Dispersive determinations of lattice HVP window quantities for muon g-2

Kim Maltman, York University (and CSSM, Adelaide) with G. Benton, D. Boito, M. Golterman, A. Keshavarzi, S. Peris

DB, MG, KM, SP, PRD107 (2023) 034512 [2210.13677 [hep-ph]] DB, MG, KM, SP, PRD105 (2022) 093003 [2203.05070 [hep-ph]] DB, MG, KM, SP, PRD107 (2023) 074001 [2211.11055 [hep-ph]] GB, DB, MG, AK, KM, SP, PRL131 (2023) 251803 [2306.16808 [hep-ph]] GB, DB, MG, AK, KM, SP, PRD109 (2024) 036010 [2311.09523 [hep-ph]] GB, DB, MG, AK, KM, SP, in preparation (re SD, LD windows)

CONTEXT: DISPERSIVE-EXPT a_{μ} AND LATTICE-DISPERSIVE a_{μ}^{HVP} DISCREPANCIES

SM expectations for a_{μ} with dispersive vs lattice HVP

CONTEXT (2): RBC/UKQCD intermediate window (W1) HVP quantities

(post new BMW 2407.10913 lattice update)

• IL, lqc intermediate window $a_{\mu}^{W1,lqc}$

BBGKMP23: PRL 131 (2023) 251803

• Full intermediate window a_{μ}^{W1}

DISPERSIVE (SPECTRAL) AND LATTICE (TIME-MOMENTUM) a_{μ}^{HVP} REPRESENTATIONS

• Dispersive (timelike $s=q^2$ spectral integral) representation:

* $\widehat{\Pi}(Q^2)$: $Q^2=0$ subtracted scalar polarization of EM current-current 2-point function EM spectral function $\rho(s) = \text{Im }\widehat{\Pi}(-s)/\pi$, related to R-ratio by R(s) = $12\pi^2\rho(s)$

 $a_{\mu}^{HVP} = \frac{4\alpha^2 m_{\mu}^2}{3} \int_{th}^{\infty} ds \, \frac{\widehat{K}(s)}{s^2} \,\rho(s) \qquad \qquad \widehat{K}(s) \text{ known, monotically Increasing from } \\ \widehat{K}(s) \text{ shown, monotically Increasing from } \\ \\ \widehat{K}(s) \text{ shown, monotically Increasing from } \\ \widehat{K}(s) \text{ shown, monotically Increasing from } \\ \\ \widehat{K}(s) \text{ shown, monotically Increasing from } \\ \\ \widehat{K}(s) \text{ shown, monotically Increasing from } \\ \\ \widehat{K}(s) \text{ shown, monotically Increasing from } \\ \\ \\ \widehat{K}(s)$

• Lattice time-momentum (Euclidean time) integral representation:

$$C(t) = \frac{1}{3} \sum_{i=1}^{3} \int d^3x \langle j_i^{\text{EM}}(\vec{x}, t) j_i^{\text{EM}}(0) \rangle = \frac{1}{2} \int_{m_{\pi}^2}^{\infty} ds \sqrt{s} \, e^{-\sqrt{s}t} \, \rho_{\text{EM}}(s) \quad (t > 0)$$

Bernecker and Meyer 'I I

Leading order contribution to $a_{\mu}^{\rm HVP}$

$$a_{\mu}^{\rm HVP} = 2 \int_0^\infty dt \, w(t) C(t)$$

$$\frac{\hat{K}(s)}{s^2} = \frac{3\sqrt{s}}{4\alpha^2 m_{\mu}^2} \int_0^{\infty} dt \, w(t) \, e^{-\sqrt{s}t}$$

LATTICE-MOTIVATED INTERMEDIATE WINDOW QUANTITIES

• RBC/UKQCD-style intermediate window: reduce lattice errors by cutting out short- and long-t contributions

$$a_{\mu}^{W} = 2 \int_{0}^{\infty} dt f_{W}(t; t_{0}, t_{1}, \Delta) \left[w(t)C(t) \right] \qquad f_{W}(t; t_{0}, t_{1}, \Delta) = \frac{1}{2} \left[tanh\left(\frac{t-t_{0}}{\Delta}\right) - tanh\left(\frac{t-t_{1}}{\Delta}\right) \right]$$

RBC/UKQCD (W1): $(t_{0,} t_{1,} \Delta) = (0.4, 1.0, 0.15)$ fm, ABGP (W2): $(t_{0,} t_{1,} \Delta) = (1.5, 1.9, 0.15)$ fm

