# Spatial Imaging of Proton from a Light-front Hamiltonian Approach



Xingbo Zhao With Imp

Yiping Liu, Chandan Mondal, Siqi Xu, Ziqi Zhang, Yang Li, James Vary (BLFQ collaboration)

The XVI<sup>th</sup> Quark Confinement and the Hadron Spectrum Conference Cairns, Australia, 08/22/2024

# Outline

- Spatial Imaging on the light-front through GPDs
- Basis Light-front Quantization
- Numerical results for proton
  - Form factors and PDFs
  - GPDs at zero-skewness
  - Skewed GPDs
- Conclusions

#### 3D Structure in Coordinate Space

• Deeply Virtual Compton Scattering (DVCS)

 $e(p) + P(P) \rightarrow e'(p') + P'(P') + \gamma$ 

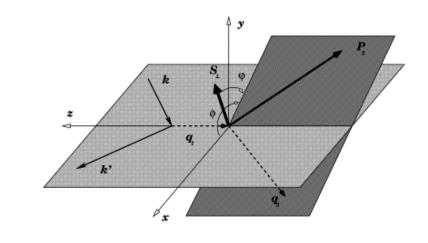
DVCS

**GPDs** 

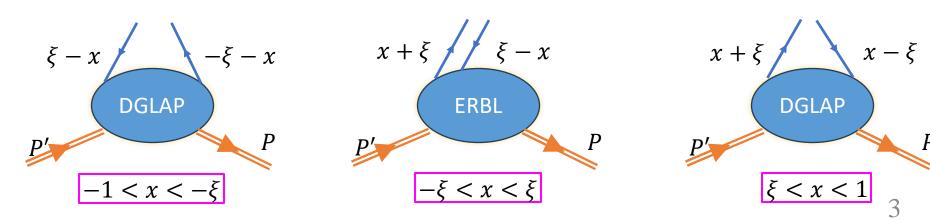
 $t = (p' - p)^2$ 

x+8

[X. Ji, Phys. Rev. D 55, 7114 (1997)]







#### **Definition of GPDs**

• GPDs are defined through the following bilocal operator on the light front

$$F_{\Lambda'\Lambda}^{[\Gamma]}(x,\xi,\Delta^2) = \int \frac{dz^-}{4\pi} e^{ip\cdot x} \left\langle P',\Lambda' \middle| \bar{\psi}\left(-\frac{z}{2}\right) w\left(-\frac{z}{2},\frac{z}{2}\right) \Gamma\psi\left(\frac{z}{2}\right) \middle| P,\Lambda \right\rangle \middle|_{z^+=z^\perp=0}$$

[Diehl, 2003]

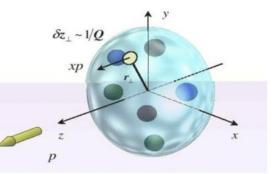
F(x,b)

0

b

• GPDs are parameterized by taking different  $\Gamma$  matrices

$$F_{\Lambda'\Lambda}^{[\gamma^+]} = \frac{1}{2P^+} \bar{u} \left[ \gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\Delta}}{2M} E(x,\xi,t) \right] u$$
$$F_{\Lambda'\Lambda}^{[\gamma^+\gamma_5]} = \frac{1}{2P^+} \bar{u} \left[ \gamma^+ \gamma_5 \widetilde{H}(x,\xi,t) + \frac{\Delta^+ \gamma_5}{2M} \widetilde{E}(x,\xi,t) \right] u$$

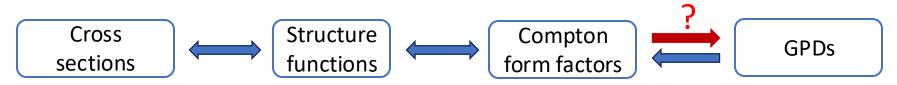


• Fourie transform of GPDs at  $\xi = 0$  with respect to t produces spatial imaging

$$F(x,b) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} e^{-i\vec{b}_{\perp}\cdot\vec{\Delta}_{\perp}} F(x,\xi=0,t=-\Delta_{\perp}^2)$$

