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Nuclear Structure Through Lattice QCD

• This work seeks to enable and explore more detailed lattice probes
into the nuclear structure of (relatively) large nuclei

• Let A denote the number of nucleons in a nuclei state |X ⟩
• Explore multi-nucleon lattice probes using the Forward Compton

Tensor as an example
• Key Challenges:

1 Signal-to-Noise scaling: errors generally scale poorly with quark number
2 Identifying physically relevant states: achieving good overlap with the ground-state

becomes increasingly difficult for many-hadron systems
3 Numerical correlator evaluation:

• Wick contractions scale factorially in quark number
• Index set scales exponentially in quark number
• Floating point errors interact poorly with delicate cancellations
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Tensor E-graphs PRELIMINARY
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Figure 1: The number of operations (Nunopt.)
required to directly evaluate the correlator
expressions via the hadron block method,
excluding the number of operations required to
evaluate the single nucleon blocks themselves.
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Figure 2: Performance of the tensor e-graph
method for nuclear correlation functions for the
deuteron (3S1), dinueutron (1S0), helium-3
(3He), and helium-4 (4He), lithium-4 (4Li), four
proton (4p), and helium-5 (5Hê) operators.
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DIS and Kinematics

• Typically X = baryon, but
this work sets
X = multi-hadron state

• k (k′) incoming (outgoing)
lepton momenta

• p incoming momentum of X
state

• dσ ∼ LµνWµν scales as
lepton tensor Lµν and hadron
tensor W µν .

Wµν(p, q) =
(

−gµν +
qµqν

q2

)
F1(x , Q2) +

(
pµ −

p · q
q2 qµ

) (
pν −

p · q
q2 qν

) F2(x , Q2)
p · q

(1)

x :=
Q2

2p · q
Bjorken scaling variable, Q2 = −q2 (2)
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Observables

Forward (unpolarised) Compton Tensor:

Tµν(p, q) := i
∫

d4zei q⃗·⃗z ρss′ ⟨X ′
p,s′ | T {Jµ(z)Jν(0)} |Xp,s⟩ (3)

=:
(

−gµν +
qµqν

q2

)
F1(ω, Q2) +

(
pµ −

p · q
q2 qµ

) (
pν −

p · q
q2 qν

) F2(ω, Q2)
p · q

(4)

where:

ω :=
2p · q

Q2 =
1
x

Inverse Bjorken scaling variable (5)

Jµ(z) = ZV q(z)γµq(z) (6)

Can resolve Compton Structure Functions (in Minkowski space):

F1(w , Q2) = T33(p, q) (7)
F2(w , Q2)

ω
=

Q2

2E2
X

[T00(p, q) + T33(p, q)] (8)

Nabil Humphrey CSSM, University of Adelaide
Multi-nucleon Matrix Elements on the Lattice with E-graph Optimised Wick Contractions and the Feynman-Hellmann Theorem 7 / 24



Introduction Setup Results Conclusion

Feynman-Hellmann

Tµµ(p, q) + Tµµ(p, −q)
2

= −EX (p⃗)
∂2EXλ

∂λ2

∣∣∣
λ=0

(9)

where EX ,λ:

Cλ(p⃗; t, q) :=
∫

d3z⃗e−i p⃗·⃗z ⟨Ωλ| X (⃗z; t)X(0) |Ωλ⟩ (10)

≃ Aλe−EX,λt (11)

where |Ωλ⟩ is obtained via a perturbation to the fermion action:

S(λ) = Sunpert + λ

∫
d4z

(
eiq·z + e−iq·z

)
Jµ(z) (12)

See other QCHSC24 FH contributions:
• James Zanotti [Constraining beyond the Standard Model nucleon isovector charges]
• K. Utku Can [The parity-odd structure function of the nucleon from the Compton amplitude

in lattice QCD]
• Jordan McKee [Compton Amplitude of the Pion using Feynman-Hellmann]
• Thomas Schar [Reduction of discretisation artifacts in the lattice subtraction function

calculation]
• Ian van Schalkwyk [Calculation of the Compton Amplitude at High Momentum using

Momentum Smearing]
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Proton Target Results

F2(w , Q2)
ω

=
Q2

2E2
p

[T00(p, q) + T33(p, q)]

F2(ω, Q2) =
∞∑

n=1

4ω2n−1M(2)
2n (Q2)

• Q2 fit dependence:

M(2)
2,h(Q2) = M(2)

2,h +
C (2)

2,h

Q2 + O(1/Q4)

• Moment construction:

M(2,L)
2,p =

4
9

M(2,L)
2,uu +

1
9

M(2,L)
2,dd −

2
9

M(2,L)
2,ud

where h ∈ {uu, dd , ud , p}

Figure 3: Q2 dependence of the lowest moments
of F2 for the proton. Filled stars are the
experimental Cornwall-Norton moments of F2
taken from Table I of Ref. [PRD 63.094008]. We
have assigned a 5% error to the experimental
moments as indicated in Ref. [PRD 63.094008].
Red band is the fit to the 48 × 96 data points.