• Associated short-distance (SD) and long-distance (LD) windows, with $f_W(t) \rightarrow f_{SD}(t) = \frac{1}{2} \left(1 - tanh\left[\frac{t-t_0}{\Delta}\right]\right) \qquad f_{LD}(t) = \frac{1}{2} \left(1 + tanh\left[\frac{t-t_1}{\Delta}\right]\right)$

EXPONENTIAL-WEIGHT-SUM-RULE "WINDOW" QUANTITIES

• EWSR "tuned" s-dependent-weight integral quantities [variation on Hansen, Lupo, Tantalo PRD99 (2019) 094508]

 \succ Choose { t_k }, tune { b_k } to produce s-dependent weight with \sim desired shape and form

 $w(s, \{t_k\}) = \frac{1}{2} \sum_k b_k \sqrt{s} \exp(\sqrt{s} t_k)$ (e.g., $\widehat{W}_{15}(s), \widehat{W}_{25}(s)$ below)

 $\succ \Rightarrow \text{EWSR} \quad \int_{th}^{\infty} ds \, w(s; \{t_k\}) \, \rho_{EM}(s) = \sum_k b_k C(t_k) \text{ with tuned weight profile (in examples shown, to suppress low-s region and emphasize <math>\rho$ region)

 \succ Restrict $\{t_k\}$ by hand to avoid large t and control lattice errors

SU(3)_F decompositions

$$J_{\mu}^{EM} = V_{\mu}^{3} + \frac{1}{\sqrt{3}}V_{\mu}^{8} \equiv J_{\mu}^{EM,3} + J_{\mu}^{EM,8} + \cdots \qquad \hat{\Pi}_{EM}(Q^{2}) = \hat{\Pi}_{EM}^{33}(Q^{2}) + \frac{2}{\sqrt{3}}\hat{\Pi}_{EM}^{38}(Q^{2}) + \frac{1}{3}\hat{\Pi}_{EM}^{88}(Q^{2}) \\ = \frac{1}{2}(\bar{u}\gamma_{\mu}u - d\gamma_{\mu}d) + \frac{1}{6}(\bar{u}\gamma_{\mu}u + d\gamma_{\mu}d - 2\bar{s}\gamma_{\mu}s) + \cdots \qquad \hat{\Pi}_{EM}^{I-1}(Q^{2}) + \hat{\Pi}_{EM}^{MI}(Q^{2}) + \hat{\Pi}_{EM}^{I-0}(Q^{2}) \\ = \hat{\Pi}_{EM}^{I-1}(Q^{2}) + \hat{\Pi}_{EM}^{MI}(Q^{2}) + \hat{\Pi}_{EM}^{I-0}(Q^{2}) \\ + similarly for \rho_{EM}(s), C(t)$$

 \Rightarrow inherited decompositions of inclusive, exclusive-mode HVP contributions a_{μ}^{X}

$$a_{\mu}^{X} = a_{\mu}^{X,33} + \frac{2}{\sqrt{3}}a_{\mu}^{X,38} + \frac{1}{3}a_{\mu}^{X,88} \equiv a_{\mu}^{X,I-1} + a_{\mu}^{X,MI} + a_{\mu}^{X,I-0}$$

(and analogous windowed/alternately weighted spectral integral quantities)

Isospin & quark connectedness: the "lqc" and "s+lqd" combinations

In the isospin limit:
$$\frac{1}{4} \langle (\bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d)(x)(\bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d)(y) \rangle = \frac{1}{2}x \bigoplus y \quad \text{u, d I=1}$$
and
$$\frac{1}{36} \langle (\bar{u}\gamma_{\mu}u + \bar{d}\gamma_{\mu}d)(x)(\bar{u}\gamma_{\mu}u + \bar{d}\gamma_{\mu}d)(y) \rangle = \frac{1}{18}x \bigoplus y + \frac{1}{9}x \left[\bigoplus \bigcup \bigcup y \right] y \quad \text{u, d I=0}$$

s+lqd: strange connected+uds disconnected

lqc: light-quark connected

Light-flavor contributions measured on the lattice

- isospin limit (IL) light-quark (u, d) connected (lqc): in both I=0 and 1
- IL strange-quark connected (sconn) + uds disconnected (disc) (s+lqd) sum: I=0 only
- EM (connected and disconnected): in all of I=0, I=1 and MI
- strong isospin-breaking (SIB) (connected & disconnected): to O(m_d-m_u): MI only
- Ideally: evaluate all dispersively to isolate lattice-dispersive discrepancy source(s)