#### **GPDs and Compton Form Factors**

• Cross sections to Compton form factors



• GPDs to Compton form factors (CFFs)

$$\mathcal{F}(\xi, -t) = \int_{-1}^{1} dx \left( \frac{1}{x - \xi - i\epsilon} - \frac{1}{x + \xi - i\epsilon} \right) F(x, \xi, -t)$$

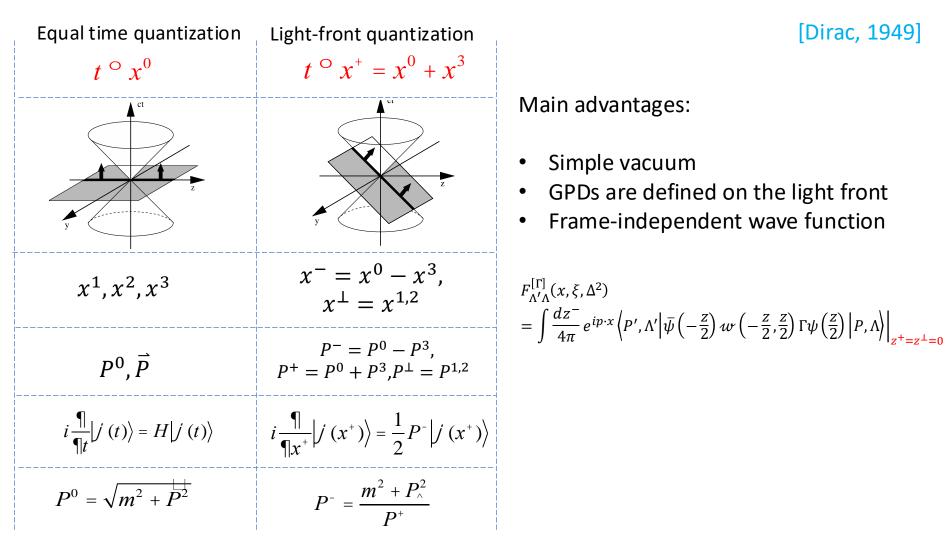
$$\tilde{\mathcal{F}}(\xi, -t) = \int_{-1}^{1} dx \left( \frac{1}{x - \xi - i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right) \tilde{F}(x, \xi, -t)$$

$$\mathsf{GPDs}$$

- Compton form factors are integrations of GPDs over x
- Challenging to extract GPDs from CFFs
- Exploring GPDs from theory is interesting

See J. Qiu's talk on 08/19

### Light-front Quantization



## **Basis Light-Front Quantization**

• Hamiltonian eigenvalue equation

$$P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$$

**P**<sup>-</sup>: Light-Front Hamiltonian  $|\beta\rangle$ : Eigenstates (wave function) **P**<sup>-</sup><sub>B</sub>: Eigenvalues (mass) [Dirac, 1949] [Vary, et.al, Phys.Rev.C '10]



- Basis setup
  - Fock sector expansion:  $|P, \Lambda\rangle = |qqq\rangle + |qqqg\rangle + |qqq q\bar{q}\rangle + \cdots$
  - Single particle  $|\alpha\rangle = |n_1, m_1, n_2, m_2, n_3, m_3\rangle \otimes |k_1^+, k_2^+, k_3^+\rangle \otimes |\lambda_1, \lambda_2, \lambda_3, C\rangle$ basis in  $|qqq\rangle$ 2D harmonic oscillator Discretized longitudinal Helicity and color

