CAPTURE, THERMALISATION AND ANNIHILATION OF DARK MATTER IN COMPACT **OBJECTS**

OCHSC 2024 Giorgio Busoni

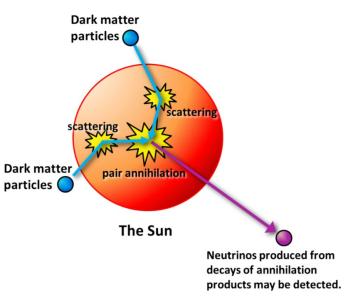
Australian National Universitv

Outline

01	Motivations	03
02	Assumptions	07
03	Capture by Multiple Scattering	09
04	Multiple (types of) targets	14
05	Thermalisation	16
06	Self Gravitation	20
07	Conclusions	22

- Dark Matter Capture in Stars (Sun) well studied
- Capture driven by $\sigma_{\chi N}$
- Subsequent scatterings cause infall towards core
- Observable for the Sun: annihilation into neutrinos
- Relevant rates:
 - Capture rate
 - Thermalisation rate/time
 - Annihilation rate
 - (Evaporation rate)
- Other Stars recently investigated:
 - Neutron Stars (Nicole Bell's talk on Monday)
 - WD (this talk)

3



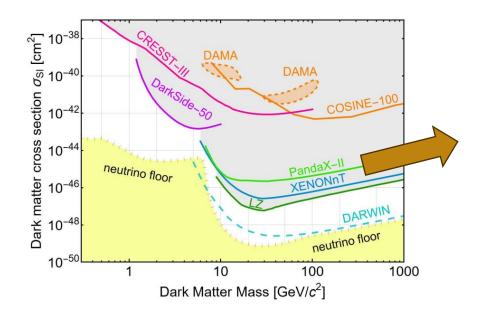
- Our works on Capture in compact stars:
- Neutron Stars:
 - JCAP 09 (2018) 018 (1807.02840)
 - JCAP 06 (2019) 054 (1904.09803)
 - JCAP 09 (2020) 028 (2004.14888)
 - JCAP 03 (2021) 086 (2010.13257)
 - Phys.Rev.Lett. 127 (2021) 11, 111803 (2012.08918)
 - JCAP 11 (2021) 056 (2108.02525)
 - JCAP 04 (2024) 006 (2312.11892)
- White Dwarfs:
 - JCAP 10 (2021) 083 (2104.14367)
 - JCAP 07 (2024) 051 (2404.16272) [THIS TALK]

- More than 90% of the stars in the Galaxy are White Dwarfs (WDs)
- High density, extreme conditions and the existence of observational data

- Powerful probe to test and constrain dark matter (DM) models
- This generally involves the accumulation of DM particles
 - Increase in their luminosity
 - DM-triggered supernova ignition/black hole formation

5

- WD made of Ions and degenerate electrons
 - Will consider only Ion targets here
- Capture rate will be driven by $\sigma_{\chi N}$
 - Parameter space is same as Direct Detection
- We will focus on very heavy DM: what happens on the right of this plot?



15/05/2024

6

02 ASSUMPTIONS

- DM Capture usually based on Gould seminal work for Capture in the Earth:
- (i) DM trajectories are unaffected by collisions
- (ii) Constant escape velocity 😣
- (iii) Constant iron (target) density 😣
- (iv) DM follows linear trajectories outside and inside the Earth's core, thereby neglecting gravitational focusing/gravity effects

- Assumptions (ii-iv) are actually unnecessary
- We will see that the rate can be calculated (nearly) exactly

7

02 ASSUMPTIONS

- Additional approximations usually made:
 - Optical depth inside the star $Rn_T\sigma$, equal to the value at the center, for any point inside the star \propto
 - Differential cross section on target $d\sigma/dcos\theta$ ~ constant \bigotimes
- What we do:
 - Only assume (i) DM trajectories are unaffected by collisions
 - Optical depth inside star depends on interaction rate
 - Same interaction rate used for Capture for consistency
 - Optical depth depends on the point in the star
 - Need to average over all trajectories
 - Cross section very suppressed at large E_R (realistic) \checkmark
 - $\sigma_{\chi p} \sim const \rightarrow \sigma_{\chi T} \propto e^{-E_R/E_0}$

