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The unfolding problem

Any differential cross section measurement is affected by the finite
resolution of the particle detectors

This causes the observed spectrum of events to be “smeared” or
“blurred” with respect to the true one

The unfolding problem is to estimate the true spectrum using the
smeared observations

Ill-posed inverse problem with many methodological challenges
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Problem formulation

Let f be the true, particle-level spectrum and g the smeared, detector-level
spectrum

Denote the true space by T and the smeared space by S (both taken
to be intervals on the real line for simplicity)
Mathematically f and g are the intensity functions of the underlying
Poisson point process

The two spectra are related by

g(s) =

∫
T

k(s, t)f (t) dt,

where the smearing kernel k represents the response of the detector and is
given by

k(s, t) = p(Y = s|X = t,X observed)P(X observed|X = t),

where X is a true event and Y the corresponding smeared event

Task: Infer the true spectrum f given smeared observations from g
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Discretization

Problem usually discretized using histograms (splines are also sometimes used)
Let {Ti}pi=1 and {Si}ni=1 be binnings of the true space T and the smeared space S
Smeared histogram y = [y1, . . . , yn]

T with mean

µ =

[∫
S1

g(s) ds, . . . ,

∫
Sn

g(s) ds

]T

Quantity of interest:

λ =

[∫
T1

f (t) dt, . . . ,

∫
Tp

f (t) dt

]T

The mean histograms are related by µ = Kλ, where the elements of the response
matrix K are given by

Ki,j =

∫
Si

∫
Tj
k(s, t)f (t) dt ds∫
Tj
f (t) dt

= P(smeared event in bin i | true event in bin j)

The discretized statistical model becomes

y ∼ Poisson(Kλ)

and we wish to make inferences about λ under this model
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Regularized unfolding
When the number of true bins p is large, the response matrix K is severely ill-conditioned

The unfolded histogram λ is therefore typically estimated using a regularized estimator

Main idea: bias ↑, variance ↓ ⇒ MSE ↓
Two main approaches:

1 Tikhonov regularization (e.g., SVD by Höcker and Kartvelishvili (1996) and TUnfold by

Schmitt (2012)):
min
λ∈Rp

(y − Kλ)TC−1(y − Kλ) + δP(λ)

with

PSVD(λ) =

∥∥∥∥∥∥∥∥∥L


λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥

2

or PTUnfold(λ) = ∥L(λ− λMC)∥2,

where L is usually the discretized second derivative (other choices also possible)

2 Expectation-maximization iteration with early stopping (D’Agostini, 1995):

λ
(t+1)
j =

λ
(t)
j∑n

i=1 Ki,j

n∑
i=1

Ki,jyi∑p
k=1 Ki,kλ

(t)
k

, with λ(0) = λMC

These methods typically regularize by creating a bias toward a MC ansatz λMC
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Tikhonov regularization, P(λ) = ∥λ∥2, varying δ
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λ̂± ŜE[λ̂]

−5 0 5
−100

0

100

200

300

400

500

600

δ = 0.001

 

 

λ

λ̂± ŜE[λ̂]
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D’Agostini demo, k = 0
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D’Agostini demo, k = 100
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D’Agostini demo, k = 10000
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D’Agostini demo, k = 100000
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Response matrix estimation

An aspect of the unfolding problem that has received relatively less
attention is that in practice we do not know the response kernel k(s, t) or
the response matrix K

Instead, we are given paired MC samples (Yi ,Xi ) from

pMC(Y = s,X = t) = pMC(Y = s|X = t)pMC(X = t)

These samples are then used to produce an estimator K̂ of K which is
used in the chosen unfolding method as if it were the true matrix K

For example, Tikhonov regularization for known K is

λ̂ = (KTK + δI )−1KTy ,

but in practice we use

λ̂ = (K̂TK̂ + δI )−1K̂Ty

This raises the following questions:
1 Which estimator K̂ should one use?
2 How does the estimated matrix affect the unfolded solution?
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Binned estimator