i

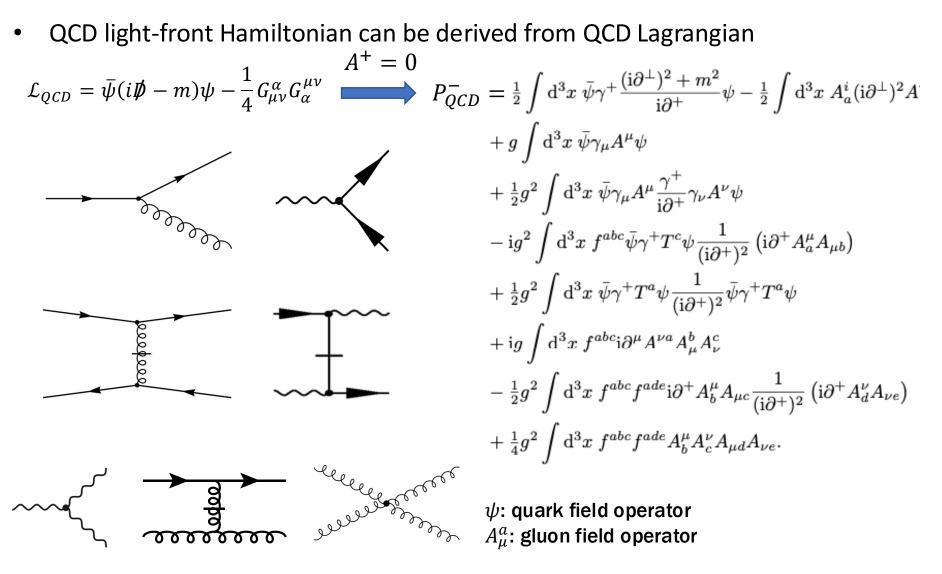
$$\sum_{i} (2n_i + |m_i| + 1) \le N_{\max}$$

$$\sum k_i^+ = K_{\max} \qquad \Lambda = \sum (\lambda_i + m_i)$$

i

- Advantages:
  - Rotational symmetry in transverse plane
  - Exact factorization between center-of-mass motion and intrinsic motion
  - Harmonic oscillator basis supplies adequate infrared behavior

## Light-Front Hamiltonian



# Publications on Nucleon GPDs

 $|\text{Proton}\rangle = |qqq\rangle + |qqqg\rangle + |qqq u\overline{u}\rangle + |qqq d\overline{d}\rangle + |qqq s\overline{s}\rangle + \cdots$ 

• |*qqq*>:

Proton GPD [Xu et al., Phys.Rev.D104,094036 (2021)]
Proton angular momentum [Liu et al., Phys.Rev.D105,094018 (2022)]
Proton twist-3 GPDs [Zhang et al., Phys.Rev.D109,034031 (2024)]
Proton chiral odd GPDs [Kaur et al., Phys. Rev. D 109, 014015 (2024)]

•  $|qqq\rangle + |qqqg\rangle$ :

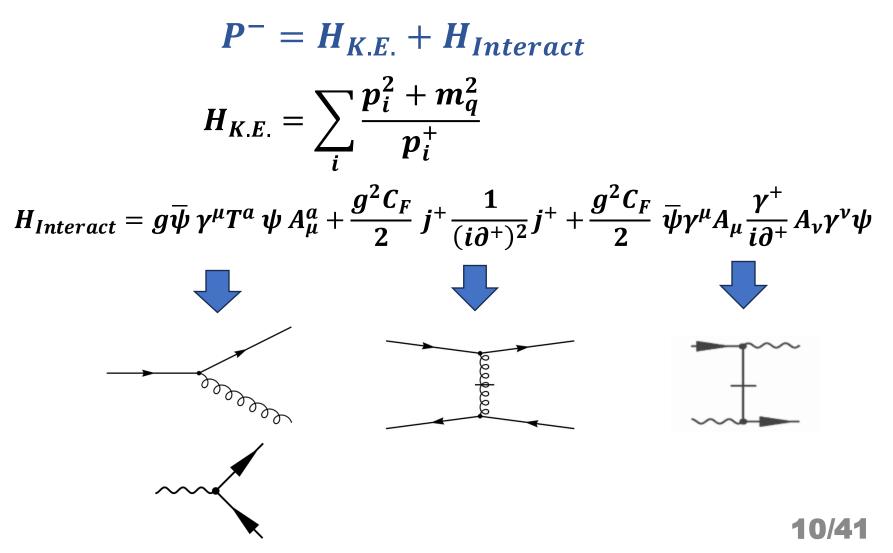
Proton spin structure [Xu et al., Phys.Rev.D,108 9, 094002 (2023)] Gluon GPDs [Lin et al., Phys.Lett.B,847 138305 (2023)]

