

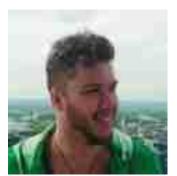
NuCLR: An interpretable AI for nuclear physics

Sokratis Trifinopoulos QCHSC

An IAIFI story

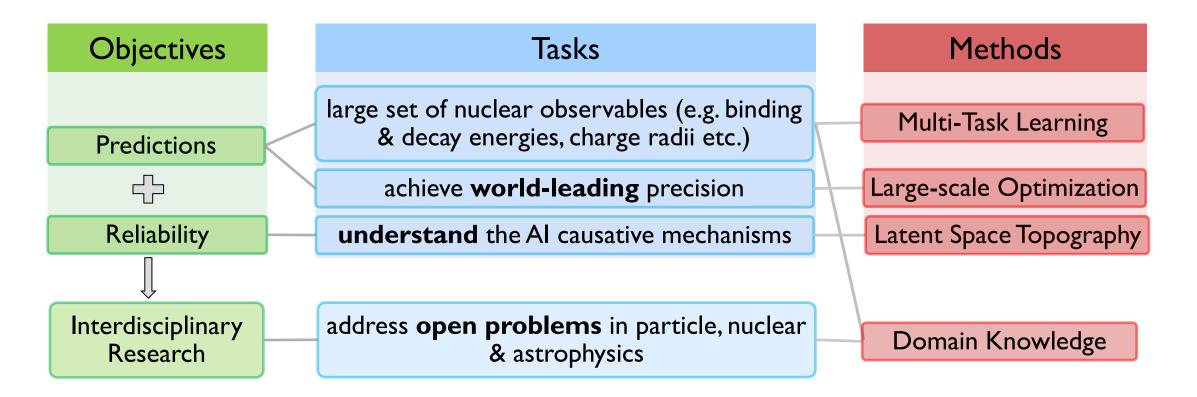
NuCLR: Nuclear Co-Learned Representations Kitouni, Nolte, Trifinopoulos, Kantameni, Williams <u>2307.01457</u> (ICML SynS & ML 2023)

From Neurons to Neutrons: A Case Study in Interpretability Kitouni, Nolte, Perez-Diaz, Trifinopoulos, Williams 2405.17425 (ICML 2024)

