Resolving negative cross section of quarkonium hadroproduction using soft gluon factorization

An-Ping Chen

Jiangxi Normal University

Based on: Chen, Ma, Meng, Phys.Rev.D 108 (2023) 1, 014003

QCHSC2024 :XVIth Quark Confinement and the Hadron Spectrum Cairns, Queensland, Australia

II. Soft gluon factorization

III. Phenomenological studies

II. Soft gluon factorization

III. Phenomenological studies

Introduction

> NRQCD factorization Bodwin, Braaten, Lepage, PRD, 1995

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} = \sum_n d\hat{\sigma}_n(P_H) \langle \mathcal{O}_n^H \rangle$$

 $d\hat{\sigma}_n$: production of a heavy quark pair in state $n({}^{2S+1}L_J^{[c]})$.

 $\langle \mathcal{O}_n^H \rangle$: the hadronization of $\mathcal{Q}\overline{\mathcal{Q}}(n)$ to H ;

can be ordered in powers of v;

universality.

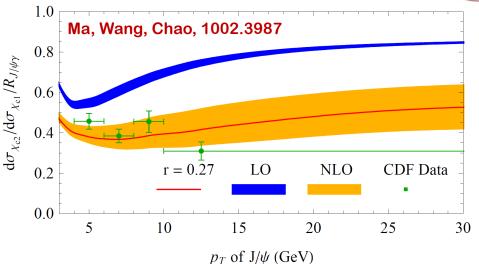
> A glory history

- Solved IR divergences in P-wave quarkonium decay
- Explained ψ' surplus
- Explained χ_{c2}/χ_{c1} production ratio

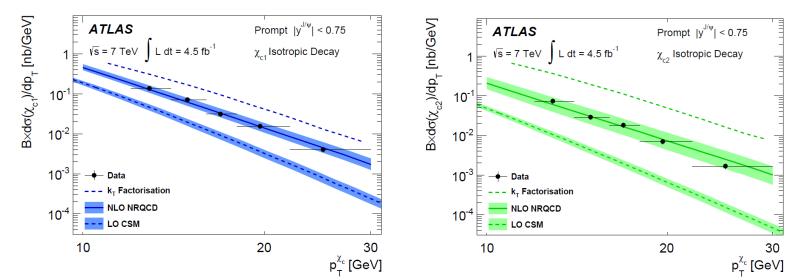
Difficulty

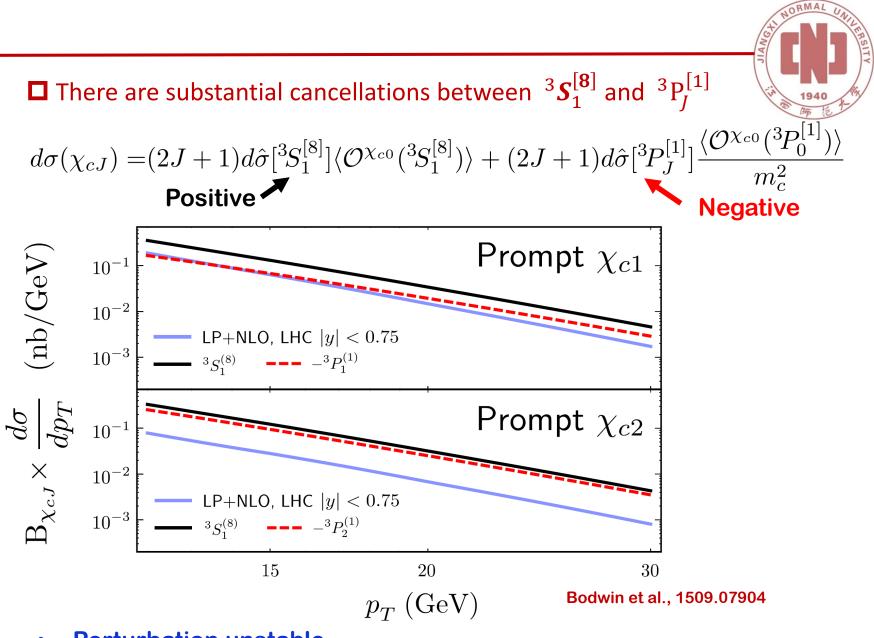
. . . .