•  $|qqq\rangle + |qqqg\rangle + |qqqq\overline{q}\rangle$ 

Proton structure with sea quarks [arxiv:2408.xxxx]

### Light-Front Hamiltonian

 $|\text{Proton}\rangle = \Psi_1 |qqq\rangle + \Psi_2 |qqqqg\rangle + \Psi_{31} |qqq u\bar{u}\rangle + \Psi_{32} |qqq d\bar{d}\rangle + \Psi_{33} |qqq s\bar{s}\rangle$ 



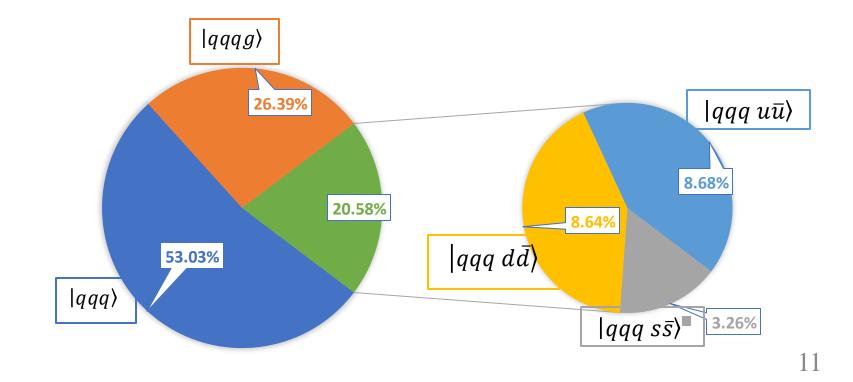
## Fock Sector Decomposition

 $|\operatorname{Proton}\rangle \rightarrow |qqq\rangle + |qqqqg\rangle + |qqqu\bar{u}\rangle + |qqqd\bar{d}\rangle + |qqqs\bar{s}\rangle$ 

Truncation parameter:  $N_{\text{max}} = 7$  and  $K_{\text{max}} = 16$ 

| $m_u$    | $m_d$    | $m_{f}$ | g   | b       | <b>b</b> <sub>inst</sub> |
|----------|----------|---------|-----|---------|--------------------------|
| 0.99 GeV | 0.94 GeV | 5.9 GeV | 3.0 | 0.6 GeV | 2.7 GeV                  |

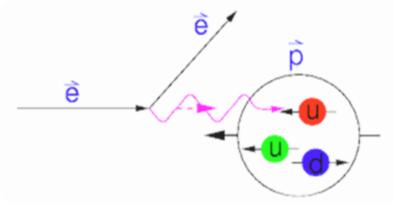
In five quark Fock sectors, current quark masses are used