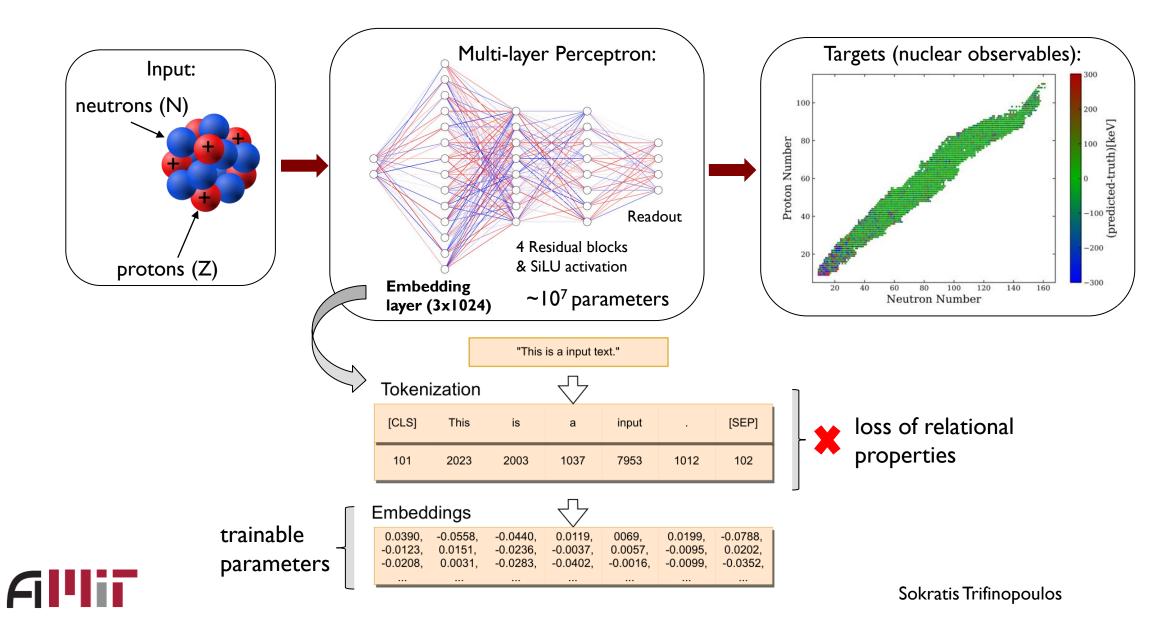


Towards a general-purpose AI

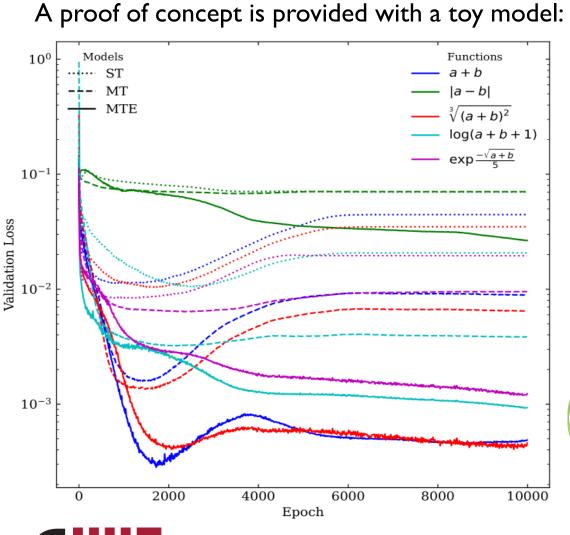
NuCLR is an interpretable deep-learning model that predicts various nuclear observables.



The architecture



More Tasks, More Information!



- Training simultaneously on all tasks exploits data correlations over multiple tasks and leverages joint information, improving generalization compared to single-task training (MT > ST).
- Novel: we introduce the tasks also as trainable embeddings (MTE) and concatenate them together with the Z & N embeddings for processing by the MLP.
- Structure formation in the embedding space encodes task-independent information!

The model can make <u>inferences for all tasks</u> corresponding to a (Z,N) pair, for which there exist *at least* one task with a measured value.

Tasks / Nuclear observables

> Binding energy: It represents the energy required to break apart a nucleus into its nucleons.

$$E_B(Z,N) = Zm_p + Nm_n - M(Z,N) \stackrel{\text{SEMF}}{=} a_V A - a_S A^{2/3} - a_C \frac{(Z^2 - Z)}{A^{1/3}} - a_A \frac{(N - Z)^2}{A} + \underbrace{\delta(N,Z)}_{\text{Pairing}} + \underbrace$$

Separation energies: The stability of a nuclide is determined by its separation energies, which refers to the energies needed to remove a specific number of nucleons from it.

$$S_n(Z, N) = M(Z, N - 1) + m_n - M(Z, N) ,$$

$$S_p(Z, N) = M(Z - 1, N) + m_p - M(Z, N) .$$

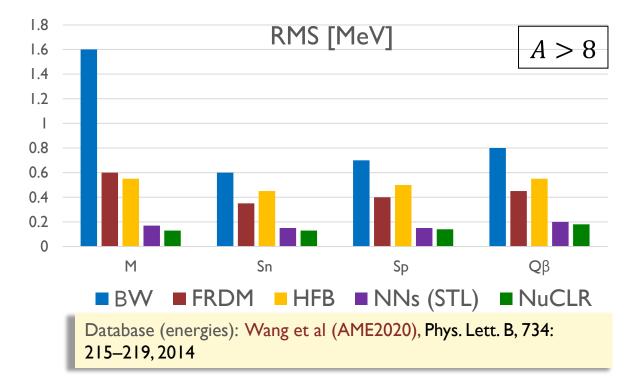
$$Q_\beta(Z, N) = M(Z, N) - M(Z + 1, N - 1) ,$$

$$Q_\alpha(Z, N) = M(Z, N) - M(Z - 1, N + 1) - m_{_2\text{He}}^4 .$$

When training, we must avoid prediction biases such as correlations between separation energies and binding energies of neighboring nuclei. **Solution**: 100-fold cross-validation