- Polarization puzzle
- Universality problem

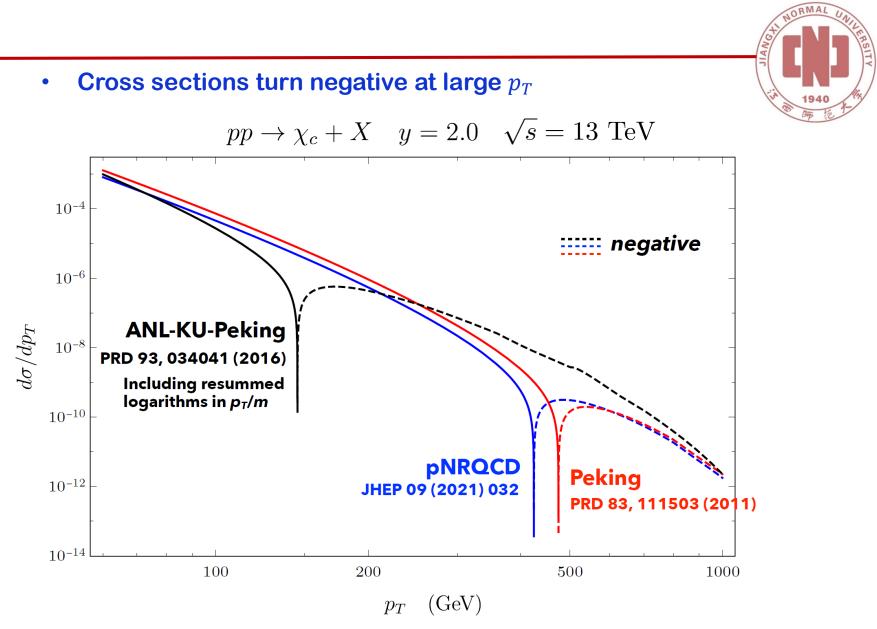


THORMAL UPILIERS

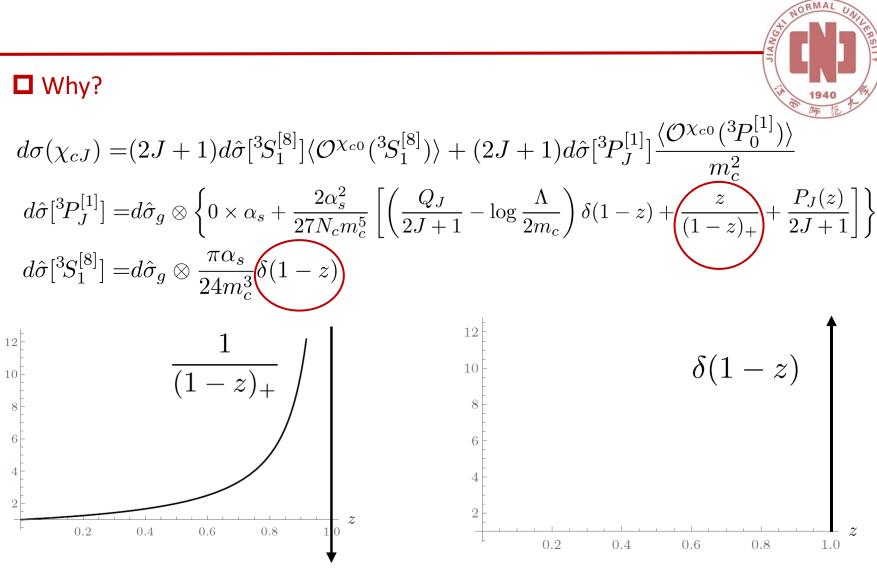

Difficulty : negative cross sections


D Explain χ_{cJ} production

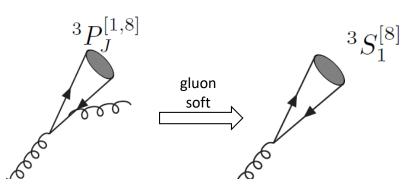
• The ratio $R_{\chi_c} = \sigma_{\chi_{c2}}/\sigma_{\chi_{c1}}$ LO NRQCD: $R_{\chi_c} = 5/3$



