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The IR problem in the singlet model

If quarkonium, Q, was just made of a color singlet QQ̄, then

|Q〉 =
∫

d3k

(2π)3
Φij

uv(k) |Q(k)iuQ(−k)jv〉 Φij
uv(x) ∼ (· · · )R(x)

On the example of P -wave quarkonium the decay width is (LH = light hadrons)

Γ(χ0 → LH) =
∑

X

Γ(χ0 → X) ≈ Γ(χ0 → gg) = 〈χ0|2 Im |χ0〉
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Γ(χ0 → X) ≈ Γ(χ0 → gg) = 〈χ0|2 Im |χ0〉

@ one loop
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The NRQCD solution to the IR problem

• Quarkonium is a nonrelativistic bound state: v ≪ 1.

• It has v-suppressed Fock space components made of QQ̄ pairs in a color octet state:

|Q〉 = (|(QQ̄)1〉+ |(QQ̄)8g〉+ · · · )⊗ |nljs〉
O(1) O(v)

• The NRQCD Lagrangian follows from integrating out m from QCD.

Operators are counted in powers of v (or quark momenta). It contains 4-fermion

operators that overlap with QQ̄ in a color singlet or octet configuration and whose

matching coeffcients have an imaginary part encoding annihilation.

For P -wave states,

LNRQCD ⊃ ψ†KNχχ
†K′

Nψ =

{

O1(
2S+1LJ )

O8(
2S+1LJ )

ψ†Taχχ†Taψ=O8(1S0) = O(1), ψ†Dχχ†Dψ=O1(1P1) = O(v2), . . .



Annihilation widths in NRQCD

Γ(Q → LH) =
∑

N

2 Im f (N)

mdN−4
〈Q|ψ†KNχχ

†K′
Nψ|Q〉

Γ(Q → EM) =
∑

N

2 Im f
(N)
em

mdN−4
〈Q|ψ†KNχ|Ω〉〈Ω|χ†K′

Nψ|Q〉

Q Q

f



P -wave annihilation widths in NRQCD

Γ(χJ → LH) = 9 Im f1
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J = 0, 2

• Octet and singlet contribute to the same order.

• The IR divergence of Im f1 cancels against the octet matrix element 〈χ|O8(1S0)|χ〉.

• Bottomonium and charmonium (below threshold) P -wave decay widths depend on 6

nonperturbative parameters: 3 wavefunctions + 3 octet matrix elements.



Inclusive production cross sections in NRQCD

In NRQCD, the production cross sections for a quarkonium Q factorize

• in short distance coefficients, σQQ̄(N), encoding contributions from energy scales

of order m or larger,

• and in long distance matrix elements (LDMEs), 〈Ω|OQ(N)|Ω〉, encoding

contributions of order mv, mv2 and ΛQCD,

so that we can write:

σQ+X =
∑

N

σQQ̄(N)〈Ω|OQ(N)|Ω〉.

The same pattern of IR divergence cancellations between singlet matching coefficients

and octet LDMEs happens also for the NRQCD cross sections leading to physical results.
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Scales and non relativistic EFTs

Quarkonium physics may be described through nonrelativistic effective field theories

beyond NRQCD, owing to the hierarchy of scales of nonrelativistic bound states:

m≫ mv ≫ mv2

µ

mv

µ

m

mv 2

       NRQCD

        pNRQCD

    QCD

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423



The NRQCD energy eigenstates

The spectral decomposition of HNRQCD in the QQ̄ sector of the Hilbert space reads

HNRQCD

∣

∣

QQ̄
=

∑

n

∫

d3x1 d
3x2 |n;x1,x2〉En(x1,x2;∇1,∇2) 〈n;x1,x2|

|n;x1,x2〉 = ψ†(x1)χ(x2)|n;x1,x2〉 are orthonormal states made of a heavy quark, ψ,

a heavy antiquark, χ, and some light d.o.f. labeled by n.

En are operators in the coordinate, momentum and spin of the QQ̄.

In the static limit En = E
(0)
n are the different energy excitations of a static QQ̄.

They may be computed in lattice QCD as a function of the QQ̄ distance.

The eigenstates of the NRQCD Hamiltonian in the QQ̄ sector are

|Q(n,P )〉 =
∫

d3x1d
3x2 φQ(n,P )(x1,x2) |n;x1,x2〉

The functions φQ(n,P )(x1,x2) are eigenfunctions of En(x1,x2;∇1,∇2);

P is the center of mass momentum of the QQ̄ pair.