03 CAPTURE BY MULTIPLE SCATTERING

- This is the energy loss probability density distribution $f(E_R) = \frac{1}{\sigma_{T_{\chi}}} \frac{d\sigma_{T_{\chi}}}{dE_R} (E_R).$
- Probability to lose at least a certain energy after one scattering $\mathcal{F}_1(\delta E) = \int_{\delta E}^{\infty} dE_R f(E_R)$
- Similarly, after exactly N scatterings $\mathcal{F}_N(\delta E) = \int_0^{\delta E} dE_R \mathcal{F}_{N-1}(\delta E E_R) f(E_R)$
- It is easy to find these functions using Laplace transform $\hat{\mathcal{F}}_N = \hat{\mathcal{F}}_{N-1}\hat{f}$

03

CAPTURE BY MULTIPLE SCATTERING

For simplicity, we assume that the DM-target cross section is well approximated by

$$\frac{d\sigma_{T\chi}}{d\cos\theta_{\rm cm}} \propto e^{-\frac{E_R}{E_0}},\tag{3.26}$$

where E_R is the recoil energy and E_0 depends on the specific nuclear target. That is, we assume exponential nuclear form factors similar to the Helm approximation. This leads to

$$f(E_R) = \frac{\Theta(E_R)}{E_0} e^{-\frac{E_R}{E_0}},$$
(3.27)

$$\mathcal{F}_1(\delta E) = e^{-\frac{\delta E}{E_0}}.$$
(3.28)

Defining the dimensionless quantity

$$\delta = \frac{\delta E}{E_0} = \frac{m_\chi u_\chi^2}{2E_0},\tag{3.29}$$

and taking the Laplace transform of the \mathcal{F} functions written in terms of δ , we find

$$\tilde{\mathcal{F}}_1(s) = \frac{1}{1+s}, \qquad \tilde{\mathcal{F}}_N(s) = \frac{1}{(1+s)^N},$$
(3.30)

where the last expression corresponds to

$$\mathcal{F}_N(\delta) = \frac{e^{-\delta}\delta^{N-1}}{N-1!}.$$
(3.31)

15/05/2024 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

THE XVITH QUARK CONFINEMENT AND THE HADRON SPECTRUM CONFERENCE - CAIRNS 21/08/2024

03 CAPTURE BY MULTIPLE SCATTERING

Probability to have interacted already N times is given by Poisson distribution

$$p_N(\tau_\chi) = e^{-\tau_\chi} \frac{\tau_\chi^N}{N!}$$

• Therefore the single scattering Capture rate can be written as

$$C_{1} = \frac{\rho_{\chi}}{m_{\chi}} \int_{0}^{R_{\star}} dr 4\pi r^{2} n_{T}(r) \sigma_{T\chi}(v_{\rm esc}(r)) v_{\rm esc}^{2}(r) \int_{0}^{1} \frac{y dy}{\sqrt{1 - y^{2}}} \int_{0}^{\infty} du_{\chi} \frac{f_{\rm MB}(u_{\chi})}{u_{\chi}} p_{0}(\tau_{\chi}) \mathcal{F}_{1}(\delta)$$

• The Capture rate for exactly N scatterings can be obtained as

$$C_{N} = \frac{\rho_{\chi}}{m_{\chi}} \int_{0}^{R_{\star}} dr 4\pi r^{2} n_{T}(r) \sigma_{T\chi}(v_{\rm esc}(r)) v_{\rm esc}^{2}(r) \int_{0}^{1} \frac{y dy}{\sqrt{1 - y^{2}}} \int_{0}^{\infty} du_{\chi} \frac{f_{\rm MB}(u_{\chi})}{u_{\chi}} p_{N-1}(\tau_{\chi}) \mathcal{F}_{N}(\delta)$$

03 CAPTURE BY MULTIPLE SCATTERING

The total capture rate is given by the sum over all N collisions,

$$C = \sum_{N} C_{N}.$$
(3.35)