The differential cross sections ATLAS, 1404.7035



Perturbation unstable


Hee Sok Chung, talk at The 15th International Workshop on Heavy Quarkonium

Hee Sok Chung, talk at The 15th International Workshop on Heavy Quarkonium

• Cross section at very large p_T will depend strongly on $z \rightarrow 1$ behavior of FFs

- Soft gluon in P-wave: factorized to S-wave matrix element
- Plus functions: remnants of the infrared subtraction in matching the ${}^{3}P_{r}^{[1]}$ SDCs
- Subtraction scheme: at <u>zero momentum</u>, which contributes the largest production rate. Over subtracted!
- Solution: soft gluon momentum should be kept during subtraction process, or resum kinematic effects to all powers in *v*.

□ Soft gluon factorization: resum a dominant series of power corrections (kinematic effects) and log corrections Ma, Chao, 1703.08402; Chen, Ma, 2005.08786.

II. Soft gluon factorization

III. Phenomenological studies

Soft gluon factorization(SGF)

>Factorization

Ma, Chao, 1703.08402; Chen, Jin, Ma, Meng 2103.15121.

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} = \sum_{n,n'} \int \frac{dz}{z^2} d\hat{\sigma}_{[nn']} (P_H/z, m_Q, \mu_f) F_{[nn'] \to H}(z, M_H, m_Q, \mu_f),$$

- $d\hat{\sigma}_{[nn']}$: perturbatively calculable hard parts
- $F_{[nn'] \rightarrow H}$: nonperturbative soft gluon distributions (SGDs)
- $n = {}^{2S+1} L_J^{[c]}$
- *P_H* : momentum of quarkonium
- M_H : mass of quarkonium
- $z = P_H^+/P^+$: the longitudinal momentum fraction with *P* denoting the total momentum of the intermediate $Q\bar{Q}$ pair

Soft gluon distributions (SGDs)

Operator definition

Expectation values of bilocal operators in QCD vacuum

 $F_{[nn']\to H}(z, M_H, m_Q, \mu_f) = P_H^+ \int \frac{db^-}{2\pi} e^{-iP_H^+ b^-/z} \langle 0 | [\bar{\Psi} \mathcal{K}_n \Psi]^\dagger(0) [a_H^\dagger a_H] [\bar{\Psi} \mathcal{K}_{n'} \Psi](b^-) | 0 \rangle_{\mathrm{S}},$

with

$$a_H^{\dagger} a_H = \sum_X \sum_{J_z^H} |H + X\rangle \langle H + X|$$
$$\mathcal{K}_n(rb) = \frac{\sqrt{M_H}}{M_H + 2m} \frac{M_H + \mathcal{P}_H}{2M_H} \Gamma_n \frac{M_H - \mathcal{P}_H}{2M_H} \mathcal{C}^{[c]}$$

Spin project operators:

$$\Gamma_n = \sum_{L_z, S_z} \langle L, L_z; S, S_z | J, J_z \rangle \Gamma_{LL_z}^o \Gamma_{SS_z}^s$$

Color project operators:

$$\mathcal{C}^{[1]} = \frac{\mathbf{1}_c}{\sqrt{N_c}} \qquad \mathcal{C}^{[8]} = \sqrt{2}t^{\bar{a}} \Phi^{(A)}_{a\bar{a}}(rb)$$
12/23

Gauge link

Nayak, Qiu, Sterman, 0509021

$$\Phi_l(rb^-) = \mathcal{P} \exp\left[-ig_s \int_0^\infty \mathrm{d}\xi l \cdot A(rb^- + \xi l)\right] \,,$$

