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An IAIFI story

NuCLR : Nuclear Co -

Learned Representations

Kitouni, Nolte, 

Trifinopoulos , Kantameni, 

Williams 2307.01457(ICML 
SynS& ML 2023)

From Neurons to 

Neutrons: A Case Study in 

Interpretability

Kitouni, Nolte, Perez-Diaz, 

Trifinopoulos , Williams 

2405.17425(ICML 2024)

https://inspirehep.net/literature/2667551
https://arxiv.org/abs/2307.01457
https://inspirehep.net/literature/2790836
https://arxiv.org/abs/2405.17425
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Predictions

large set of nuclear observables (e.g. binding 
& decay energies, charge radii etc.)

Multi-Task Learning

achieveworld -leading precision Large-scale Optimization

Reliability understand the AI causative mechanisms Latent Space Topography

Interdisciplinary 
Research

address open problems in particle, nuclear 
& astrophysics

Domain Knowledge
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Towards a general -purpose AI

Objectives Tasks Methods

NuCLR is an interpretable deep-learningmodel that predicts various nuclear observables.
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The architecture
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üTraining simultaneouslyon all tasksexploits 

data correlations over multiple tasks and 

leverages joint information, improving

generalization compared to single-task 

training (MT > ST).

üNovel: we introduce the tasks also as 

trainable embeddings (MTE) and 

concatenate them together with the Z & N 

embeddings for processing by the MLP.

üStructure formation in the embedding space 

encodes task-independent information!
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More Tasks, More Information !

A proof of concept is provided with a toy model:

The model can make inferences for all tasks 

corresponding to a (Z,N) pair, for which there 

exist at least one task with a measured value.
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üBinding energy: It represents the energy required to break apart a nucleus into its nucleons.

üSeparation energies: The stability of a nuclide is determined by its separation energies, which 

refers to the energies needed to remove a specific number of nucleons from it.

üCharge radius: A basic measure of the size of the nucleus is the RMS radius of its proton 

distribution. Empirically, heavier radii (ὃ ςπ) follow the relation Ὑ ὶὃȾ .
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Tasks / Nuclear observables

Weizsäcker, Zeitschrift für Physik, 96(7):431ð458, Jul 1935.

3%-&

When training, we must avoid 

prediction biases such as correlations 

between separation energies and 

binding energies of neighboring nuclei.

Solution : 100-fold cross-validation
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World -leading accuracy
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Database (charge radii):  Angeli& Marinova,  Atom. Data Nucl. Data 

Tabl., 99(1):69ð95, 2013

Database (energies):  Wang et al (AME2020), Phys. Lett. B, 734:

215ð219, 2014

Liquid -

drop 

model

NuCLR
üThe achieved accuracy for charge radii „

πȢπρÆÍis higherthan all theoretical and STL NN 

models,i.e. πȢπςÆÍ& πȢπρυÆÍ, respectively.

ὃ ψ
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üThe success of MTL gives the first hint towards the potential of creating a foundation model 

that can internalizethe fundamental laws governing the nucleus. But, how can we actually trust 

the inferences of the model?
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What are ML models actually learning?

M I

üManifold hypothesis: Real-world data presented in high 

dimensional spaces are expected to concentrate in the 

vicinity of a manifold of much lower dimensionality, 

embedded in high dimensional input space.

üMechanistic Interpretability (MI) encompasses  

techniques of identifying low-rankstructures in high-D

datasets, and uncovering (partially) the algorithmsthat are 

implemented.

Bengio, Courville, Vincent 1206.5538
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üLatent space topography (LTA) is an MI procedure which consists of the following steps:

1) extract high quality features of the NN using a dimensionality reduction method on the 

latent space; here: principle component (PC) analysis,

2) identify the emergent geometryin the first PC dimensions using domain knowledge,

3) study the effects of small perturbationsof the geometry on the tasks and vice verse. 

üLetõs consider again a toy model: (ὃ ὄ ÍÏÄὴ.                            used LTA to study

grokking. They found that generalization coincides with structure formation in the PC-

transformed embedding space and identified the predictive algorithmthat the NN employs.
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Interpretable AI via: Latent Space Topography

Liu et al2205.10343
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1) PCs capturemost of the performance!
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Are the PCs meaningful?

2) PCs exhibit rich structure:

i. ÏÒÄÅÒÎÅÓÓВ 0# 0#

ii. ÐÁÒÉÔÙÓÐÌÉÔ
ɇ ȟ

ȟ ȟ

0#ρ

0#τ
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LST on the embedding space

Embedding

layers

Magic Numbers (Goeppert-Mayer and Jensen, Nobel 1963) 

ҦPauli exclusion (Nobel 1945)

3) In the first 3 PC dimensions, a robustspiral emerges.
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üParametrization :
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Deciphering the nuclear spirals I

üLetõs train on a simplified SEMF:
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üParametrization :
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Deciphering the nuclear spirals I

üLetõs train on a simplified SEMF:
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Deciphering the nuclear spirals I

üThe change in ὥ

corresponds to a changein 

the spiral geometry: 

1) Ὑ ᴼρȢς Ὑ, 

•ȟᴼ•ȟ

2) ὙᴼρȢτ Ὑ , 

• ȟᴼ• ȟ