The NRQCD energy levels

We expect the different E
(0)
n to develop an energy gap of order ΛQCD much larger than

the energies of the eigenstates of each single En, which are of order mv2:

mv2 ≪ ΛQCD

This qualifies the strong coupling regime.

Strong coupling is suited to describe excited (non Coulombic) quarkonium states.

◦ Bali et al PRD 62 (2000) 054503

Juge Kuti Morningstar PRL 90 (2003) 161601



Matching the potential

In strongly coupled pNRQCD, the non interacting part of the Hamiltonian is given by

HpNRQCD ⊃
∫

d3x1 d
3x2 S

†
n hn(x1,x2;∇1,∇2)Sn

Sn is a color singlet field containing a QQ̄;

hn is obtained by matching the NRQCD energy En.

The matching may be performed order by order in 1/m by expanding the NRQCD

Hamiltonian and the states |n;x1,x2〉 using quantum mechanical perturbation theory.

At leading order in v we have

hn(x1,x2;∇1,∇2) = −∇2
1

2m
− ∇2

2

2m
+ V (0;n)(x1,x2)

The matching fixes the static potential V (0;n) to be the static energy E
(0)
n of H

(0)
NRQCD.

As a consequence of the matching, the functions φQ(n,P ) are also eigenfunctions of hn.

◦ Brambilla Pineda Soto Vairo PRD 63 (2001) 014023

Pineda Vairo PRD 63 (2001) 054007



Matching the quarkonium annihilation matrix elements

The pNRQCD factorization formula for the quarkonium annihilation matrix elements reads

〈Q|O(N)|Q〉 = 1

〈P = 0|P = 0〉

∫

d3x1d
3x2d

3x′1d
3x′2 φQ(x1 − x2)

[

−VO(N)(x1,x2;∇1,∇2)δ
(3)(x1 − x′

1)δ
(3)(x2 − x′

2)
]

φ∗Q(x′
1 − x′

2)

φQ is the quarkonium wavefunction in pNRQCD (corresponding to the state n = 0),

VO(N) has to be determined by matching NRQCD with pNRQCD order by order in 1/m

via quantum mechamical perturbation theory.



Matching P -wave annihilation matrix elements

The matching of the octet matrix element appearing at LO in P -wave quarkonium

annihilation leads to

〈χQJ (nP )|O8(
1S0)|χQJ (nP )〉 = 2TF

9Ncm2

3Nc

2π
|R′(0)|2E3

where

E3 =
TF

Nc

∫ ∞

0
dt t3〈Ω|gEi,a(t,0)Φab(t, 0)gE

i,b(0,0)|Ω〉

is a universal chromoelectric correlator (to be computed in lattice QCD ...).



QQ

Q Q

E E



P -wave annihilation widths in pNRQCD

Γ(χJ → LH) =
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∣
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[

9 Im f1 +
Im f8

3
E3

]

Γ(χJ → γγ) = 9 Im fγγ
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• The quarkonium state dependence factorizes.

• The IR divergence of Im f1 cancels against the chromoelectric correlator E3.

• Bottomonium and charmonium (below threshold) P -wave decay widths depend on 4

nonperturbative parameters: 3 wavefunctions + 1 universal correlator.



Correlator and octet matrix element

E3(Λ) can be obtained from a least squares fit to the ratios of decay rates

Γ(χc0(1P ) → LH)/Γ(χc1(1P ) → LH), Γ(χc1(1P ) → LH)/Γ(χc2(1P ) → LH),

Γ(χc0(1P ) → LH)/ Γ(χc0(1P ) → γγ), and Γ(χc2(1P ) → LH)/Γ(χc2(1P ) → γγ)

(from PDG) at leading order in v. In the MS scheme, we obtain

E3(1 GeV) = 2.05+0.94
−0.65.

E3(Λ) at different scales follows from the one loop renormalization group improved

expression (β0 = 11Nc/3− 4TFnf/3)

E3(Λ) = E3(Λ′) +
24CF

β0
log

αs(Λ′)

αs(Λ)
,

The octet matrix element on charmonium state is

〈χcJ (1P )|O8(
1S0)|χcJ (1P )〉 = (3.53+1.05

−1.15
+1.62
−1.12)× 10−3

GeV
3

computing the wavefunction with several potential models.