In most cases, K is understood as a 2D (conditional) histogram whose
entries are estimated as follows:

K̂i ,j =
# events originating from bin j that have been recorded in bin i

# events originating from bin j

Assuming f MC is correct, this gives an unbiased estimator of K

However, this estimator can be very noisy, especially in the tails of steeply
falling spectra where there are few MC events available:
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Estimating the response kernel

We should be able to do better by borrowing strength from nearby bins

We propose to do this by estimating the response kernel
k(s, t) = p(Y = s|X = t) based on the MC samples (Yi ,Xi )

Doing this is a well-studied problem in statistics called nonparametric
conditional density estimation (CDE)

Lots of existing methods and software available to produce the
estimator

Once we have the estimator k̂(s, t), we can use it to obtain an estimator
of the response matrix elements:

K̂i ,j =

∫
Si

∫
Tj
k̂(s, t)f MC(t) dt ds∫
Tj
f MC(t) dt

Note also that if we discretize f (t) using a basis expansion (such as
splines), we also need k̂(s, t) to obtain an estimate of the discretized
forward model
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Estimating the response kernel

We consider the following nonparametric estimators of the response kernel:

1 Kernel CDE:

p̂(y |x) = argmin
a

n∑
i=1

(Kh2(y − Yi )− a)2 Kh1 (x − Xi )

=
n∑

i=1

wi (x)Kh2(y − Yi ), where wi (x) =
Kh1(x − Xi )∑n
j=1 Kh1(x − Xj)

2 Local linear CDE:

(â, b̂) = argmin
a,b

n∑
i=1

(Kh2(y − Yi )− a− b(Xi − x))2 Kh1 (x − Xi )

p̂(y |x) = â
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Estimating the response kernel

3 Kernel CDE with local bandwidths: Make the bandwidths h1 and h2
functions of x by estimating them within some window of size δ(x)
around x

p̂(y |x) =
∑

i :|x−Xi |<δ(x)

wi (x)Kh2(x)(y − Yi ),

where

wi (x) =
Kh1(x)(x − Xi )∑

j :|x−Xj |<δ(x) Kh1(x)(x − Xj)
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Estimating the response kernel

4 Location-scale model: Assume the following model for the smeared
observations

Y = µ(X ) + σ(X )ε,

where ε has some distribution pε with mean 0 and variance 1

It follows that

p(y |x) = 1

σ(x)
pε

(
y − µ(x)

σ(x)

)
We can estimate µ(x) and σ(x) using nonparametric regression and
pε using KDE on the standardized observations (yi − µ̂(xi ))/σ̂(xi )

The estimated response kernel is then

p̂(y |x) = 1

σ̂(x)
p̂ε

(
y − µ̂(x)

σ̂(x)

)
Mikael Kuusela (CMU) August 22, 2024 16 / 26



Simulation setup

The following simulation study is designed to mimic the unfolding of inclusive jet
p⊥ spectrum at the LHC

The particle-level spectrum is

f (p⊥) = LN0

( p⊥
GeV

)−α
(
1− 2√

s
p⊥

)β

e−γ/p⊥ , 0 < p⊥ ≤
√
s

2
,

where L,N0, α, β, γ,
√
s are parameters set to mimic conditions at the LHC

The response kernel is k(p′⊥, p⊥) = N(p′⊥ − p⊥|0, σ(p⊥)2) with(
σ (p⊥)

p⊥

)2

=

(
C1√
p⊥

)2

+

(
C2

p⊥

)2

+ C 2
3

so this is a heteroscedastic deconvolution problem

The problem is discretized using n = p = 40 bins over [400 GeV, 1000 GeV]

The resulting response matrix K is severely ill-conditioned but not singular
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Comparison of estimated response matrices

Figure: Estimated response matrices

Figure: Mean absolute errors
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Effect on unfolded estimators