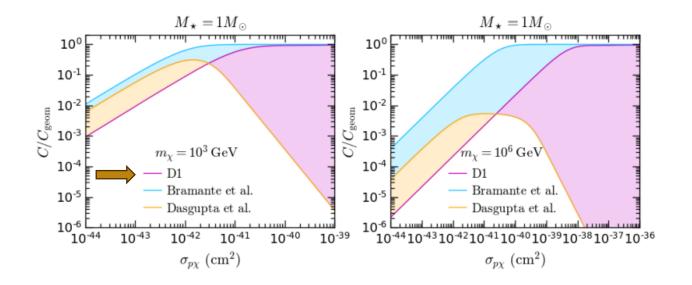
Next, instead of first evaluating the integrals in Eq. 3.34 and then summing over N, we sum the series first by introducing the response function, $G(\tau_{\chi}, \delta)$

$$G(\tau_{\chi},\delta) \equiv \sum_{N=1}^{\infty} p_{N-1}(\tau_{\chi}) \mathcal{F}_{N}(\delta) = \sum_{N=1}^{\infty} \frac{e^{-\tau_{\chi}} \tau_{\chi}^{N-1}}{(N-1)!} \frac{e^{-\delta} \delta^{N-1}}{(N-1)!}$$
$$= e^{-\tau_{\chi}-\delta} I_{0}\left(2\sqrt{\tau_{\chi}\delta}\right), \qquad (3.36)$$

The resulting total Capture rate is

$$C = \frac{\rho_{\chi}}{m_{\chi}} \int_0^{R_{\star}} dr 4\pi r^2 n_T(r) v_{\rm esc}^2(r) \sigma_{T\chi}(v_{\rm esc}(r)) \int_0^{\infty} du_{\chi} \frac{f_{\rm MB}(u_{\chi})}{u_{\chi}} \tilde{G}\left(r, \frac{m_{\chi} u_{\chi}^2}{2E_0}\right)$$

O2 CAPTURE RATE



04 MULTIPLE TARGETS

Can expand the formalism to include multiple types of targets

First, as in the previous section, we consider the probability for DM to interact with a target i and lose energy of at least δE , while travelling a length $d\tau_{\chi}^{i}$, starting from a layer in the WD with optical depth τ_{χ}^{i} . This is given by the differential element $G(\tau_{\chi}^{i}, \delta_{i})d\tau_{\chi}^{i}$, where

$$\delta_i = \frac{\delta E}{E_0^i},\tag{3.43}$$

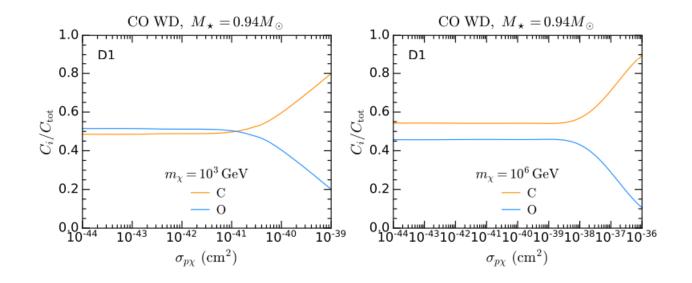
and the energy scale E_0^i depends on the target *i* and is calculated using Eq. 3.40. Thus, the probability to interact and lose the same amount of energy when DM travels a path-length τ_{χ}^i is simply the integral of the differential element over the trajectory, i.e.

$$\mathcal{G}(\tau_{\chi}^{i},\delta_{i}) = \int_{0}^{\tau_{\chi}^{i}} d\tau \, G(\tau,\delta_{i}). \tag{3.44}$$

Next, we introduce a second target species. In the presence of these two ionic targets, the cumulative probability of DM to lose an energy δE after travelling an optical depth τ_{χ}^{i} in the target i and τ_{χ}^{j} in the second target j is found to be

$$\mathcal{G}_{2,ij}(\delta E) = \int_0^{\delta E/E_0^j} dz \, \mathcal{G}\left(\tau_{\chi}^i, \frac{\delta E - zE_0^j}{E_0^i}\right) \left[-\frac{\partial}{\partial z} \mathcal{G}(\tau_{\chi}^j, z)\right]. \tag{3.50}$$