[Phys.Rev.D 107 (2023) 5, 054503]

Nabil Humphrey CSSM, University of Adelaide
Multi-nucleon Matrix Elements on the Lattice with E-graph Optimised Wick Contractions and the Feynman-Hellmann Theorem 9 / 24



Introduction Setup Results Conclusion

Proton Target Results

F2(w , Q2)
ω

=
Q2

2E2
p

[T00(p, q) + T33(p, q)]

F2(ω, Q2) =
∞∑

n=1

4ω2n−1M(2)
2n (Q2)

• Q2 fit dependence:

M(2)
2,h(Q2) = M(2)

2,h +
C (2)

2,h

Q2 + O(1/Q4)

• Moment construction:

M(2,L)
2,p =

4
9

M(2,L)
2,uu +

1
9

M(2,L)
2,dd −

2
9

M(2,L)
2,ud

where h ∈ {uu, dd , ud , p}

[Phys.Rev.D 107 (2023) 5, 054503]

Nabil Humphrey CSSM, University of Adelaide
Multi-nucleon Matrix Elements on the Lattice with E-graph Optimised Wick Contractions and the Feynman-Hellmann Theorem 10 / 24



Introduction Setup Results Conclusion

Lattice QCD Details

• QCDSF 323 × 64 configurations with
2+1 flavour

• NP-improved Clover action with
β = 5.50

• ∼ SU(3) symmetric point
• Lattice space a = 0.074 fm
• mπ ∼ 470 MeV
• mπL ∼ 5.6
• λ ∈ {±λ1, ±λ2} where λ1 = 0.025,

λ2 = 0.05
• Purely connected contributions
• Low-statistics exploratory results (for

everything herein):
• nsrc ∼ 1
• nconfs ∼ 1200
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Operators and Correlated Ratios

Local interpolating operators:

p±
α (x) = ϵabc

[
[ua(x)]T (Cγ5P±)db(x)

]
uc

α(x) (13)

n±
α (x) = ϵabc

[
[da(x)]T (Cγ5P±)ub(x)

]
dc

α(x), (14)

where P± = 1
2 (1 ± γ4).

NN(3S1) Deuteron with JP = 1+, Jz = +1:

O3S1 (x) =
1

√
2

([
p+(x)

]T (Cγ3)n+(x) −
[
n+(x)

]T (Cγ3)p+(x)
)

(15)

Perturbed Ratio:

R(λ)(t) =
⟨Cλ(t)⟩⟨C−λ(t)⟩

[⟨Cλ=0(t)⟩]2
(16)

∼ Aλe−2∆EX t (17)
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Deuteron Quark Counting

• Before getting to:
Tµν(p, q) = i

∫
d4zei q⃗·⃗z ρss′ ⟨X ′

p,s′ | T {Jµ(z)Jν(0)} |Xp,s⟩

Calculate q⃗ = 0⃗ = p⃗ single current
insertion object:

O =
∫

d4z ⟨O3S1 | Jµ=4(z) |O3S1 ⟩

• Nucleon g.s. reference energy scale
aEnuc,λ=0 = 0.50(8)

• Perturbation applied to all up quark
propagators, so expect:

aZV
∂E3S1

∂λ

∣∣∣
λ=0

= 3

Unperturbed NN(3S1) Effective Energy Fit

aE3S1,λ=0 = 1.06 ± 0.02
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Deuteron Quark Counting

• Before getting to:
Tµν(p, q) = i

∫
d4zei q⃗·⃗z ρss′ ⟨X ′

p,s′ | T {Jµ(z)Jν(0)} |Xp,s⟩

Calculate q⃗ = 0⃗ = p⃗ single current
insertion object:

O =
∫

d4z ⟨O3S1 | Jµ=4(z) |O3S1 ⟩

• Nucleon g.s. reference energy scale
aEnuc,λ=0 = 0.50(8)