Now let’s see how the different response matrix estimators affect the
quality of unfolded point estimators

We will consider regularized unfolding using

1 Tikhonov regularization

2 D’Agostini iteration
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Tikhonov regularization

Figure: Tikhonov regularization solutions with
δ = 10−10

Figure: Mean squared error for
Tikhonov regularization with
δ = 10−10

With moderate regularization, things behave as expected: better response
matrix estimators tend to give better unfolded histograms

Mikael Kuusela (CMU) August 22, 2024 20 / 26



Tikhonov regularization

Figure: Tikhonov regularization solutions with
δ = 0

Figure: Mean squared error for
Tikhonov regularization with
δ = 0

With no regularization (i.e., matrix inversion), we see something
unexpected: the estimated response matrices give better unfolded
histograms than the actual true response matrix
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Implicit regularization

The explanation is that the estimated response matrices implicitly perform
regularization (an ill-conditioned matrix with some additive random noise
becomes well-conditioned with high probability (Tao and Vu, 2007))

Table: The median condition numbers for the estimated response matrices over
M = 1000 simulations

Estimation method Median condition number

True 1.7 · 1017
Kernel 3.9 · 107
Local linear 6.7 · 103
Local kernel 1.5 · 108
Location-scale 3.9 · 104
Naive histogram 2.6 · 103
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D’Agostini iteration

Figure: D’Agostini solutions with 5 iterations
Figure: Mean squared error for
D’Agostini with 5 iterations

With the D’Agostini iteration, most of the estimators behave similarly for
a small number of iterations with the true matrix providing the best
solution, as expected
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D’Agostini iteration

Figure: D’Agostini solutions with 5000 iterations
Figure: Mean squared error for
D’Agostini with 5000 iterations

For a large number of iterations, differences emerge with better response
matrix estimators providing overall better unfolded histograms

Here the true matrix always provides the best solution in contrast with
Tikhonov with a vanishing regularization strength
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Outlook: Unfolding with machine learning

A major development in the past few years: using machine learning to help solve
the unfolding problem

Two main approaches:

1 OmniFold (Andreassen et al., 2020): iteratively reweight particle-level MC
events using classifier-based density ratios

2 Generative unfolding (Bellagente et al., 2020): Train a generative model to
sample from p(X = t|Y = s); iterate to reduce dependence on pMC(X = t)

Benefits of ML-based unfolding:

Does not rely on binning
Provides event-level unfolded results
Can handle (moderately) high-dimensional phase spaces
Does not need a separate estimate of the response kernel k(s, t)

There are many open questions regarding the type of regularization ML-based
unfolding imposes on the unfolded solution

However, the fact that these methods don’t need a plug-in estimate of the response
kernel seems like a potential way to simplify that aspect of the unfolding problem
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Discussion and conclusions

Unfolding is a complex data analysis task with many statistical challenges

Any binned unfolding method needs the response matrix K as an input

In practice, a plug-in estimate K̂ is used

We have introduced several new ways of estimating K using conditional
density estimation

We found that there are non-trivial interactions between the estimate of
K and the unfolding method used

In particular, we found that noisy estimates of K can implicitly regularize
the problem in the absence of other regularization
Potential workaround: ML-based unfolding inverts the smeared data
without needing a plug-in estimate of the forward operator

Several other challenges related to the response matrix:

Dependence on the Monte Carlo ansatz (wide-bin bias)
Dependence on nuisance parameters
Other systematic uncertainties (e.g., confounding variables)
Error propagation to the unfolded solution
...
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Uncertainty quantification in unfolding

Let’s assume that we are interested in some linear functional θ = hTλ of
λ (or potentially some collection of functionals)

For example, θ = eT
i λ = ith unfolded bin or

θ = average of several unfolded bins or θ = 1Tλ = sum of all unfolded bins

We can use θ̂ = hTλ̂ as a natural point estimator of θ
For uncertainty quantification, our goal is to find a random interval[
θ(y), θ(y)