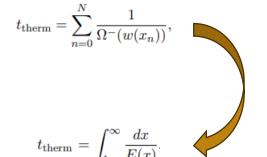
04 MULTIPLE TARGETS



05 THERMALISATION

- Thermalisation time give by
- Interaction rate $\Omega_T^-(x) = \int_0^x dy \, R_T^-(x \to y)$
- Large number of scatterings $\frac{dx}{dt} = E(x)$ $t_{\text{therm}} = \int_{1}^{\infty} \frac{dx}{E(x)}$

Energy loss per unit time
$$E(x) = \int_0^x dy(x-y)R^-(x \to y)$$



)5 THERMALISATION

- Two approximations are possible, they require 2 different assumptions
 - One needs relative speed to be dominated by either DM or Target
 - The other one, for large DM mass, requires Target speed to be small
- Zero temperature approximation (high energy DM)
 - Appropriate for capture
 - Both approximations can be applied
- Large mass approximation
 - Appropriate for Thermalisation of very heavy DM
 - Thermalisation time driven by last part where DM speed very low
 - Only one assumption is verified

05 THERMALISATION

In the large energy limit/zero temperature approx.:

$$E(x) \simeq \begin{cases} 2n_T(r)\sigma_T\left(\frac{x}{\mu}\right)^{m+3/2} v_T^{2m+1}, & d\sigma_{T\chi} \propto v_{\rm rel}^{2m} \\ \frac{4(m+1)}{m+2} n_T(r)\sigma_T v_T\left(\frac{x}{\mu}\right)^{m+3/2} \left(\frac{2m_T^2 v_T^2}{q_0^2}\right)^m, & d\sigma_{T\chi} \propto q_{\rm tr}^{2m} \end{cases}$$
(A.28)

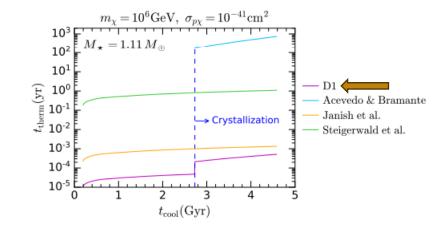
In the low energy regime, i.e. $x \sim 1$ we find for cross sections proportional to powers of the DM-ion relative velocity $v_{\rm rel}^{2m}$

$$E(x) \sim \Gamma\left(m + \frac{3}{2}\right) \frac{n_T(r)\sigma_T}{\sqrt{\pi}} \sqrt{\frac{x}{\mu}} v_T^{2m+1}, \tag{A.29}$$

while for differential cross sections proportional to $q_{\rm tr}^{2m}$ we have

$$E(x) \sim \Gamma\left(m + \frac{3}{2}\right) \frac{2(m+1)}{m+2} \frac{n_T(r)\sigma_T v_T}{\sqrt{\pi}} \sqrt{\frac{x}{\mu}} \left(\frac{2m_T^2 v_T^2}{q_0^2}\right)^m.$$
 (A.30)

05 THERMALISATION



06 SELF GRAVITATION

- No DM self-repulsive forces
- DM collapses to isothermal sphere of radius

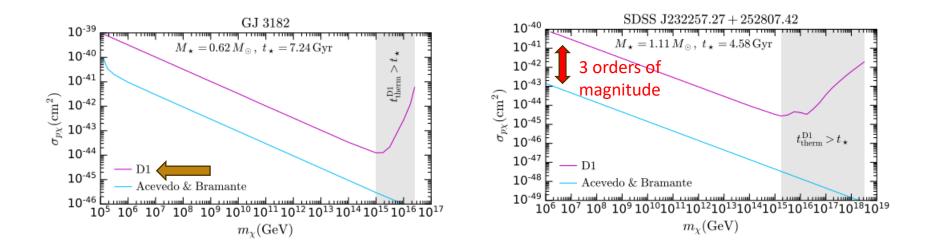
$$r_{\chi} = \sqrt{\frac{3T_{\star}}{2\pi G \rho_c m_{\chi}}}$$