• Perturbation applied to all up quark
propagators, so expect:

aZV
∂E3S1

∂λ

∣∣∣
λ=0

= 3

Perturbed NN(3S1) Effective Energy Fit at
λ = λ1 = 0.025

aE3S1,λ=λ1 = 1.11 ± 0.03
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Deuteron Quark Counting

• Before getting to:
Tµν(p, q) = i

∫
d4zei q⃗·⃗z ρss′ ⟨X ′

p,s′ | T {Jµ(z)Jν(0)} |Xp,s⟩

Calculate q⃗ = 0⃗ = p⃗ single current
insertion object:

O =
∫

d4z ⟨O3S1 | Jµ=4(z) |O3S1 ⟩

• Nucleon g.s. reference energy scale
aEnuc,λ=0 = 0.50(8)

• Perturbation applied to all up quark
propagators, so expect:

aZV
∂E3S1

∂λ

∣∣∣
λ=0

= 3

Perturbed NN(3S1) Effective Energy Fit at
λ = λ2 = 0.05

aE3S1,λ=λ2 = 1.14 ± 0.02
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Deuteron Quark Counting

• Before getting to:
Tµν(p, q) = i

∫
d4zei q⃗·⃗z ρss′ ⟨X ′

p,s′ | T {Jµ(z)Jν(0)} |Xp,s⟩

Calculate q⃗ = 0⃗ = p⃗ single current
insertion object:

O =
∫

d4z ⟨O3S1 | Jµ=4(z) |O3S1 ⟩

• Nucleon g.s. reference energy scale
aEnuc,λ=0 = 0.50(8)

• Perturbation applied to all up quark
propagators, so expect:

aZV
∂E3S1

∂λ

∣∣∣
λ=0

= 3

NN(3S1) Quark Counting Renormalised
Lambda Fit

aZV
∂E3S1

∂λ

∣∣∣
λ=0

= 2.992 ± 0.4
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T44 Results PRELIMINARY

• Calculate:
T44(p, q) =

∫
d4zei q⃗·⃗z ⟨3S1| T {J4(z)J4(0)} |3S1⟩

• With:
• p⃗ = 0
• q⃗ = (4, 1, 0) 2π

L , Q2 = 4.66 GeV2

• Note Wick rotation: T00 → −T44
• Extracting ∆EX via perturbed ratio:

R(λ)(t) =
⟨Cλ(t)⟩⟨C−λ(t)⟩

[⟨Cλ=0(t)⟩]2

∼ Aλe−2∆EX t

• Calculate T44 via:
Tµµ(p,q)+Tµµ(p,−q)

2 = −EX (p⃗)
∂2EXλ

∂λ2

∣∣∣
λ=0

• In terms of Forward Compton
structure functions:

T44(p, q) = F1(ω, Q2) −
2E2

X
Q2

F2(ω, Q2)
ω

Perturbed NN(3S1) Effective Energy Fit at
λ = λ1 = 0.025

aE3S1,Rλ=λ1 = (4.3 ± 0.3) × 10−3

Nabil Humphrey CSSM, University of Adelaide
Multi-nucleon Matrix Elements on the Lattice with E-graph Optimised Wick Contractions and the Feynman-Hellmann Theorem 18 / 24



Introduction Setup Results Conclusion

T44 Results PRELIMINARY

• Calculate:
T44(p, q) =

∫
d4zei q⃗·⃗z ⟨3S1| T {J4(z)J4(0)} |3S1⟩

• With:
• p⃗ = 0
• q⃗ = (4, 1, 0) 2π

L , Q2 = 4.66 GeV2

• Note Wick rotation: T00 → −T44
• Extracting ∆EX via perturbed ratio:

R(λ)(t) =
⟨Cλ(t)⟩⟨C−λ(t)⟩

[⟨Cλ=0(t)⟩]2

∼ Aλe−2∆EX t

• Calculate T44 via:
Tµµ(p,q)+Tµµ(p,−q)

2 = −EX (p⃗)
∂2EXλ

∂λ2

∣∣∣
λ=0

• In terms of Forward Compton
structure functions:

T44(p, q) = F1(ω, Q2) −
2E2

X
Q2

F2(ω, Q2)
ω

T44 NN(3S1) Lambda Fit

a
∂2E3S1

∂λ2

∣∣∣
λ=0

= 6.98 ± 0.52

T44 = −7.39 ± 0.55

Nabil Humphrey CSSM, University of Adelaide
Multi-nucleon Matrix Elements on the Lattice with E-graph Optimised Wick Contractions and the Feynman-Hellmann Theorem 19 / 24