## Electromagnetic Form Factor

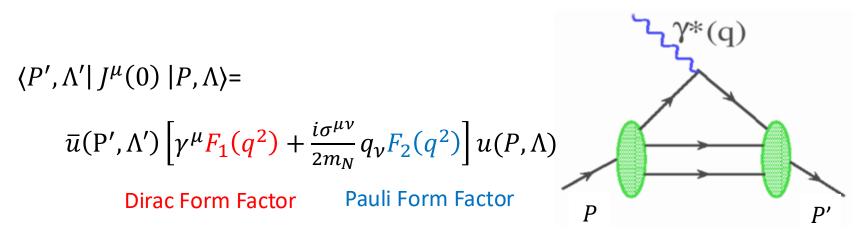
• Elastic scattering of proton

 $e(p) + h(P) \rightarrow e(p') + h(P')$ 



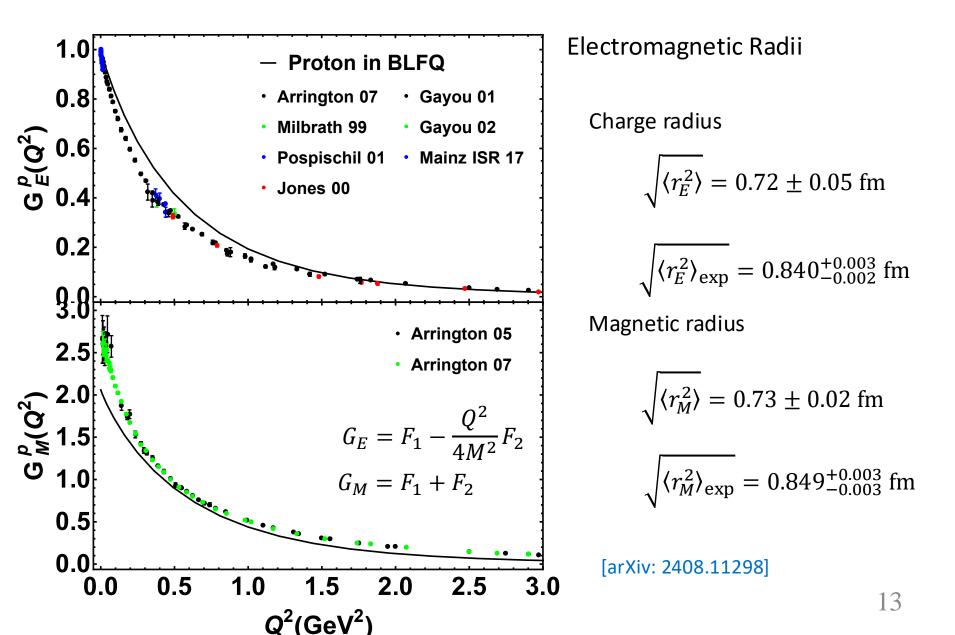
[R. Hofstadter, Nobel Prize 1961]

• Elastic electron scattering established the extended nature of the proton



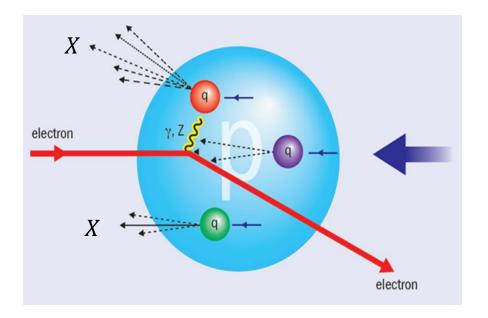
 Fourier transformation of these form factors provides spatial distributions of charge and magnetization

### **Electromagnetic Form Factors**



## Parton Distribution Functions

• Deep Inelastic Scattering (SLAC 1968)



$$e(p) + h(P) = e'(p') + X(P')$$

♦ Localized probe:

$$Q^2 = -(p - p')^2 \gg 1 \text{ fm}^{-2}$$
$$\stackrel{1}{\longrightarrow} \quad \frac{1}{Q} \ll 1 \text{ fm}$$