DISPERSIVE STRATEGY/INPUT FOR COMPARISONS TO LATTICE

• IL I=0/1 separation required to identify IL lqc and s+lqd contributions

- > Separation for modes containing narrow G-parity eigenstates (π , η , ω , ϕ) only: I=1 for G = +, I=0 for G = (up to IB corrections)
- Residual G-parity mixed ("ambiguous") modes:
 - ♦ $K\overline{K}$ I=1 part of I=0+1 EM total from BaBar 2018 $\tau^- \rightarrow K^- K^0 \nu_{\tau}$ via CVC
 - ***** I=0/1 $K\overline{K}\pi$ separation from BaBar 2007 Dalitz plot analysis
 - ★ $\pi^0 \gamma$, ηγ I=0/MI/I=1 decomposition from resonance saturation and known V=ω, φ, ρ EM decay constants, masses, widths and $V \rightarrow \pi^0 \gamma$, ηγ widths
 - ♦ remaining exclusive-mode: "maximally conservative" $50 \pm 50\% I = 1$, $50 \mp 50\% I = 0$ splits
- s-dependent exclusive-mode input from KNT19 to E_{CM}=1.937 GeV; pQCD (+DVs) for inclusive-region, E_{CM}>1.937 GeV, contributions

IB corrections to G-parity-classified nominally I=1/0 contributions:

- ➤ remove MI "contaminations" of nominally G=+/- unambiguous-mode contributions
 - Dominant: ρ-ω-induced MI contaminations of nominally I=1/I=0 2π/3π contributions: Hoferichter et al. dispersive determinations [JHEP 10(2022) 032 (CHKS22); JHEP 08(2023) 08 (HHKS23)); PRL131 (2023) 161905 (HCHKd23) for RBC/UKQCD windows, private communication for EWSR "windows"]

other nominally I=0, 1 modes: O(1%) additional uncertainty estimate

> remove IB EM flavor 33, 88 contributions (unlike MI corrections, only inclusive sums needed: use lattice)

RESULTS (1): THE DISPERSIVE $a_{\mu}^{IL,lqc}$ DETERMINATION

[including small updates of PRD107 (2023) 074001]

• With KNT19 input:

 $a_{\mu}^{lqc,IL} = \left(\frac{10}{9}\right) \left(543.5(2.1) + 2.9(1.0) + 28.27(2) + 0.26(12)\right) + 1.57(55) - 4.21(47)$

G-par +	G-par ambig	pQCD	DVs	EM IB	MI IB	
95%	0.46%	5.0%	6	0.25%	-0.64%	
				BMW 2024	CHKS22, HCHK	d23

• Full $a_{\mu}^{IL,lqc}$ x 10¹⁰ results:

 $a_{\mu}^{IL,lqc}$ = 635.8(2.6) (KNT19) $a_{\mu}^{IL,lqc}$ = 638.9(4.1) (DHMZ)

• Tension w/ lattice (BMW20, RBCUKQCD24)

RESULTS (2): RBC/UKQCD INTERMEDIATE WINDOW lqc [$a_{\mu}^{W1,lqc}$] RESULTS

G=+ mode X	$a^{W1}_{\mu,X}$ x 10 ¹⁰	$a_{\mu}^{W1,lqc}$ contributions (in units of 10 ¹⁰)		
$low-s \pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$ $2\pi^{+}2\pi^{-}$ $\pi^{+}\pi^{-}2\pi^{0}$ $3\pi^{+}3\pi^{-} (no \omega)$ $2\pi^{+}2\pi^{-}2\pi^{0} (no \eta)$ $\pi^{+}\pi^{-}4\pi^{0} (no \eta)$ $\eta\pi^{+}\pi^{-}$ $\eta2\pi^{+}2\pi^{-}$ $\eta\pi^{+}\pi^{-}2\pi^{0}$ $\omega(\rightarrow \pi^{0}\gamma)\pi^{0}$	0.02(00) 144.13(49) 9.29(13) 11.94(48) 0.14(01) 0.83(11) 0.83(11) 0.13(13) 0.85(03) 0.05(01) 0.07(01) 0.53(01)	$ \begin{array}{l} & & & \\ & $	$186.93(80) \\ 0.58(7) \\ 0.52(9) \\ 0.60(60) \\ 0.07(1) \\ 0.06(0) \\ 0.05(5) \\ 11.06\pm0.16 \\ -0.04(6) \\ -0.92(7)\pm0.29$	
$ω(\rightarrow npp)3π$ $ωηπ^0$ TOTAL	0.10(02) 0.15(03) 168.24(72)	$a_{\mu}^{W1,lqc}$ = 198.9(1. G. Benton, PRL131 (2023)	1) x 10⁻¹⁰ 251803, updated	