Introduction Setup Results Conclusion

T33 Results PRELIMINARY

• Calculate:
T33(p, q) =

∫
d4zei q⃗·⃗z ⟨3S1| T {J3(z)J3(0)} |3S1⟩

• With:
• p⃗ = 0
• q⃗ = (4, 1, 0) 2π

L , Q2 = 4.66 GeV2

• Extracting ∆EX via perturbed ratio:

R(λ)(t) =
⟨Cλ(t)⟩⟨C−λ(t)⟩

[⟨Cλ=0(t)⟩]2

∼ Aλe−2∆EX t

• Calculate T33 via:
Tµµ(p,q)+Tµµ(p,−q)

2 = −EX (p⃗)
∂2EXλ

∂λ2

∣∣∣
λ=0

• Forward Compton structure functions:

F1(ω, Q2) = T33(p, q)

F2(ω, Q2)
ω

=
Q2

2E2
X

[T33(p, q) − T44(p, q)]

Perturbed NN(3S1) Effective Energy Fit at
λ = λ2 = 0.05

aE3S1,Rλ2 = (5.22 ± 0.9) × 10−3
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T33 Results PRELIMINARY

• Calculate:
T33(p, q) =

∫
d4zei q⃗·⃗z ⟨3S1| T {J3(z)J3(0)} |3S1⟩

• With:
• p⃗ = 0
• q⃗ = (4, 1, 0) 2π

L , Q2 = 4.66 GeV2

• Extracting ∆EX via perturbed ratio:

R(λ)(t) =
⟨Cλ(t)⟩⟨C−λ(t)⟩

[⟨Cλ=0(t)⟩]2

∼ Aλe−2∆EX t

• Calculate T33 via:
Tµµ(p,q)+Tµµ(p,−q)

2 = −EX (p⃗)
∂2EXλ

∂λ2

∣∣∣
λ=0

• Forward Compton structure functions:

F1(ω, Q2) = T33(p, q)

F2(ω, Q2)
ω

=
Q2

2E2
X

[T33(p, q) − T44(p, q)]

T33 NN(3S1) Lambda Fit

a
∂2E3S1

∂λ2

∣∣∣
λ=0

= 2.09 ± 0.34

F1 = T33 = −2.23 ± 0.37

F2
ω

= 0.153 ± 0.019
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M(2)
2 Result PRELIMINARY

F2(w , Q2)
ω

=
Q2

2E2
p

[T00(p, q) + T33(p, q)]

F2(ω, Q2) =
∞∑

n=1

4ω2n−1M(2)
2n (Q2)

M(2)
2,h(Q2) = M(2)

2,h +
C (2)

2,h

Q2 + O(1/Q4)

M(2,L)
2,p =

4
9

M(2,L)
2,uu +

1
9

M(2,L)
2,dd −

2
9

M(2,L)
2,ud
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Summary and Next Steps

Summary:
• Validated multi-nucleon FH process with quark counting exercise.
• Calculated NN(3S1) T33 = F1 for p⃗ = 0⃗, q⃗ = (4, 1, 0) 2π

L , Q2 = 4.66GeV 2

• Calculated NN(3S1) T44 and therefore F2 for p⃗ = 0⃗, q⃗ = (4, 1, 0) 2π
L ,

Q2 = 4.66GeV 2 to 12% precision
• Compared NN(3S1) F2 lowest moment with proton results

Next Steps:
1 Repeat across a range of Q2 values
2 Gather larger statistics
3 Improve F2 extraction mechanics
4 Increase A (e.g. helium-3, helium-4)
5 Multiple lattice parameters to establish dependence

Nabil Humphrey CSSM, University of Adelaide
Multi-nucleon Matrix Elements on the Lattice with E-graph Optimised Wick Contractions and the Feynman-Hellmann Theorem 24 / 24



Backup

+

E1 EN...

(a)

+

E1 EN...

(b)

F F F σ

F 1̃ F̃2

(c)

+

E1 EN EN... ...

...

...

...
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Figure 4: The evolution of a tensor e-graph,
beginning with a directed acyclic graph
representing the sum of N tensor expressions:
E1 + ... + EN (a), the introduction of e-classes
(b), the application of the re-write rule (c), and
the resultant tensor e-graph after construction
(d).
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Figure 5: Performance of the tensor e-graph
method for nuclear correlation functions for the
deuteron (3S1), dinueutron (1S0), helium-3
(3He), and helium-4 (4He), lithium-4 (4Li), four
proton (4p), and helium-5 (5Hê) operators.
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