]
with coverage probability 1− α:

P
(
θ ∈

[
θ(y), θ(y)

])
≈ 1− α

Most implementations construct the interval based on the variance of θ̂:

[θ, θ] =
[
θ̂ − z1−α/2

√
var(θ̂), θ̂ + z1−α/2

√
var(θ̂)

]
But: These intervals may suffer from significant undercoverage because
they ignore the regularization bias
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Wide-bin unfolding

An alternative approach to explicit regularization that has become
increasingly popular in LHC data analysis is to simply use very few
unfolded bins (i.e., use small p)

⇒ Regularization using wide bins

Intuition: The detector should not be able to recover features smaller than
its intrinsic resolution so should chose

bin size ≳ detector resolution

This intuition is sound but the typical implementation is problematic
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Wide-bin unfolding

The response matrix elements are:

Ki ,j =

∫
Si

∫
Tj
k(s, t)f (t) dt ds∫
Tj
f (t) dt

This depends on the unknown intensity function f (specifically, the shape
of f inside the true bins Tj)

To get around this, Ki ,j is approximated based on a MC ansatz f MC:

KMC
i ,j =

∫
Si

∫
Tj
k(s, t)f MC(t) dt ds∫
Tj
f MC(t) dt

This means that unfolding is performed using an approximate matrix KMC

instead of the true matrix K
When p is small, one can typically unfold simply using the unregularized
generalized least-squares estimator

λ̂MC = ((KMC)TC−1KMC)−1(KMC)TC−1y

But this is biased because KMC ̸= K ⇒ Wide-bin bias
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Wide-bins-via-fine-bins unfolding

Because of the wide-bin bias, variability intervals based on λ̂MC will
undercover

We could try to inflate the intervals by an amount corresponding to the
bias, but this bias is very difficult to estimate and quantify

Alternative idea (Stanley et al., 2022):

The wide-bin bias gets reduced the smaller the bins in the true space

So we can first unfold with fine bins (and no regularization) and then
aggregate into wide bins, keeping track of the bin-to-bin correlations in the
error propagation

This wide-bins-via-fine-bins unfolding approach provides reasonably sized
unfolded confidence intervals that do not suffer from regularization bias
and have minimal wide-bin bias
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Wide bins, standard approach, misspecified MC

Intervals undercover because they ignore the wide-bin bias caused by the
misspecified f MC
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Fine bins, standard approach, misspecified MC

With narrow bins, there is less dependence on f MC so coverage is
improved, but the intervals are very wide
⇒ Let’s aggregate these into wide bins
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Wide bins via fine bins, misspecified MC

With the same misspecified f MC, wide-bins-via-fine-bins unfolding gives
both correct coverage and reasonably sized intervals
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Handling constraints and rank-deficient matrices

The previous example shows that the wide-bins-via-fine-bins approach can
circumvent both the regularization bias and the wide-bin bias

But the simple approach based on the least-squares variability intervals has
two important limitations:

It cannot easily impose constraints (such as positivity) on the solution

It cannot handle column-rank-deficient response matrices K (such as
when # of true bins > # of smeared bins)
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Handling constraints and rank-deficient matrices

In Stanley et al. (2022), we developed two new methods that can
incorporate constraints and handle rank-deficient matrices:

One-at-a-time strict bounds (OSB) intervals

Prior-optimized (PO) intervals

The OSB intervals are a modification of the simultaneous strict bounds
(SSB) intervals of Stark (1992) with the intervals designed to provide
binwise coverage instead of simultaneous coverage

The PO intervals are decision-theoretic intervals where the interval length
is optimized using a prior subject to a constraint on correct coverage1

Both intervals have correct empirical coverage in most scenarios; PO also
has a rigorous proof of coverage; details in Stanley et al. (2022)

1Importantly, finite-sample frequentist coverage is guaranteed even for misspecified
priors, but the interval length might be suboptimal in those cases.
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Wide bins via fine bins, with positivity constraint