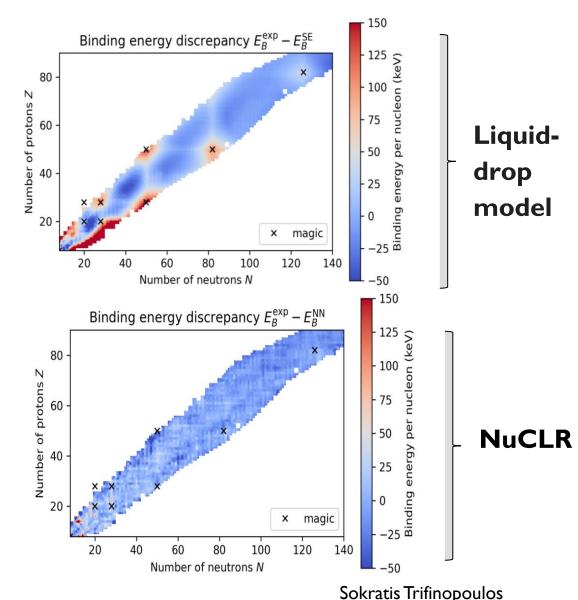
> Charge radius: A basic measure of the size of the nucleus is the RMS radius of its proton distribution. Empirically, heavier radii (A > 20) follow the relation $R_{ch} = r_0 A^{1/3}$.

World-leading accuracy



> The achieved accuracy for charge radii $\sigma_{RMS} = 0.01 \text{ fm}$ is higher than all theoretical and STL NN models, i.e. 0.02 fm & 0.015 fm , respectively.

Database (charge radii): Angeli & Marinova, Atom. Data Nucl. Data Tabl., 99(1):69–95, 2013



AIIII

What are ML models actually learning?

- The success of MTL gives the first hint towards the potential of creating a foundation model that can internalize the fundamental laws governing the nucleus. But, how can we actually trust
 the inferences of the model?
- Manifold hypothesis: Real-world data presented in high dimensional spaces are expected to concentrate in the vicinity of a manifold of much lower dimensionality, embedded in high dimensional input space.

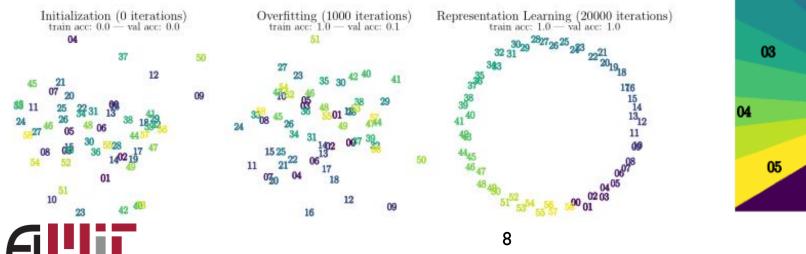
Bengio, Courville, Vincent 1206.5538

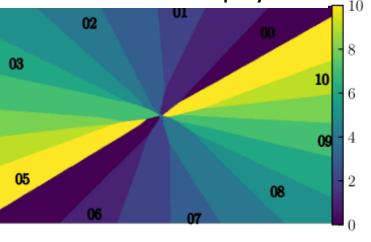
Mechanistic Interpretability (MI) encompasses techniques of identifying low-rank structures in high-D datasets, and uncovering (partially) the algorithms that are implemented.

Interpretable AI via: Latent Space Topography

> Latent space topography (LTA) is an MI procedure which consists of the following steps:

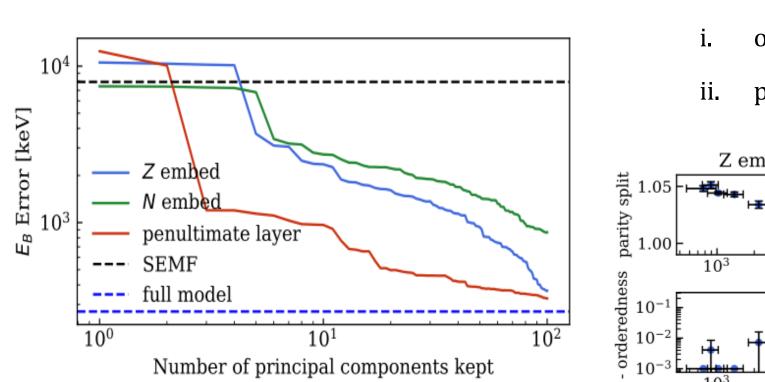
- extract high quality features of the NN using a dimensionality reduction method on the latent space; here: principle component (PC) analysis,
- 2) identify the emergent geometry in the first PC dimensions using domain knowledge,
- 3) study the effects of small perturbations of the geometry on the tasks and vice verse.
- > Let's consider again a toy model: $(A + B) \mod p$. Liu et al 2205.10343 used LTA to study grokking. They found that generalization coincides with structure formation in the PC-transformed embedding space and identified the predictive algorithm that the NN employs.





Sokratis Trifinopoulos

Are the PCs meaningful?

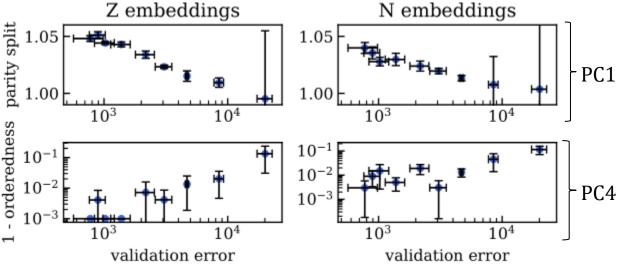


PCs capture most of the performance!

2) PCs exhibit rich structure:

i. orderness =
$$\frac{1}{M} \sum_{i=1}^{M-1} \mathbf{1} \left(\text{PC}_{1}^{i} - \text{PC}_{1}^{i+1} \right)$$

ii. parity split = $\frac{2 \cdot d(\text{even,odd})}{d(\text{even,even}) + d(\text{odd,odd})}$



Allii

I)