RESULTS (2'): DISPERSIVE-LATTICE $a_{\mu}^{W1,lqc}$ **COMPARISON**

Large dispersive-lattice W1 IL, lqc discrepancy (e.g., 6σ for latest BMW 2024)

RESULTS (3): DISPERSIVE vs LATTICE IL, s+lqd AND OTHER-WINDOW IL, lqc

- Lattice EM results not available for other intermediate windows so neglect EM I=0, 1 corrections for now (plausible based on W1 result)
- For RBC/UKQCD SD window EM: O(α_{EM} *SD) or Mainz 2024 0.15(15)% SD_{EM}/SD result estimates
- RBC/UKQCD LD window: $LD_{EM} = HVP_{EM} W1_{EM} SD_{EM}$
- For IL, lqc cases, windowed versions of CHKS22 2π MI correction (from M. Hoferichter and P. Stoffer: thanks!)
- IL, s+lqd cases need also windowed ρ-ω region 3π MI correction of HHKS23 (provided by the authors: thanks!)
- Compare IL dispersive and lattice results where latter available

ABGP22 INTERMEDIATE WINDOW (W2) RESULTS

• RBC/UKQCD-style intermediate window, designed to be longer distance, more amenable to possible use of ChPT for FV [Aubin et al. PRD106 (2022) 054503]

light-quark connected from KNT19 R(s) data

$$a_{\mu}^{W2, \text{lqc}} = 93.70(36) \times 10^{-10}$$

Benton, et al. PRD109 (2024) 036010

Includes -0.85(4) x 10^{-10} MI IB correction

lattice results

Aubin, Blum, Golterman, Peris '22 $a_{\mu}^{W2,lqc} = 102.1(2.4) \times 10^{-10}$

 $\begin{array}{l} & {\rm Fermilab/HPQCD/MILC~'23} \\ a_{\mu}^{W2,{\rm lqc}} = 100.7(3.2) \times 10^{-10} \end{array}$

BMW 2407.10813

$$a_{\mu}^{W2,lqc} = 97.67(1.62) \times 10^{-10}$$

ABGP update soon (see V. Moningi, Lattice2024)

EWSR WEIGHT ($\widehat{W}_{15}, \widehat{W}_{25}$) IL, lqc RESULTS

•
$$I_W^{lqc} \equiv \int_{th}^{\infty} ds \, W(s) \, \rho_{EM}^{IL, lqc}(s)$$

 \widehat{W}_{15} : -0.37 x 10⁻² \widehat{W}_{25} : -0.33 x 10⁻³

Iqc from KNT19 R(s) data
 ABGP lqc lattice data

$$I_{\widehat{W}_{15}}^{lqc} = 42.78(16) \times 10^{-2}$$
 $I_{\widehat{W}_{15}}^{lqc} = 46.69(68) \times 10^{-2}$
 $I_{\widehat{W}_{25}}^{lqc} = 78.85(46) \times 10^{-3}$
 $I_{3.2\sigma}^{lqc}$
 $I_{\widehat{W}_{25}}^{lqc} = 82.4(1.0) \times 10^{-3}$

 Benton, et al. PRD109 (2024) 036010
 systematic errors on lattice results still to be assessed

• Another sign of dispersive-lattice IL, lqc ρ-region tension

IL s+lqd HVP RESULTS

Update of PRD105 (2022) 093003 (final CHKS22 MI 2π, new HHKS23 MI 3π corrections)

With KNT19 exclusive-mode contributions [Benton et al., PRD109(2024) 036010]

 a_{μ}^{s+lqd} x10¹⁰ = -5.26(99) + 35.12(31) + 1.89(18) + 0.95(98) + 0.10(8) **G-par unambig** $K\overline{K}$ $K\overline{K}\pi$ $K\overline{K}\pi\pi$ other **G-par ambig** + 6.28(25) - 0.04(13) - [-2.68(99) - (1/9) 3.79(19) \pm 0.4] = 41.4(1.5) **pQCD** \pm **DVs I=0,1 EM MI 3** π **MI 2** π other **MI**