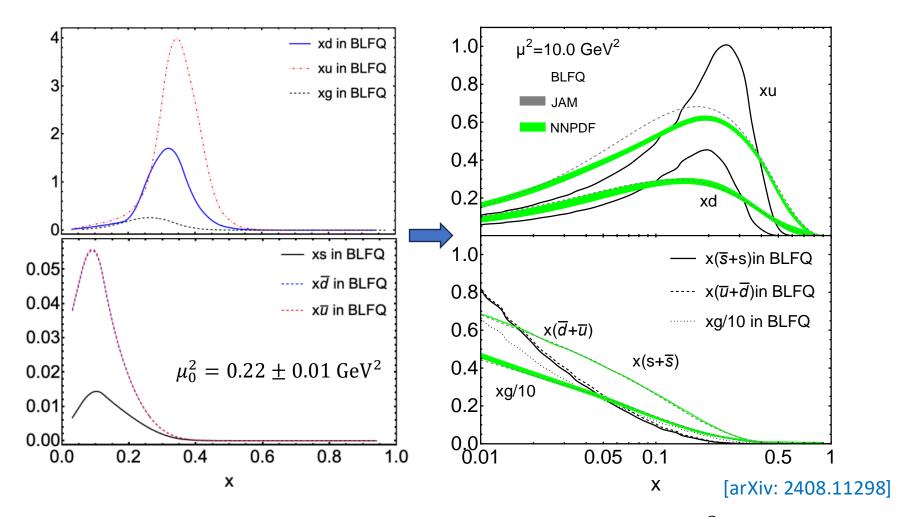
Discovery of spin ½ quarks and partonic structure

• Parton distribution functions (PDFs) are extracted from DIS processes

$$\Phi^{[\Gamma]}(x,Q^2) = \int \frac{dz^-}{8\pi} e^{ixP^+z^-/2} \langle P,\Lambda \big| \bar{\psi}(z) \Gamma \psi(0) \big| P,\Lambda \rangle$$

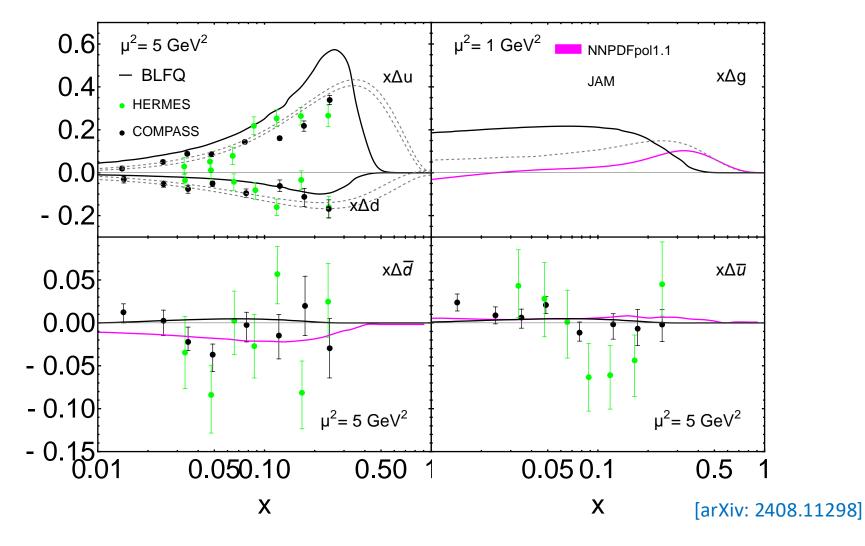
• Encode longitudinal momentum distribution and polarization of the constituents

## Unpolarized PDF



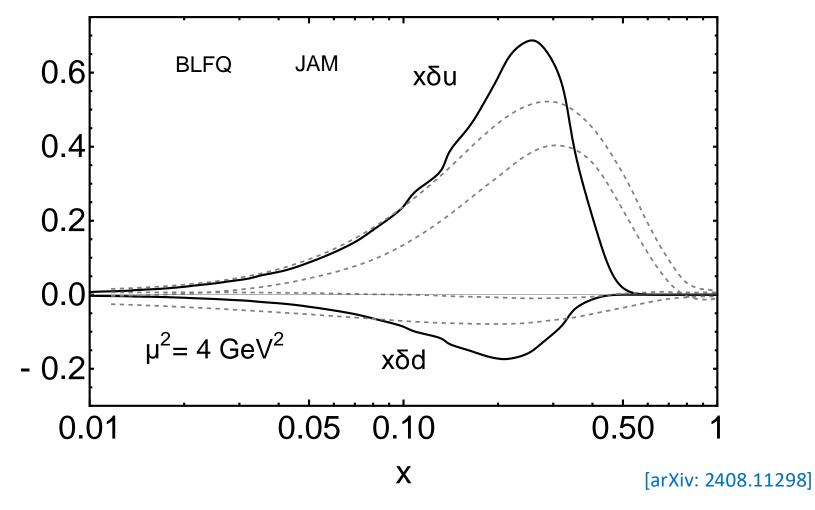
- Fitting the initial scale by matching the  $\langle x \rangle$  moment at 10 GeV<sup>2</sup>
- Narrower peak than global fits