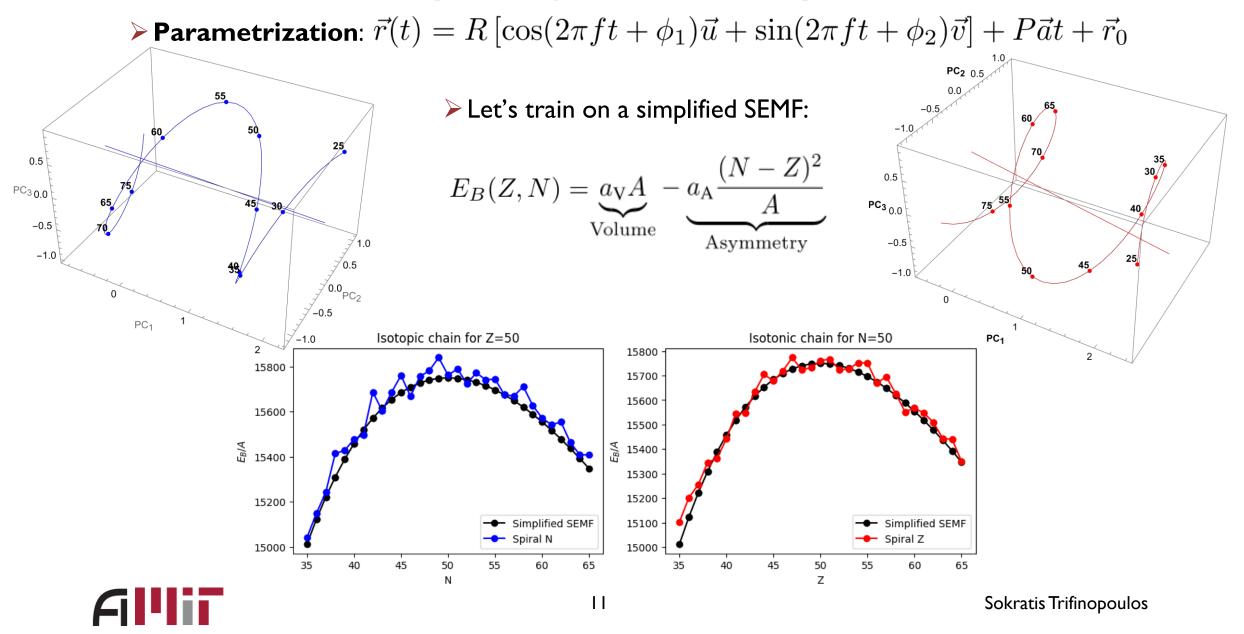
LST on the embedding space

Magic Numbers (Goeppert-Mayer and Jensen, Nobel 1963)¹⁵ 31 52 49 (82)3 129 13074 312 163 48 8779 88 8978 132 22 133 121 134 120 55₄₇ 17 13 162 59 166 1 58 90⁷⁷ 33 91 76 PC_3 PC_2 58⁴⁵ 136 118 Embedding 137 117 138 116 34²⁵ layers 95 96 97 71 70 6<u>5</u>2 $^{152}_{151}$ 141 $\frac{36}{37}$ 4^{1}_{4998} 22 21 20 For even (odd) neuclei: $PC_4 > 0(<0) \rightarrow Pauli exclusion (Nobel 1945)$ PC_1 Alli

3) In the first 3 PC dimensions, a robust spiral emerges.