Evaluated in <u>Small</u> region

• Subscript "S": evaluate the matrix element in the region where offshellness of all particles is much smaller than heavy quark mass

FFs in SGF

- $D_{f \to H}$: single parton FFs
- $\mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}$: double parton **FFs**

• $\hat{z} = z/x$

$$\begin{split} D_{f \to H}(z,\mu_0) \\ &= \sum_{n,n'} \int \frac{\mathrm{d}x}{x} \hat{D}_{f \to Q\bar{Q}[nn']}(\hat{z};M_H/x,m_Q,\mu_0,\mu_\Lambda) \\ &\times F_{[nn'] \to H}(x,M_H,m_Q,\mu_\Lambda), \end{split}$$
(2a)
$$\\ \mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}(z,\zeta,\zeta',\mu_0) \\ &= \sum_{n,n'} \int \frac{\mathrm{d}x}{x} \hat{\mathcal{D}}_{[Q\bar{Q}(\kappa)] \to Q\bar{Q}[nn']}(\hat{z},\zeta,\zeta';M_H/x,m_Q,\mu_0,\mu_\Lambda) \\ &\times F_{[nn'] \to H}(x,M_H,m_Q,\mu_\Lambda), \end{aligned}$$
(2b)

□ Short distance hard parts at LO

$$\begin{aligned} \hat{D}_{g \to Q \bar{Q} [}^{LO,(0)}(z, M_{H}, \mu_{0}, \mu_{\Lambda}) &= \frac{\pi \alpha_{s}}{(N_{c}^{2} - 1)} \frac{8}{M_{H}^{3}} \delta(1 - z), \quad (9a) \\ \hat{D}_{g \to Q \bar{Q} [}^{LO,(0)}(z, M_{H}, \mu_{0}, \mu_{\Lambda}) \\ &= \frac{8 \alpha_{s}^{2}}{M_{H}^{3}} \frac{N_{c}^{2} - 4}{2N_{c}(N_{c}^{2} - 1)} \left[(1 - z) \ln[1 - z] - z^{2} + \frac{3}{2} z \right], \quad (9b) \\ \hat{D}_{g \to Q \bar{Q} [}^{LO,(0)}(z; M_{H}, \mu_{0}, \mu_{\Lambda}) \\ &= \frac{32 \alpha_{s}^{2}}{M_{H}^{5} N_{c}} \frac{2}{9} \left[\frac{1}{36} z(837 - 162z + 72z^{2} + 40z^{3} + 8z^{4}) \right] \\ &+ \frac{9}{2} (5 - 3z) \ln(1 - z) \right], \end{aligned}$$

• The P-wave short distance hard parts do not include terms proportional to plus distributions

II. Soft gluon factorization

III. Phenomenological studies

Phenomenological studies

Collinear factorization

 \blacksquare Heavy quarkonium production at large p_T

$$\mathrm{d}\sigma_{A+B\to H+X}(p) \approx \sum_{i,j} f_{i/A}(x_1,\mu_F) f_{j/B}(x_2,\mu_F) \left\{ \sum_f D_{f\to H}(z,\mu_F) \otimes \mathrm{d}\hat{\sigma}_{i+j\to f+X}(\hat{P}/z,\mu_F) \right\}$$

$$+\sum_{\kappa} \mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}(z, \zeta, \zeta', \mu_F) \otimes d\hat{\sigma}_{i+j \to [Q\bar{Q}(\kappa)]+X}(\hat{P}(1 \pm \zeta)/2z, \hat{P}(1 \pm \zeta')/2z, \mu_F) \bigg\},$$

