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Scalar currents and searches for physics beyond the SM

No scalar currents in Standard Model, but many BSM scenarios involve scalar

quark-level operators

Standard example from dark matter: Majorana WIMP χ

L =
∑

q
CSS

q χ̄χmq q̄q

but also µ → e conversion in nuclei, EDMs, nuclear matter, . . .

Need nucleon matrix elements

⟨N|mq q̄q|N⟩ = f N
q mN

for cross section off nuclei (“direct detection”)

Pion–nucleon σ-term σπN

Isoscalar–scalar coupling: σπN = mN(f N
u + f N

d )

Related to pion–nucleon scattering

Rare opportunity to check lattice BSM nucleon matrix elements against

experiment
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Status of the σ term around 2021
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Phenomenology: σπN ≈ 60 MeV, lattice: σπN ≈ 40 MeV

Cross check failed, isospin violation a possible explanation due to σπN ∝ M2
π?

Isospin breaking corrections to Cheng–Dashen low-energy theorem

Definition of isospin limit
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Extracting σπN from πN scattering: low-energy theorem

No scalar probe, but still relation to experiment! How?

↪→ low-energy theorem

Goes back to Cheng, Dashen; Brown, Pardee, Peccei 1971

Relates σπN to πN scattering amplitude, but at unphysical kinematics

↪→ analytic continuation to the Cheng–Dashen point

No chiral logs at one-loop order! Bernard, Kaiser, Meißner 1996

Protected by SU(2)

↪→ expected correction: σπNM2
π/m2

N ∼ 1 MeV
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How to define the isospin limit?

Typical ChPT convention for isospin limit

↪→ charged particle masses Mπ+ , MK+ , mp, . . .

Why? Most data available for charged particles

Examples:

ππ: π+π− atoms, πN → ππN data

πN: π−p, π−d atoms, πN → πN data

↪→ natural to use charged-particle masses to minimize corrections

Standard example: ππ scattering lengths Colangelo, Gasser, Leutwyler 2001

a0
0 = 0.220(5) a2

0 = −0.0444(10)

IB corrections important when comparing to K → 3π and Kℓ4 data due to

neutral-pion thresholds

aI
0 vanish in the chiral limit

↪→ choice of isospin conventions matters
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Isospin violation in σπN

Cheng–Dashen theorem
Correction to scalar form factor (∆p

σ) and πN amplitude (∆p
D) MH et al. 2015

∆p
σ = σp

(
2M2

π

)
− σp =

3g2
AM3

π

64πF2
π

+
g2

AMπ∆π

128πF2
π

(
− 7 + 2

√
2 log

(
1 +

√
2
))

∆π = M2
π± − M2

π0

∆
p
D = F2

π

{
Dp

(
0, 2M2

π

)
− dp

00 − 2M2
πdp

01

}
=

23g2
AM3

π

384πF2
π

+
g2

AMπ∆π

256πF2
π

(
3 + 4

√
2 log

(
1 +

√
2
))

↪→ both defined with respect to the charged pion mass

Results in an upwards shift of 81g2
AMπ∆π

256πF2
π

≃ 3.4 MeV, “enhanced” by 4π

Isospin limit definition

Lattice QCD prefers σ̄πN defined at mass of the neutral pion

↪→ ∆π/M2
π ≃ 6% correction!

More careful analysis in ChPT MH et al. 2023

∆σπN ≡ σπN − σ̄πN = 3.1(5)MeV

↪→ not negligible at current level of precision

Both effects happen to almost cancel each other
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Latest update from pionic atoms
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Final PSI measurement of the width of pionic hydrogen Hirtl et al. 2021

σπN mainly sensitive to isoscalar scattering length a+

↪→ σπN = 59.0(3.5)MeV largely unchanged
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The σ-term on the lattice

!

"
!

"

N N
𝜋

N

1 Feynman–Hellmann method

Derivative of the nucleon mass:

⟨N|mq q̄q|N⟩ = mq
∂mN

∂mq

Need very precise data of mN near the physical point

2 Direct method

Calculate the three-point function

Noisier signal, control over excited-state contamination (ESC)
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Two different fit strategies

C2pt(τ ; k) =
3∑

i=0

|Ai (k)|2e−Miτ

C3pt
S (τ ; t) =

2∑
i,j=0

AiA∗
j ⟨i|S|j⟩e−Mi t−Mj (τ−t)

1 “Standard fit” ({4, 3∗})

Excited states determined from combined fit to C2pt to C3pt
S

Two excited states M1, M2 in C3pt
S , ⟨2|S|2⟩ not resolved

Flat priors on Mi

2 “Excited-state fit” ({4Nπ, 3∗})

Narrow-width prior for M1 centered about the noninteracting energy of the lowest

positive parity states N(1)π(−1) or N(0)π(0)π(0)

↪→ for small pion masses, the two strategies yield very different results, but lattice

data not precise enough to decide see plenary talk by Rajan Gupta, Fr., 15:30
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Role of excited states in ChPT

Can estimate ESC in ChPT Tiburzi 2015, Bär 2015, . . .