 Gravitational field due to DM at center can reach same order of magnitude of the one generated by ordinary matter

• Requires
$$N_{\chi}(t) \geq rac{4\sqrt{2}\pi^{3/2}r_{\chi}^{3}
ho_{c}}{3\sqrt{3}m_{\chi}} = N_{\mathrm{crit}}$$

• Star develops an instability and Core-Collapse is triggered

06 SELF GRAVITATION



07 CONCLUSIONS

- WD are interesting probe for DM
 - Capture, thermalisation (and annihilation) rates necessary to predict observables
 - Typical observables: luminosity, DM triggered collapse/Supernova
- Accurate calculation of Capture Rates in WD under minimal set of approximations
 - All assumptions used are well verified
 - Results differ by order of magnitude comparing to previous estimates in literature
- Accurate computation of thermalisation rates of DM in WD
 - High energy and low energy regimes
 - Analytical expressions verified numerically
- DM-induced WD collapse revisited using updates rates
 - Cross section required up to 3 orders of magnitude larger

THANK YOU

BACKUP

Australian National University

02 CAPTURE BY SINGLE SCATTERING $\sqrt{u_{\chi}^{2} + v_{esc}^{2}(r)}$ y is the angular momentum (normalised

• Assuming target at rest (T = 0) $C_1 = \frac{\rho_{\chi}}{m_{\chi}} \int_0^{R_*} dr 4\pi r^2 \int_0^{\infty} du_{\chi} \frac{w(r)}{u_{\chi}} f_{\text{MB}}(u_{\chi}) \Omega_T^-(w) \eta(r)$ This factor encodes the star opacity and the shape of trajectories given by the gravitational field $\mu = \frac{m_{\chi}}{m_T}, \quad \mu_{\pm} = \frac{\mu \pm 1}{2}.$ This factor encodes the energy loss

probability

02 CAPTURE BY SINGLE SCATTERING

 $C_1 = \frac{\rho_{\chi}}{m_{\chi}} \int_0^{R_{\star}} dr 4\pi r^2 \int_0^\infty du_{\chi} \frac{w(r)}{u_{\chi}} f_{\rm MB}(u_{\chi}) \Omega_T^-(w) \eta(r)$

• Assuming target at rest (T = 0)

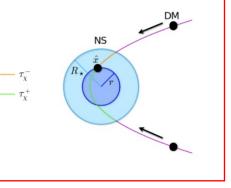
$$\mu = \frac{m_{\chi}}{m_T}, \qquad \mu_{\pm} = \frac{\mu \pm 1}{2}.$$

$$\Omega_T^-(w) = \frac{4\mu_{\pm}^2}{\mu w} n_T \bigotimes \frac{E_R^{\max}(v_{\text{esc}}, m_{\chi}, m_T)}{2m_{\chi}} \int_{E_R^{\min}}^{E_R^{\max}} dE_R$$

- Common approximations:
- Constant values, no averages
- (Differential) Cross section $d\sigma/dcos\theta$ ~ constant

 $Rn_T\sigma$ Maximum value assuming a straight line crossing the star across its center instead of

 $(v_{\rm esc}, E_R)$



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CAPTURE BY MULTIPLE SCATTERING $\int_0 \frac{\sigma^{ag}}{\sqrt{1-y^2}} e^{-\tau}$ $C_1 = \frac{\rho_{\chi}}{m_{\chi}} \int_0^{R_{\star}} dr 4\pi r^2 \int_0^\infty du_{\chi} \frac{w(r)}{u_{\chi}} f_{\rm MB}(u_{\chi}) \Omega_T^-(w) \eta(r)$ Our only approximation! ∞ $\Omega_T^-(w) = \frac{4\mu_+^2}{\mu w} n_T(r) \frac{E_R^{\max}(v_{\rm esc}, m_\chi, m_T)}{2}$ $dE_R \frac{d\sigma_{T\chi}}{dE}(v_{\rm esc}, E_R)$ $\mu \pm 1$ E^{\min}