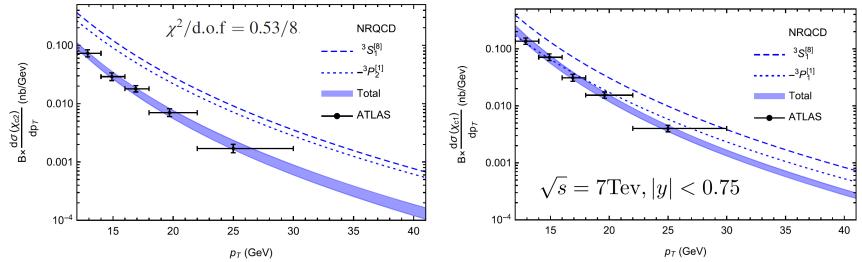
Kang, Ma, Qiu, Sterman, 1401.0923

Factorization of FFs

- SGF
- NRQCD factorization

Nonperturbative model for SGDs

$$F^{\text{mod}}(x) = \frac{N^H \Gamma(M_H b/\bar{\Lambda})(1-x)^{b-1} x^{M_H b/\bar{\Lambda}-b-1}}{\Gamma(M_H b/\bar{\Lambda}-b)\Gamma(b)}$$


- N^H : the normalization, $N^H[n] \approx \langle \mathcal{O}^H(n) \rangle$
- $\overline{\Lambda}$: the average radiated momentum in the hadronization process
- *b*: related to the second moment of model function

NORMAL UNITERSTY

$\blacktriangleright Production of \chi_{cJ}$

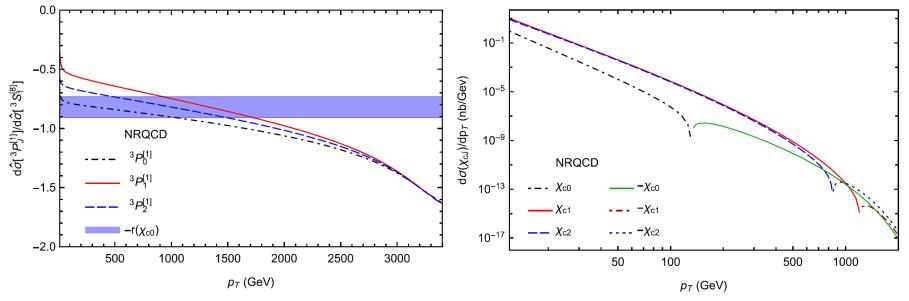
- NRQCD factorization
- The fitted cross sections compared with ATLAS data

Define the ratio


$$r(\chi_{c0}) \equiv \frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}S_{1}^{[8]})\rangle}{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle/m_{c}^{2}},$$

The cross sections

$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}[{}^{3}S_{1}^{[8]}] \frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle}{m_{c}^{2}} \left[r(\chi_{c0}) + \frac{d\hat{\sigma}[{}^{3}P_{J}^{[1]}]}{d\hat{\sigma}[{}^{3}S_{1}^{[8]}]}\right]$$



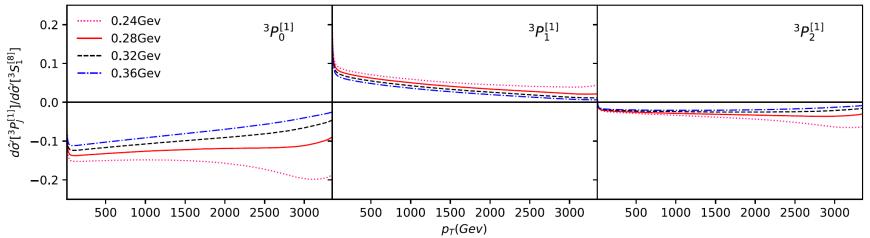
To achieve a positive cross section, it is necessary to have

• Left: comparison between the ratios and $-r(\chi_{c0})$

Right: the p_T distributions when the LDMEs take the central values

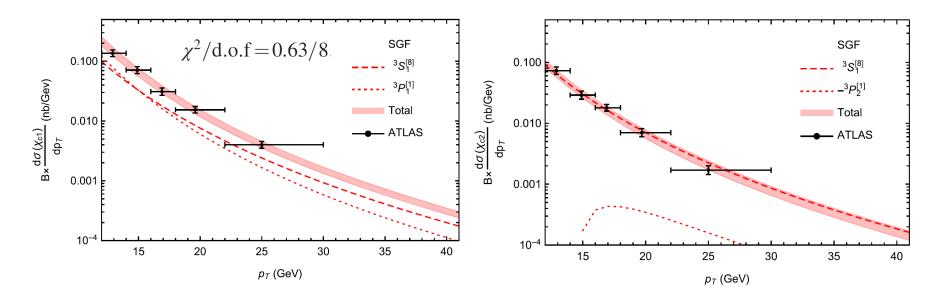
• The ratios fall below the lower bound of $-r(\chi_{c0})$ at very large p_T