P -wave charmonium annihilation widths

From the ratio of widths and the experimental value of the electromagnetic width, we get

Γ(χc0(1P ) → LH) = 8.3+3.0
−3.1 MeV [10.6± 0.6 MeV from PDG]

Γ(χc1(1P ) → LH) = 0.42+0.06
−0.06

+0.28
−0.22 MeV [0.552± 0.041 MeV from PDG]

Γ(χc2(1P ) → LH) = 1.4+0.6
−0.6 MeV [1.60± 0.09 MeV from PDG]



P -wave bottomonium annihilation widths

From the ratio of widths and the experimental value of the electromagnetic width, we get

Γ(χb0(nP ) → LH) = 1.07+0.33
−0.37 MeV

Γ(χb1(nP ) → LH) = 0.14± 0.06 MeV

Γ(χb2(nP ) → LH) = 0.28+0.09
−0.10 MeV

which are almost independent of the principal quantum number n = 1, 2, 3.

These are proper predictions that exploit the universality of the chromoelectric correlator.
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Hadroproduction LDMEs

Color singlet and octet operators for hadroproduction of quarkonia have the form

OQ(Ncolor singlet) = χ†KNψPQ(P=0)ψ
†K′

Nχ

OQ(Ncolor octet) = χ†KNT
aψΦ†ab

ℓ (0)PQ(P=0)Φ
bc
ℓ (0)ψ†K′

NT
cχ

Φℓ(x) is a Wilson line along the direction ℓ in the adjoint representation required to

ensure the gauge invariance of the color octet LDME.

◦ Nayak Qiu Sterman PLB 613 (2005) 45

PQ(P ) projects onto a state containing a heavy quarkonium Q with momentum P .

PQ(P ) commutes with the NRQCD Hamiltonian (the number of quarkonia is conserved)

and is diagonalized by the same eigenstates of the NRQCD Hamiltonian:

PQ(P ) =
∑

n∈S

|Q(n,P )〉〈Q(n,P )|

The sum extends over S, which are all states where the QQ̄ is in a color singlet at the

origin in the static limit. This is a necessary condition to produce a quarkonium.



Matching the wavefunctions φQ(n,P )

The projector PQ(P ) depends on the wavefunction φQ(n,P ) with n ∈ S.

φQ(n,P ) is a solution of the Schrödinger equation with static potential V (0;n).

V (0;n) is the energy of a static Wilson loop in the presence of disconnected gluon fields.

Lattice QCD determinations of V (0;n) for n ∈ S and n 6= 0 are not available yet.

One expects, however, disconnected gluon fields to produce mainly a constant shift to

the potentials, e.g. in the form of a glueball mass. This is supported by the large Nc limit:

the vacuum expectation value of a Wilson loop with additional disconnected gluon fields

factorizes into the vacuum expectation value of the Wilson loop times the vacuum

expectation value of the additional gluon fields up to corrections of order 1/N2
c .

If the slopes of the static potentials are the same for all n ∈ S, then

φQ(n,P )(x1,x2) ≈ eiP ·(x1+x2)/2φ
(0)
Q

(x1 − x2)

φ
(0)
Q

is the leading order quarkonium wavefunction in the center of mass frame.



Matching the hadroproduction LDMEs

The pNRQCD factorization formula for the LDMEs reads at LO

〈Ω|OQ(N)|Ω〉 = 1

〈P = 0|P = 0〉

∫

d3x1d
3x2d

3x′1d
3x′2 φ

(0)
Q

(x1 − x2)

×
[

−VOQ(N)(x1,x2;∇1,∇2)δ
(3)(x1 − x′

1)δ
(3)(x2 − x′

2)
]

φ
(0) ∗
Q

(x′
1 − x′

2)

VOQ(N) has to be determined from matching the NRQCD LDMEs to pNRQCD.

The matching is performed by expanding the states |n;x1,x2〉 order by order in 1/m

using quantum mechanical perturbation theory, similarly to what done for the NRQCD

matrix elements entering annihilation widths.



pp→ χQ +X

We consider

pp→ hQ(nP ) +X and pp→ χQJ (nP ) +X

The NRQCD factorization formulas at leading order in v read

σhQ+X = σ
QQ̄(1P

[1]
1 )

〈Ω|OhQ (1P
[1]
1 )|Ω〉+ σ

QQ̄(1S
[8]
0 )

〈Ω|OhQ (1S
[8]
0 )|Ω〉

σχQJ+X = σ
QQ̄(3P

[1]
J

)
〈Ω|OχQJ (3P

[1]
J )|Ω〉+ σ

QQ̄(3S
[8]
1 )

〈Ω|OχQJ (3S
[8]
1 )|Ω〉



Matching the contact terms in pNRQCD

After matching with pNRQCD, the contact terms read

V
O(1P

[1]
1 )

(r,∇r) =Nc∇i
rδ

(3)(r)∇i
r

V
O(1S

[8]
0 )

(r,∇r) =Nc∇i
rδ

(3)(r)∇j
r

Eij

N2
cm

2

V
O(3P

[1]
J

)
(r,∇r) =T

ij
1JNc∇i

rδ
(3)(r)∇j

r

V
O(3S

[8]
1 )

(r,∇r) =σ
k ⊗ σkNc∇i

rδ
(3)(r)∇j

r

Eij

N2
cm

2

r = x1 − x2 and T ij
1J are spin projectors.