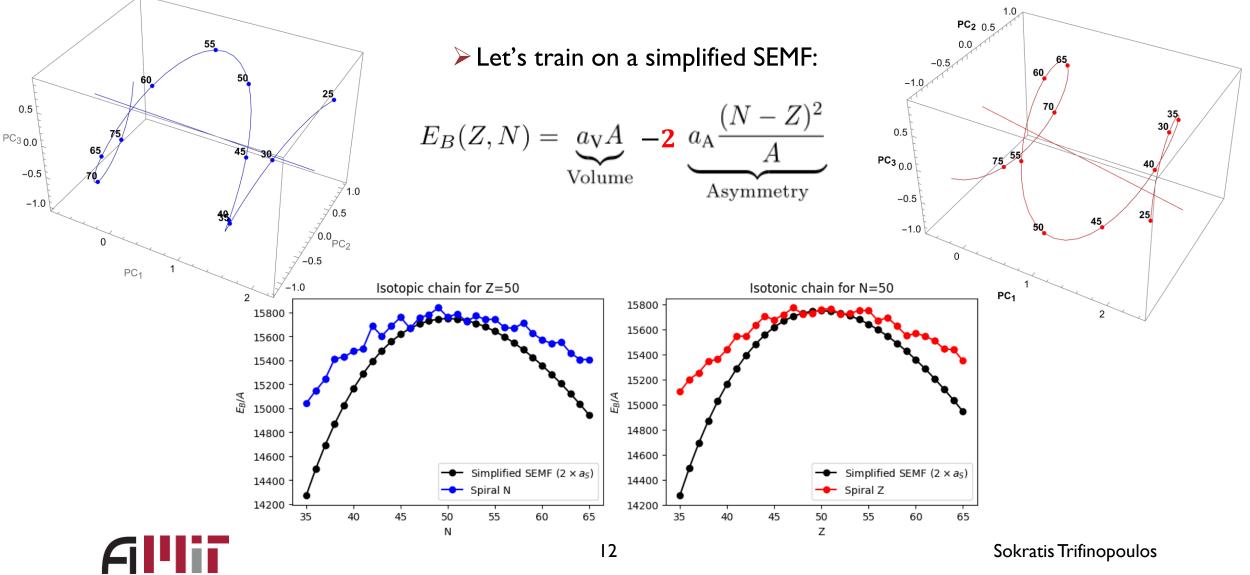
Sokratis Trifinopoulos

Deciphering the nuclear spirals I

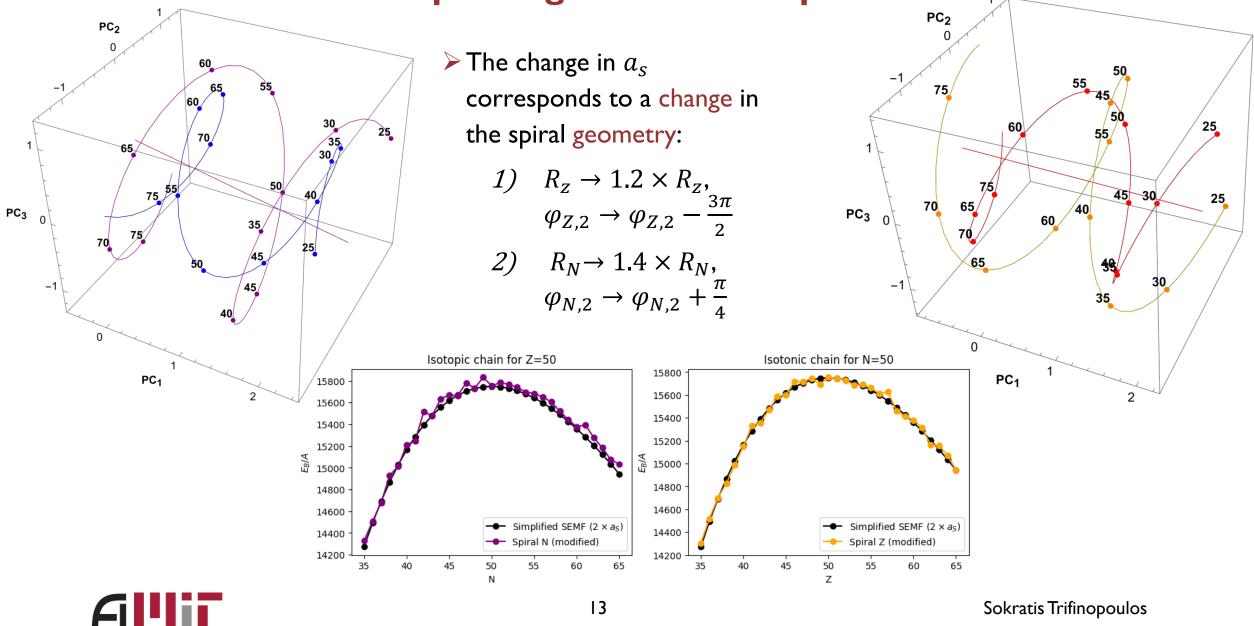


Deciphering the nuclear spirals I

> Parametrization: $\vec{r}(t) = R \left[\cos(2\pi f t + \phi_1) \vec{u} + \sin(2\pi f t + \phi_2) \vec{v} \right] + P \vec{a} t + \vec{r}_0$

