $V^{(N)}$ other nuclear responses contribute
 - \hookrightarrow interplay with ab-initio methods

ゆ く き く き く き く の く の

Towards ab-initio calculations for $\mu \rightarrow e$ conversion



- Calculations performed using VS-IMSRG for ²⁷AI see talk by Matthias Heinz, We, 14:00 (parallel E)
- Shell-model result also falls onto correlation

M. Hoferichter (Institute for Theoretical Physics) Effective field theory for $\mu \rightarrow e$ conversion in nuclei

- To improve SD and even higher responses:
 - Multipole decomposition of one-body terms known with respect to fixed momentum transfer *q* Serot 1978
 - Here: need to combine with bound-state physics
 - \hookrightarrow perform Fourier transform of leptonic current numerically
 - Uncertainty quantification using ab-initio techniques in combination with data input

Two-body corrections

- Known to be important for some channels, e.g., scalar operators Cirigliano et al. 2022
- So far evaluated within approximations ("normal ordering" in Fermi gas)
- Techniques for multipole decomposition of two-body currents becoming available

Conclusions

• EFT for $\mu ightarrow {\it e}$ conversion in nuclei

- Discriminate LFV mechanisms
- Controlled uncertainty estimates

Recent results

- Indirect limits for ${\it P}
 ightarrow ar{\mu} e$
- Error propagation for charge densities

Outlook

- Overlap integrals from ab-initio calculations
- Subleading nuclear responses
- Two-body currents
- Discriminatory power for different target nuclei and together with other LFV probes