The tensor Eij is defined as

Eij =

∫ ∞

0
dt t

∫ ∞

0
dt′ t′ 〈Ω|Φ†ab

ℓ Φ†ad(0; t)gEd,i(t)gEe,j(t′)Φec(0; t′)Φbc
ℓ |Ω〉

Φab(0, t) is a Wilson line in the adjoint representation connecting (t,0) with (0,0).



The chromoelectric correlators E ij and E

For a suitable choice of ℓ0, the fields in gEe,j(t′)Φec(0; t′)Φbc
ℓ are time ordered and

those in Φ†ab
ℓ Φ†ad(0; t)gEd,i(t) are anti-time ordered.

Hence the correlator Eij may be interpreted as a cut diagram:

For polarization-summed cross sections or for production of scalar states only the

isotropic part of Eij is relevant. This is the dimensionless gluonic correlator E :

E =
3

Nc

∫ ∞

0
dt t

∫ ∞

0
dt′ t′ 〈Ω|Φ†ab

ℓ Φ†ad(0; t)gEd,i(t)gEe,i(t′)Φec(0; t′)Φbc
ℓ |Ω〉



LDMEs in pNRQCD

The pNRQCD factorization formulas for P -wave quarkonium hadroproduction LDMEs are

〈Ω|OhQ (1P
[1]
1 )|Ω〉 =3

3Nc

2π
|R′(0)|2

〈Ω|OhQ (1S
[8]
0 )|Ω〉 =3

3Nc

2π
|R′(0)|2 1

9Ncm2
E

〈Ω|OχQJ (3P
[1]
J )|Ω〉 =(2J + 1)

3Nc

2π
|R′(0)|2

〈Ω|OχQJ (3S
[8]
1 )|Ω〉 =(2J + 1)

3Nc

2π
|R′(0)|2 1

9Ncm2
E

LDMEs are polarization summed in the case of χQJ states.

The above expressions imply (at leading order in v) the universality of the ratios

m2〈Ω|OχQJ (3S
[8]
1 )|Ω〉

〈Ω|OχQJ (3P
[1]
J )|Ω〉

=
m2〈Ω|OhQ (1S

[8]
0 )|Ω〉

〈Ω|OhQ (1P
[1]
1 )|Ω〉

=
E

9Nc



Infrared divergences in NRQCD

For the pNRQCD expressions of the LDMEs to be consistent with perturbative QCD,

they must reproduce the same infrared divergences. At two loop accuracy and at the

lowest order in the relative momentum q of the Q and Q̄, the infrared diverges in the

NRQCD LDMEs can be cast in the infrared factor

I2(p, q) =
∑

N

∫ ∞

0
dλ′ λ′〈Ω|T̄

{

Φ†c′b
ℓ Φ†a′c′

p (λ′)[pµqνFa′

νµ(λ
′p)]

}

|N〉

×
∫ ∞

0
dλλ〈N |T

{

Φbc
ℓ [pµqνFa

νµ(λp)]Φ
ac
p (λ)

}

|Ω〉

The sum over N contains all possible intermediate states, p is half the center-of-mass

momentum of the QQ̄, and

Φp(λ) = P exp

[

−ig
∫ λ

0
dλ′ p ·Aadj(λ′p)

]

is an adjoint Wilson line along p.

◦ Nayak Qiu Sterman PLB 613 (2005) 45, PRD 72 (2005) 114012

Nayak Qiu Sterman PRD 74 (2006) 074007



Consistency of pNRQCD with the NRQCD factorization

• Since in I2(p, q) a momentum q comes from each side of the cut, the infrared

factor contributes to the production of a color-singlet P -wave state.

• In the rest frame of the QQ̄: p = 0, q0 = 0, Φp(λ) = Φ(0, t) with t =
√

p2λ,

pµqνFa
νµ(λp) = −

√

p2qiEa i(t) and I2(p, q) can be written as

Eij q
iqj

p2

Since this expression is proportional to the contact terms V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

in momentum space, the pNRQCD expressions for the color-octet LDMEs

reproduce the same infrared divergences cast in the NRQCD infrared factor.