The interval lengths can be reduced by imposing a positivity constraint on
the solution:

All of the above intervals have correct empirical coverage
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Test inversion confidence intervals for unfolding

The OSB intervals are closely related to the inversion of the following test
with respect to θ (Batlle et al., 2024):

H0 : λ ∈ Φθ ∩ C versus H1 : λ ∈ C \ Φθ,

where Φθ = {λ : hTλ = θ} and C is a constrained set of solutions

In fact, they are equivalent to the inversion of the likelihood ratio test

Λ(θ) =

sup
λ∈Φθ∩C

L(λ)

sup
λ∈C

L(λ)

assuming that the null distribution of −2 log Λ(θ) is χ2
1

In the presence of constraints (i.e., C ⊊ Rp), this is only approximately true

We are currently finalizing a manuscript (Stanley et al., 2024) showing
how to calibrate this test for high-dimensional λ using sampling and
quantile regression
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Test inversion confidence intervals for unfolding

Figure: Test inversion intervals maintain nominal coverage (left panel) but are
substantially shorter than the OSB intervals (right panel)
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Test inversion confidence intervals for unfolding

Figure: Test inversion intervals for an adversarial particle-level spectrum
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Regularization and frequentist coverage

In fact, if we approximate the Poisson noise using a Gaussian and use an
affine estimator λ̂ (e.g., Tikhonov-type estimators), then the coverage of
the variability intervals can be written down in closed form (Kuusela, 2016):

P(θ ∈ [θ, θ]) = Φ

 bias(θ̂)√
var(θ̂)

+ z1−α/2

− Φ

 bias(θ̂)√
var(θ̂)

− z1−α/2


These intervals have coverage 1− α if and only if bias(θ̂) = 0; otherwise
coverage < 1− α and symmetric w.r.t. the sign of bias(θ̂)
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Simulation setup
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[Or slight variations of this setup.]
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Undercoverage in unfolding
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Coverage in SVD unfolding: as a function of the regularization strength (left) and for
cross-validated regularization strength (right)

The optimal point estimator in terms of the MSE has a sizeable regularization bias
As a result, the unfolded variability intervals have substantial undercoverage
Similar conclusions hold for other common methods (D’Agostini, TUnfold,...)
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Unfolding is an ill-posed inverse problem

The main challenge in unfolding is that K is an ill-conditioned matrix

When the linear system µ = Kλ is ill-conditioned, true histograms λ1

and λ2 that are very different can map into smeared histograms µ1

and µ2 that are very similar

As a result, distinguishing between λ1 and λ2 based on noisy data in
the µ-space is very difficult
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Demonstration of ill-posedness

−6 −4 −2 0 2 4 6
0

100

200

300

400

500
Smeared histogram

−6 −4 −2 0 2 4 6
0

100

200

300

400

500
True histogram

µ = Kλ, y ∼ Poisson(µ)
??
=⇒ λ̂ = K−1y
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Demonstration of ill-posedness
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Demonstration of ill-posedness

−6 −4 −2 0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

13

 

 

Pseudoinverse

True

MSE(θ̂) = E((θ̂ − θ)2) = [bias(θ̂)]2 + var(θ̂)

Regularization: bias ↑, variance ↓ ⇒ MSE ↓
Mikael Kuusela (CMU) August 22, 2024 50 / 26



Regularization

Two main approaches to regularization:

1 Explicit penalty term

Tikhonov regularization / SVD unfolding / TUnfold

(Höcker and Kartvelishvili, 1996; Schmitt, 2012)

2 Early stopping of an iterative algorithm

EM iteration with early stopping / D’Agostini iteration
(D’Agostini, 1995; Richardson, 1972; Lucy, 1974; Shepp and Vardi,
1982; Lange and Carson, 1984; Vardi et al., 1985)
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Tikhonov regularization