- With, instead, DHMZ exclusive-mode contributions: $a_{\mu}^{s+lqd} \times 10^{10} = 39.8(2.0)$
- No sign of discrepancy with lattice: RBC/UKQCD: 42.0(4.0); BMW (2017): 40.9(2.1); Mainz 2019 sconn+prelim 2020 disc: 39.7(3.7); BMW 2020: 40.0(1.8)

• Similarly, for $a_{\mu}^{W1,s+lqd} \ge 10^{10} = 27.0(8)$ [PRD109(2024) 036010] c.f. 26.0(6) BMW2020/24

PRELIMINARY DISPERSIVE RBC/UKQCD IL SD, LD WINDOW Iqc RESULTS

- Benton et al. 2024 (preliminary): with (i) SD EM $\simeq 0 \pm (\alpha_{EM} * SD)$ or using Mainz 2024 0.15(15)% relative size assessment; (ii) LD EM = [HVP EM –W1 EM]_{BMW20/24}-SD EM
- $a_{\mu}^{SD} \times 10^{10} = 46.96(54)/46.89(42)$
 - ETM22: PRD107 (2023) 074506
 - RBC/UKQCD23: PRD108 (2023) 054507
 - Mainz24: JHEP03 (2024) 172
 - BMW24: arXiv:2407.10913
 - RBC/UKQCD24: Spiegel Lattice2024
 - Dispersive: Benton et al. 2024
- $a_{\mu}^{LD} \times 10^{10} = 389.9(1.7)/390.0(1.7)$
 - RBC/UKQCD24: C. Lehner Lattice 2024
 - Dispersive: Benton et al. 2024

• SD, LD IL s+lqd results also coming

INTERIM CONCLUSIONS

- With current EM R(s) data, further evidence for a significant dispersive-lattice discrepancy, especially for IL, lqc RBC/UKQCD intermediate window (W1) and improved EWSR \hat{W}_{15} weighting
- Pattern of discrepancies points to source in dispersive ρ region contributions
- C(t) results needed to determine a_{μ}^{HVP} and a_{μ}^{W1} and/or components thereof also provide results for SD, LD windows and the lattice side of any related EWSR: further exploration of EWSR weight choices in conjunction with new lattice data thus also of interest
- An obvious question still to be dealt with: the impact on the lattice-dispersive discrepancies of the new CMD-3 $\pi\pi$ data [PRD109(2024) 112002 [2302.08834]]?

Impact of 2023 CMD-3 $\pi\pi$ results on $a_{\mu}^{W1,lqc}$ and a_{μ}^{HVP}

• NOTE: Exploration only, replacing all other $\pi\pi$ data in CMD-3 region with CMD-3

W1,lqc

a,,

a_{μ}^{HVP} (including BMW24 hybrid)

With CMD-3: 205.6(1.6) x 10⁻¹⁰

Impact on IL, Iqc W2, RBC/UKQCD SD, LD, and \widehat{W}_{15} and \widehat{W}_{25} results

IL, lqc ABGP W2

RBC/UKQCD 24 RBC/UKQCD 24 **BMW 24** Mainz 24 Data-based RBC/UKQCD 23 HHH. BBGKMP 24 ETM 22 Data-based BBGKMP 24

• RBC/UKQCD IL, lqc SD and LD

Data-based (CMD3) BBGKMP 24 Data-based (CMD3) BBGKMP 24 48 49 46 4750 380390400410 $a^{SD,lqc} \times 10^{10}$ $a_{\rm w}^{\rm LD,lqc} \times 10^{10}$

420

- EWSR weight discrepancies [recall, lattice errors statistical only]
 - $\gg W_{15}$ IL, lqc KNT19 result 0.4278(16) $\rightarrow 0.4483(37)$ c.f. lattice 0.4669(58) (5.6 $\sigma \rightarrow 2.7 \sigma$)
 - $\gg \hat{W}_{25}$ IL, lqc KNT19 result 0.0789(5) → 0.0815(6) c.f. lattice 0.0824(10) (3.2 σ → 0.8 σ)

All dispersive-lattice differences strongly reduced with CMD-3 $\pi\pi$ input