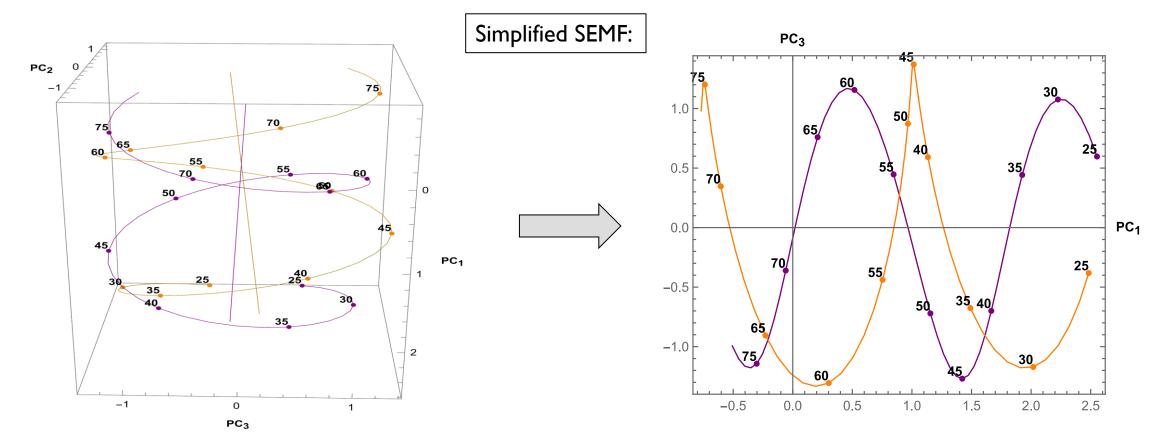


Deciphering the nuclear spirals I



Deciphering the nuclear spirals II

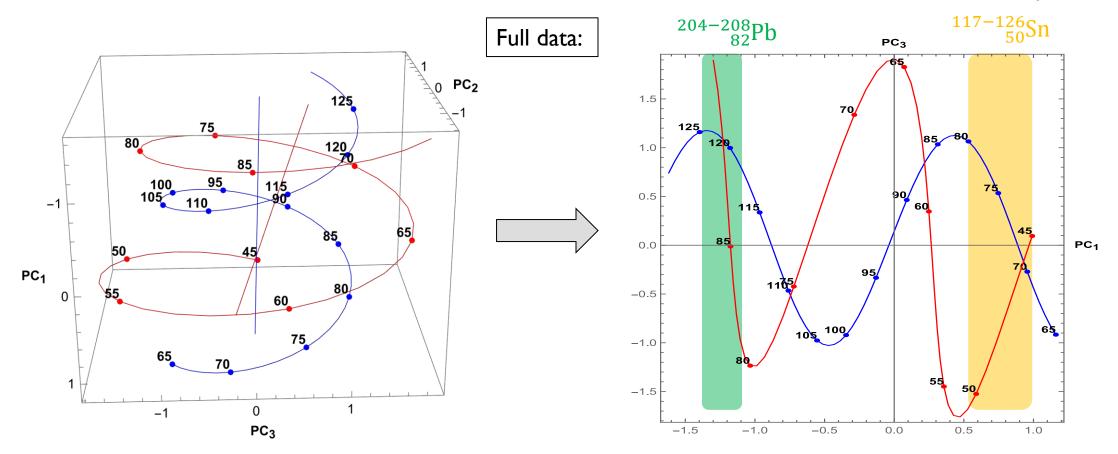
 \succ Overlaying the two spirals (as we did with modular addition) and project on the PC₁-PC₃ plane:



The Z and N spirals align so that the most stable nuclei are the ones corresponding to antipodal points!

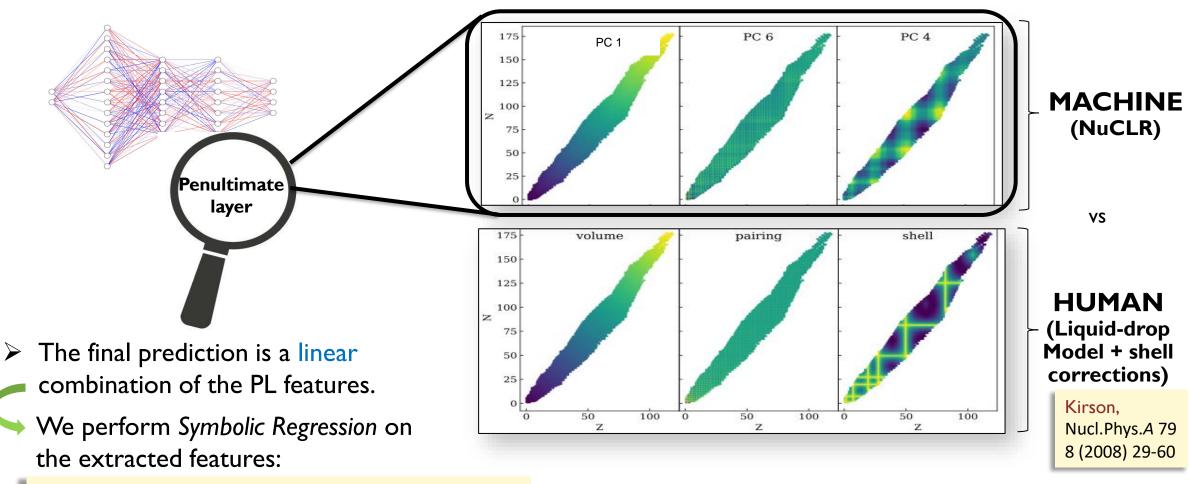
Deciphering the nuclear spirals II

 \triangleright Overlaying the two spirals (as we did with modular addition) and project on the PC₁-PC₃ plane:



The Z and N spirals align so that the most stable nuclei are the ones corresponding to antipodal points!