Tikhonov regularization estimates λ by solving:

min
λ∈Rp

(y −Kλ)TC−1(y −Kλ) + δP(λ)

The first term is a Gaussian approximation to the Poisson log-likelihood
The second term penalizes physically implausible solutions
Common penalty terms:

Norm: P(λ) = ∥λ∥2
Curvature: P(λ) = ∥Lλ∥2, where L is a discretized 2nd derivative operator
SVD unfolding (Höcker and Kartvelishvili, 1996):

P(λ) =

∥∥∥∥∥∥∥∥∥L

λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥
2

,

where λMC is a MC prediction for λ
TUnfold2 (Schmitt, 2012): P(λ) = ∥L(λ− λMC)∥2

2TUnfold implements also more general penalty terms
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D’Agostini iteration

Starting from some initial guess λ(0) > 0, iterate

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

Regularization by stopping the iteration before convergence:

λ̂ = λ(K) for some small number of iterations K
This will bias the solution towards λ(0)

Regularization strength controlled by the choice of K

RooUnfold (Adye, 2011) defaults to λ(0) = λMC

It used to be not possible to change this but recent versions of
RooUnfold include an undocumented method SetPriors for changing
the initial guess
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D’Agostini iteration

λ
(k+1)
j =

λ
(k)
j∑n

i=1 Ki ,j

n∑
i=1

Ki ,jyi∑p
l=1 Ki ,lλ

(k)
l

This iteration has been discovered in various fields, including optics
(Richardson, 1972), astronomy (Lucy, 1974) and tomography (Shepp
and Vardi, 1982; Lange and Carson, 1984; Vardi et al., 1985)

In particle physics, it was popularized by D’Agostini (1995) who
called it “Bayesian” unfolding

But: This is in fact an expectation-maximization (EM) iteration
(Dempster et al., 1977) for finding the maximum likelihood estimator
of λ in the Poisson regression problem y ∼ Poisson(Kλ)

As k →∞, λ(k) → λ̂MLE (Vardi et al., 1985)

This is a fully frequentist technique for finding the (regularized) MLE

The name “Bayesian” is an unfortunate misnomer
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D’Agostini demo, k = 0
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D’Agostini demo, k = 100
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D’Agostini demo, k = 10000
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D’Agostini demo, k = 100000
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Choice of the regularization strength

The choice of the regularization strength (δ in Tikhonov, # of iterations in
D’Agostini) is a key issue in unfolding

Controls the bias-variance trade-off inherent in regularization
The solution and especially the uncertainties depend heavily on this choice

This choice should ideally be done using an objective data-driven criterion

In particular, one must not rely on the software defaults for the regularization
strength (such as 4 iterations of D’Agostini in RooUnfold)

Many data-driven methods have been proposed:
1 (Weighted/generalized) cross-validation (e.g., Green and Silverman, 1994)
2 L-curve (Hansen, 1992)
3 Marginal maximum likelihood (MMLE; Kuusela and Panaretos (2015))
4 Goodness-of-fit test in the smeared space (Veklerov and Llacer, 1987)
5 Akaike information criterion (Volobouev, 2015)
6 Minimization of a global correlation coefficient (Schmitt, 2012)
7 Stein’s unbiased risk estimate (SURE; new in TUnfold V17.9)
8 Confidence interval coverage (Kuusela, 2016; Brenner et al., 2020)
9 ...