Strategy

Nπ and ππ cuts in chiral loops correspond to N(k)π(−k) or N(0)π(k)π(−k) excited

states on the lattice

Wick-rotate Minkowski loop integrals to Euclidean space

Collect residues

Amounts to a chiral expansion of the ratio RS(τ, t) = C3pt
S (τ ; t)/C2pt(τ)

RS(τ, t) = R(0)
S (τ, t) +R(1)

S (τ, t) +R(2)
S (τ, t)

with R(0)
S = m̂g(0)

S and δσπN(τ, t) = RS(τ, t)− lim
t,τ→∞

RS(τ, t)

Convergence set by Q ∈ {Mπ, t−1, t−1
B , τ−1}, tB = τ − t
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Leading loop contribution
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Leading loop gives

R(1)
S (τ, t) =

3g2
AM2

π

8F 2
πL3

∑
k

k2

E4
π

[
1 − e−ENπ t − e−ENπ tB +

1
2

e−ENπτ +
1
4

e−2Eπ t +
1
4

e−2Eπ tB

]

where

Eπ =
√

k2 + M2
π , ẼN =

√
m2

N + k2 − mN , ENπ = Eπ + ẼN , k =
2πn

L

First term reproduces continuum result

3g2
AM2

π

8F 2
π

1
L3

∑
k

k2

E4
π

= −9g2
AM3

π

64πF 2
π

+∆LσπN

Excites-state sums converge at scales {t−1, t−1
B , τ−1}

M. Hoferichter (Institute for Theoretical Physics) Isospin violation effects in the πN sigma-term Aug 22, 2024 11



Full N2LO analysis
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R(2)

S (τ, t) = R(2)
recoil + R(2)

ci

R(2)
recoil = −

9g2
AM2

π

32mN F 2
πL3

∑
k

(k2)2

E5
π

[
1 −

2
3

e−Eπ t −
2
3

e−Eπ tB +
2
3

e−Eπτ −
1
6

e−2Eπ t −
1
6

e−2Eπ tB

]

+
3g2

AM2
π

32mN F 2
πL3

∑
k

1
Eπ

[
1 −

1
2

e−2Eπ t −
1
2

e−2Eπ tB +
2k2

E2
π

(
1 − e−Eπ t − e−Eπ tB + e−Eπτ

)]

R(2)
ci

= −
3M2

π

4F 2
π

1
L3

∑
k

1
E3
π

(
(c2 + 2c3)E

2
π + (2c1 − c3)M

2
π

)[
1 −

1
2

e−2Eπ t −
1
2

e−2Eπ tB

]

+
3M2

π

F 2
π

1
L3

∑
k

1
Eπ

c1

M. Hoferichter (Institute for Theoretical Physics) Isospin violation effects in the πN sigma-term Aug 22, 2024 12



Full N2LO analysis

a=0.09 fm, τ = 16a

ground state
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NLO N2LO δσπN(16, 8) NLO N2LO δσπN(12, 6)

|nmax| mn loop source ci recoil total loop source ci recoil total

0 1 0 −0.4 −1.0 −0.0 −1.4 0 −0.5 −1.2 −0.1 −1.7

1 6 −2.2 −0.6 −2.9 −0.2 −5.9 −2.7 −0.9 −4.3 −0.2 −8.0
√

2 12 −4.4 −0.8 −4.6 −0.3 −10.0 −5.6 −1.2 −7.4 −0.3 −14.5
√

3 8 −5.2 −0.8 −5.2 −0.3 −11.6 −6.7 −1.3 −8.7 −0.4 −17.1

2 6 −5.6 −0.9 −5.5 −0.3 −12.2 −7.3 −1.3 −9.4 −0.4 −18.4
√

5 24 −6.5 −0.9 −6.2 −0.3 −14.0 −8.9 −1.4 −11.1 −0.5 −21.9
√

6 24 −7.2 −0.9 −6.7 −0.4 −15.2 −10.1 −1.5 −12.4 −0.5 −24.5
√

8 12 −7.4 −0.9 −6.8 −0.4 −15.5 −10.4 −1.5 −12.8 −0.5 −25.2

3 30 −7.7 −0.9 −7.0 −0.4 −16.0 −11.1 −1.6 −13.5 −0.5 −26.6

∞ −9.2 −0.9 −7.6 −0.4 −18.0 −14.2 −1.5 −16.3 −0.6 −32.6

Functional form matches

near t ∼ τ/2

Applicability of ChPT?

Largest {t , τ} suggest

10 MeV each from NLO

and N2LO loops
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Impact of the ∆(1232)

a=0.09 fm, τ = 16a

ground state

NLO, |nmax|=1

N2LO, |nmax|=1

NLO, |nmax|=3

N2LO, |nmax|=3

N2LO, |nmax|=∞

-5 0 5
4

6

8

10

12

14

16

18

(t-τ/2)/a

gS

Dashed lines N2LO + leading ∆(1232) effect

↪→ chiral convergence looks very stable
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Lattice calculation by Mainz group

PRL 131 (2023) 26 [supplemental material]

Two strategies for ESC

upper: “window”

lower: “two-state” (closest to “excited-state fit” above)

Final result σ̄πN = 43.7(3.6)MeV as average

For “two-state” fit: systematic increase of (5–10)MeV

when restricting results to low pion masses

Most reliable result arguably σ̄πN = 52.3(5.9)MeV

Compares well with σ̄πN = 55.9(3.5)MeV from

phenomenology

However: lattice data cannot distinguish yet among

ESC strategies
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Conclusions

Isospin violation in πN sigma-term

Cheng–Dashen theorem: leads to increase of σπN

Definition of isospin limit reduces tension between

lattice and phenomenology by ≃ 3 MeV

Excited-state contamination

ChPT predicts large ESC, stable with explicit ∆

Most relevant for low pion masses

Potentially removes remaining tension with

phenomenology

Lattice data cannot distinguish yet between analysis

strategies
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