LST on the penultimate layer



Kitouni, Richardson, **Trifinopoulos**, Williams TBA

Conclusions & Future Outlook

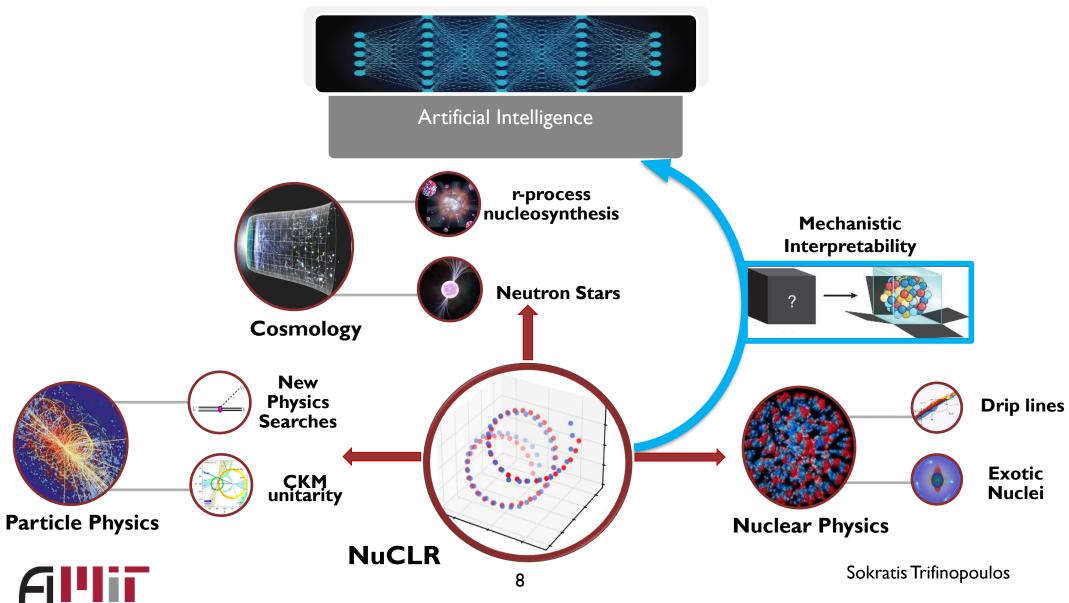
 \succ Physics \Rightarrow AI:

- Nuclear physics offers a fertile ground for interpretability research and has the advantage that many effects are theoretically understood, i.e. there exists a solid ground truth.
- Principal components are surprisingly faithful to human derived knowledge and useful to understand neural networks through the lens of MI!

> AI \Rightarrow Physics:

- NuCLR already achieves state-of-the-art performance predicting nuclear observables using a MT approach with shared representations. The predictions can be useful in many exciting topics in nuclear (astro)physics (e.g. r-process nucleosynthesis, the nuclear neutron skin, the boundaries the nuclear landscape, exotic nuclei, and (even) the CKM unitarity puzzle)
- We can use LST to understand how the network makes predictions and rediscover nuclear theory. Can we also discover novel analytical terms and macro nuclear effects?

Thank you!



Principle Component Analysis

Goal: Reduce the dimensionality of data while preserving as much variance as possible.

> Procedure:

- I. Center the data $(x_i \rightarrow x_i \bar{x})$ and calculate the covariance matrix $C = \frac{1}{n-1} X^T X$.
- 2. Solve the EV problem: $C \mathbf{v}_i = \lambda_i \mathbf{v}_i$.
- 3. Project the data onto the PC space: $\hat{X} = X \mathbf{V}$.

► Interpretation: The first PC \mathbf{v}_1 (with the highest EV λ_1) captures most of the data's variance, i.e. $\mathbf{v}_1 = \underset{\|\mathbf{v}\|=1}{\operatorname{argmax}}(\mathbf{v}^T C \mathbf{v})$, the second captures most of the variance of the transformed data $\hat{X}_1 = X - (X \mathbf{v}_1) \mathbf{v}_1^T$, and so on.