- Our approach:
- Assuming cross section very suppressed at large E_R (realistic)

$$\sigma_{\chi p} \sim const \rightarrow \sigma_{\chi T} \propto e^{-E_R/E_0}$$

• Opacity calculated from real trajectories

02 CAPTURE BY SINGLE SCATTERING

 $\sqrt{u_{\chi}^2 + v_{\rm esc}^2(r)}$ Assuming target at rest (T = 0) $C_1 = \frac{\rho_{\chi}}{m_{\chi}} \int_0^{R_{\star}} dr 4\pi r^2 \int_0^{\infty} du_{\chi} \frac{w(r)}{u_{\chi}} f_{\rm MB}(u_{\chi}) \Omega_T^-(w) \eta(r)$ $\eta(r) = \frac{1}{2} \int_0^1 \frac{y dy}{\sqrt{1 - y^2}} \left(e^{-\tau_-(r,y)} + e^{-\tau_+(r,y)} \right).$ NS $\tau_{\chi}^{-}(r,y) = \int_{r}^{R_{\star}} \frac{dx}{\sqrt{1 - y^{2} \frac{J_{\max}(r)^{2}}{L}}} \frac{\Omega^{-}(w(x))}{v_{\mathrm{esc}}(x)\sqrt{1 - v_{\mathrm{esc}}^{2}(x)}},$ $\tau_{\chi}^{+}(r,y) = \int_{r}^{r_{\min}} + \int_{r_{\min}}^{R_{\star}} \frac{dx}{\sqrt{1 - y^2 \frac{J_{\max}(r)^2}{T}}} \frac{\Omega^{-}(w(x))}{v_{\mathrm{esc}}(x)\sqrt{1 - v_{\mathrm{esc}}^2(x)}} = 2\tau_{\chi}^{-}(r_{\min},y) - \tau_{\chi}^{-}(r,y),$

D5 THERMALISATION $R_{T}^{-}(w \to v) = \int_{0}^{\infty} ds \int_{0}^{\infty} dt F(s,t) \frac{4\mu_{+}^{2}}{\mu} \frac{n_{T}(r)v}{w} \frac{d\sigma_{T\chi}}{d\cos\theta} (s.t,w,v)\Theta(v-|t-s|),$

$$F(s,t) = \frac{8\mu_+^2}{\sqrt{\pi}}k^3t\mu \,e^{-k^2u_T^2}\Theta\left(t+s-w\right). \tag{A.2}$$

Next, we define the following functions

$$\delta_{\text{EXP}}(x, x_0, c) = c \, e^{-c(x-x_0)} \Theta(x-x_0), \tag{A.3}$$

$$\delta_{\rm G}(x, x_0, c) = \frac{c}{\sqrt{\pi}} e^{-c^2 (x - x_0)^2},\tag{A.4}$$

where x, x_0 , and c are generic variables. In the limit $c \to \infty$, these functions tend to delta functions, i.e.

$$\lim_{c \to \infty} \int_{-\infty}^{\infty} dx \,\delta_{\text{EXP}}(x, x_0, c) f(x) \to f(x_0), \tag{A.5}$$

$$\lim_{c \to \infty} \int_{-\infty}^{\infty} dx \,\delta_{\mathcal{G}}(x, x_0, c) f(x) \to f(x_0),\tag{A.6}$$

where f is a generic function. Using the functions in Eqs. A.3 and A.4, we rewrite F(s,t)

$$F(s,t) \, ds \, dt = \delta_{\text{EXP}}(t^2, (w-s)^2, 2\mu\mu_+k^2) \, dt^2 \delta_{\text{G}}\left(s, \frac{\mu w}{2\mu_+}, 2\mu_+k\right) ds. \tag{A.7}$$

(A.1)

5 THERMALISATION

- Functions well approximated by delta function in some limits
 - One needs relative speed to be dominated by either DM or Target
 - The other one, for large DM mass, requires Target speed to be small
- Zero temperature approximation
 - Appropriate for capture
 - Both functions well approximated by delta functions
- Large mass approximation

30

- Appropriate for Thermalisation of very heavy DM
- Only one function well approximated by delta function

15/05/2024

TEOSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120