SGF


The cross sections

$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}'[{}^{3}S_{1}^{[8]}] \frac{N^{\chi_{c0}}[{}^{3}P_{0}^{[1]}]}{m_{c}^{2}} \left[r'(\chi_{c0}) + \frac{d\hat{\sigma}'[{}^{3}P_{J}^{[1]}]}{d\hat{\sigma}'[{}^{3}S_{1}^{[8]}]}\right]$$

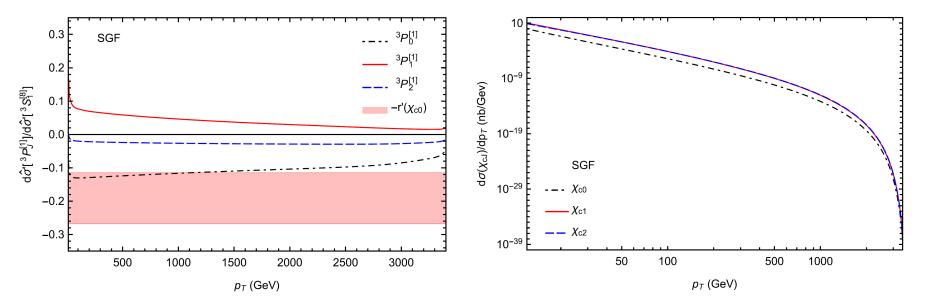
with


$$r'(\chi_{c0}) \equiv \frac{N^{\chi_{c0}}[{}^{3}S_{1}^{[8]}]}{N^{\chi_{c0}}[{}^{3}P_{0}^{[1]}]/m_{c}^{2}}.$$

- $d\hat{\sigma}'[{}^{3}P_{J}^{[1]}]/d\hat{\sigma}'[{}^{3}S_{1}^{[8]}]$ is sensitive to the parameters $\overline{\Lambda}$
- Fix $\overline{\Lambda} \begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix} = 0.4$ Gev and vary $\overline{\Lambda} \begin{bmatrix} {}^{3}P_{J}^{[1]} \end{bmatrix} = 0.36, 0.32, 0.28, 0.24$ Gev

THORMAL UNITER STATE

- A constraint relation is suggested: $\bar{\Lambda}[{}^{3}P_{J}^{[1]}] \ge 0.7\bar{\Lambda}[{}^{3}S_{1}^{[8]}]$
- We set $\overline{\Lambda} \begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix} = 0.4 \text{Gev and } \overline{\Lambda} \begin{bmatrix} {}^{3}P_{J}^{[1]} \end{bmatrix} = 0.3 \text{Gev}$
- The fitted cross sections compared with ATLAS data



The fit to experimental data is as good as that in NRQCD factorization

• Left: comparison between the ratios and $-r'(\chi_{c0})$

Right: the p_T distributions when the parameters take the central values

• There is a wide range of $r'(\chi_{c0})$ in which the ratios is larger than

 $-r'(\chi_{c0})$

The negative cross section problem is resolved in SGF

II. Soft gluon factorization

III. Phenomenological studies

Summary

• We studied the hadroproduction of χ_{cJ} using the SGF and NRQCD factorization;

- Our results show that the fit to experimental data in SGF is as good as that in NRQCD factorization;
- Our results show that the negative cross section problem in NRQCD can be resolved in SGF;
- It will be very useful to apply SGF to study the polarizations of ψ (ns) production at LHC in the future.

Thank you!