Limited experience about the relative merits of these in typical unfolding
problems
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Tikhonov regularization, P(λ) = ∥λ∥2, varying δ
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λ̂± ŜE[λ̂]

Mikael Kuusela (CMU) August 22, 2024 60 / 26



Motivation for the rank-deficient case

However, even with a 40× 40 response matrix, the wide-bin bias can be
sizeable for heavily misspecified f MC

Coverage of the previous three methods for an adversarial f MC:
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Wide bins via fine bins, with rank-deficient K

This can be fixed by using an even larger number of true bins, which
requires methods that can handle a rank-deficient K

Coverage of the OSB and PO intervals with a 40× 80 response matrix:

We have additionally found that:

The interval width of both methods flattens out as the number of
true bins is further increased

The PO interval width has little sensitivity to the choice of the prior
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Application to unfolding a steeply falling spectrum

The OSB, PO and SSB intervals based on a 30× 60 response matrix all have at least

95% coverage, while the least-squares intervals with a 30× 10 matrix do not cover:
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Coverage as a function of regularization strength
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                      (a) SVD variant of Tikhonov regularization
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Undercoverage of existing methods
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There is major undercoverage if regularization strength chosen using
(weighted) cross-validation; same is true for L-curve and MMLE.

Key point: These methods are designed for optimal point estimation, but:

optimal point estimation ̸= optimal uncertainty quantification
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Undersmoothed unfolding

Standard methods for picking the regularization strength choose too much bias
from the perspective of the variance-based uncertainties

One possible solution is to debias the estimator, i.e., to adjust the bias-variance
trade-off to the direction of less bias and more variance

The simplest form of debiasing is to reduce δ from the cross-validation /
L-curve / MMLE value until the intervals have close-to-nominal coverage

The challenge is to come up with a data-driven rule for deciding how much to
undersmooth

With Lyle Kim, we have implemented the data-driven methods from Kuusela
(2016) as an extension of TUnfold

The code is available at:

https://github.com/lylejkim/UndersmoothedUnfolding

If you’re already working with TUnfold, then trying this approach requires
adding only one extra line of code to your analysis
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Unfolded histograms, λMC = 0
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Binwise coverage, λMC = 0
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Unregularized unfolding?

At the end of the day, any regularization technique makes unverifiable
assumptions about the true solution

If these assumptions are not satisfied, the uncertainties will be wrong
In the absence of oracle information about the true λ, there does not
seem to be any obvious way around this

So maybe we should reconsider whether explicit regularization is such a good
idea to start with?

Instead of finding a regularized estimator of λ, what if we simply used3 the
unregularized matrix inverse λ̂ = K−1y?
This is unbiased (E(λ̂) = λ) and hence also the corresponding estimator
θ̂ = hTλ̂ of the functional θ = hTλ is unbiased

Therefore, by the previous discussion, the resulting variability intervals have
correct coverage 1− α

3For simplicity, I assume here that K ∈ Rn×p is an invertible square matrix. The case
where n > p with K having full column rank is also easy using the pseudoinverse
λ̂ = (KTK)−1KTy . The case where K is column-rank deficient (including when p > n)
is trickier but probably doable; see https://indico.cern.ch/event/882374/.
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Implicit regularization

Of course, when K is ill-conditioned, the unregularized estimator λ̂ will
have a huge variance

But this does not mean that θ̂ = hTλ̂ needs to have a huge variance!

The mapping λ̂ 7→ θ̂ = hTλ̂ can act as an implicit regularizer resulting
in a well-constrained interval [θ, θ] for the functional θ = hTλ

This is especially the case when the functional is a smoothing /
averaging / aggregation operation

For example, inference for aggregated unfolded bins (demo to follow)

Of course, there are also functionals that are more difficult to constrain
(e.g., individual bins θ = eT

i λ, derivatives,...)

In those cases, the intervals [θ, θ] are wide—as they should be, since
there is simply not enough information in the data y to constrain these
functionals
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Wide bin unfolding

One functional we should be able to recover without explicit
regularization is the integral of f over a wide unfolded bin:

Hj [f ] =

∫
Tj

f (t) dt, width of Tj large

But one cannot simply arbitrarily increase the particle-level bin size in the
conventional approaches, since this increases the MC dependence of K
To circumvent this, it is possible to first unfold with fine bins (without
regularization) and then aggregate into wide bins

Let’s see how this works using a similar deconvolution setup as before

Mikael Kuusela (CMU) August 22, 2024 71 / 26



Wide bins, standard approach, perturbed MC
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The response matrix Ki ,j =