• The one-loop running of E (CF = (N2
c − 1)/(2Nc)):

d

d log Λ
E(Λ) = 12CF

αs

π

implies
d

d log Λ
〈OχQJ (3S

[8]
1 )〉 = 4CFαs

3Ncπm2
〈OχQJ (3P

[1]
J )〉.

This agrees with the one-loop evolution equation derived in perturbative NRQCD.



Chromoelectric correlator for hadroproduction

The correlator E can be fitted from the ratio

r21 =
dσχc2(1P )/dpT

dσχc1(1P )/dpT

which does not depend (at leading order in v) on the wavefunction. One obtains

E(Λ = 1.5 GeV) = 2.8± 1.7

The correlator is universal: it does not depend neither on the flavor of the heavy quark

nor on the quarkonium state. The universal nature of the correlator allows to use it to

compute cross sections for quarkonia with different principal quantum number and for

bottomonia (once accounted for the running) without having to fit new octet LDMEs.



(dσχc2(1P )/dpT )/(dσχc1(1P )/dpT )

@ center of mass energy
√
s = 7 TeV and rapidity range |y| <0.75.

◦ CMS coll EPJC 72 (2012) 2251

ATLAS coll JHEP 07 (2014) 154



σ(pp→ χcJ(1P ) +X)

@ center of mass energy
√
s = 7 TeV and rapidity range |y| <0.75.

Wavefunctions at the origin (at leading order in v) determined from Γ(χc0,2(1P ) → γγ).

◦ ATLAS coll JHEP 07 (2014) 154



(dσχb2(1P )/dpT )/(dσχb1(1P )/dpT )

A test of the universality of the pNRQCD factorization is provided by the ratio

(dσχb2(1P )/dpT )/(dσχb1(1P )/dpT ) that depends only on E (at the scale of the b mass)

and therefore is expected to be the same also for 2P and 3P bottomonium states.

@ center of mass energy
√
s = 7 TeV and rapidity range 2 < y < 4.5.

◦ LHCb coll EPJC 74 (2014) 3092

CMS coll PLB 743 (2015) 383



σ(pp→ χbJ(1P ) +X)

@ center of mass energy
√
s = 7 TeV and rapidity range 2 < y < 4.5.

Wavefunctions at the origin (at leading order in v) determined from models.



χbJ(nP ) feeddown fractions

Feeddown fractions, R
χb(nP )
Υ(n′S)

=

∑

J=1,2 Br(χbJ (nP ) → Υ(n′S) + γ)σχbJ (nP )

σΥ(n′S)

,

are model dependent in the χbJ wavefunctions and in some Br.

@ center of mass energy
√
s = 7 TeV and rapidity range 2 < y < 4.5.

◦ LHCb coll EPJC 74 (2014) 3092



Conclusions



After 30 years ...

... NRQCD and the nonrelativistic EFTs that have originated from it (pNRQCD, BOEFT,

and others) have become the framework to address quarkonium physics in all its aspects:

• precision determinations of masses, splittings, widths, transitions for the

charmonium and bottomonium lowest states;

• determinations of the long range potentials for quarkonium, hybrids, tetraquarks;

• computation of splitting and transitions for hybrids and other quarkonium exotics;

• computation of charmonium and borttomonium production cross sections;

• determination of quarkonium suppression observables in heavy-ion collisions;

• ...



Outlook on quarkonium annihilation and production

Theoretical predictions could significantly benefit from

• computation of (integrals of) gauge field correlators in lattice QCD,

• model independent determinations of the bottomonium wavefunctions at the origin.

This may require new data, e.g. for P -wave bottomonium electromagnetic decays.

Possible developments include:

• Computation of higher order corrections in the velocity expansion. They come from

higher dimensional operators in the NRQCD factorization formula, from higher

order corrections to the pNRQCD expansion of the NRQCD long-distance matrix

elements, and from higher order corrections to the wavefunctions originating from

higher order corrections to the pNRQCD potential.

• Extension of the formalism to quarkonium exotica (hybrids, tetraquarks) and to

quarkonium production in electron-ion and heavy ion colliders.



σ(eh→ J/ψ +X)

@ center of mass energy
√
s = 7 TeV.

◦ Feng Gong Chang Wang PRD 99 (2019) 014044 [1S
[8]
0 dominance]

Butenschoen Kniehl PRD 84 (2011) 051501 [Global fit]
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