∫
Si

∫
Tj
k(s,t)f MC(t) dt ds∫
Tj
f MC(t) dt

depends on f MC

⇒ Undercoverage if f MC ̸= f

Mikael Kuusela (CMU) August 22, 2024 72 / 26



Wide bins, standard approach, correct MC
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If f MC = f , coverage is correct

⇒ But this situation is unrealistic because f of course is unknown
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Fine bins, standard approach, perturbed MC
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With narrow bins, less dependence on f MC so coverage is correct, but the
intervals are very wide4

⇒ Let’s aggregate these into wide bins, keeping track of the bin-to-bin
correlations in the error propagation

4More unfolded realizations given in the backup .
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Wide bins via fine bins, perturbed MC
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Wide bins via fine bins gives both correct coverage and intervals with
reasonable length5

5More unfolded realizations given in the backup .
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Current unfolding methods
Two main approaches:

1 Tikhonov regularization (i.e., SVD by Höcker and Kartvelishvili (1996) and TUnfold by

Schmitt (2012)):
min
λ∈Rp

(y − Kλ)TĈ−1(y − Kλ) + δP(λ)

with

PSVD(λ) =

∥∥∥∥∥∥∥∥∥L


λ1/λ

MC
1

λ2/λ
MC
2

...
λp/λ

MC
p


∥∥∥∥∥∥∥∥∥

2

or PTUnfold(λ) = ∥L(λ− λMC)∥2,

where L is usually the discretized second derivative (also other choices possible)

2 Expectation-maximization iteration with early stopping (D’Agostini, 1995):

λ
(t+1)
j =

λ
(t)
j∑n

i=1 Ki,j

n∑
i=1

Ki,jyi∑p
k=1 Ki,kλ

(t)
k

, with λ(0) = λMC

All these methods typically regularize by biasing towards a MC ansatz λMC

Regularization strength controlled by the choice of δ in Tikhonov or by the number of
iterations in D’Agostini

Uncertainty quantification:
[
λi , λi

]
=

[
λ̂i − z1−α/2

√
v̂ar

(
λ̂i

)
, λ̂i + z1−α/2

√
v̂ar

(
λ̂i

) ]
,

with v̂ar
(
λ̂i

)
estimated using error propagation or resampling
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Coverage as a function of τ =
√
δ

Tau (regularization strength)
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Interval lengths, λMC = 0

4
5

6
7

log(interval length) comparison

lo
g

(i
n

te
rv

a
l l

e
n

g
th

)

LcurveScan 
mean = 66.017 
median = 66.231

Undersmoothing 
mean = 238.09 

median = 207.391

Undersmoothing(oracle) 
mean = 197.102 
median = 197.36

Mikael Kuusela (CMU) August 22, 2024 78 / 26



Histograms, coverage and interval lengths when λMC ̸= 0
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Coverage study from Kuusela (2016)

Method Coverage at t = 0 Mean length

BC (data) 0.932 (0.915, 0.947) 0.079 (0.077, 0.081)
BC (oracle) 0.937 (0.920, 0.951) 0.064 (0.064, 0.064)
US (data) 0.933 (0.916, 0.948) 0.091 (0.087, 0.095)
US (oracle) 0.949 (0.933, 0.962) 0.070 (0.070, 0.070)
MMLE 0.478 (0.447, 0.509) 0.030 (0.030, 0.030)
MISE 0.359 (0.329, 0.390) 0.028
Unregularized 0.952 (0.937, 0.964) 40316

BC = iterative bias-correction
US = undersmoothing
MMLE = choose δ to maximize the marginal likelihood

MISE = choose δ to minimize the mean integrated squared error
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UQ in inverse problems is challenging
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Fine bins, standard approach, perturbed MC, 4 realizations
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Wide bins via fine bins, perturbed MC, 4 realizations
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