## Helicity PDF



- Small-x region reasonably agrees with global fit/exp. data
- Narrower peak than global fits

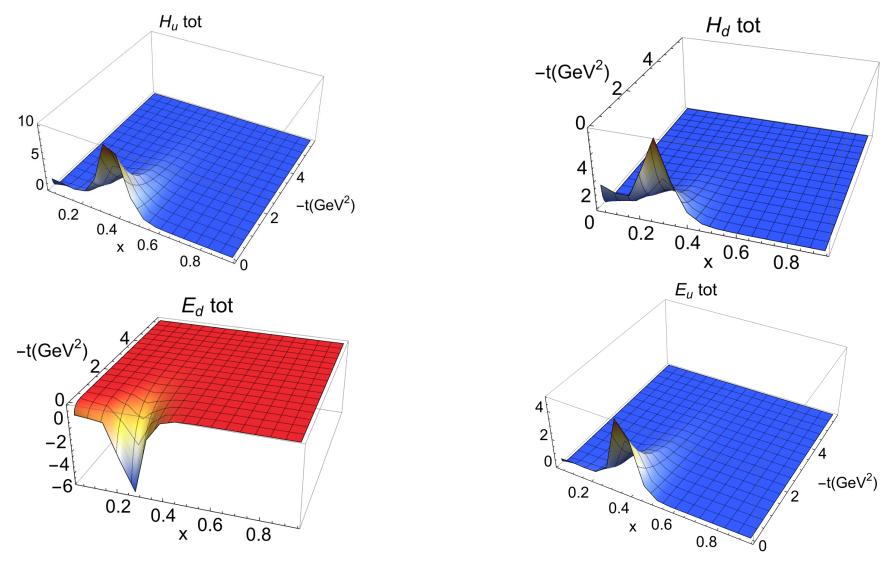
#### Transversity PDF



- Narrower peak than global fits
- Tensor charges:  $\delta u = 0.81 \pm 0.08$ ,  $\delta d = -0.22 \pm 0.01$

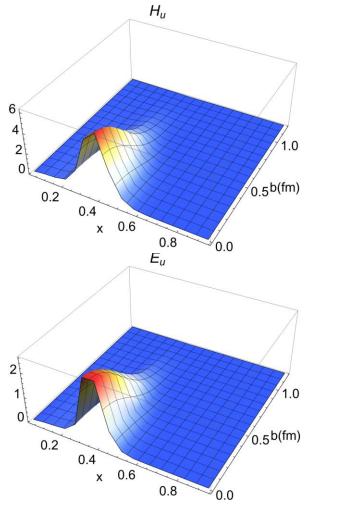
[PRL 132, 091901 (2024)] [PRD 98, 091501 (2018)]

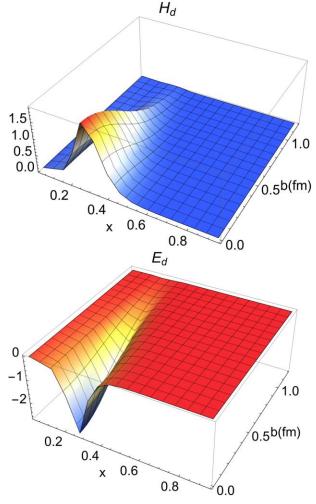
## u and d Quark GPDs at $\xi = 0$



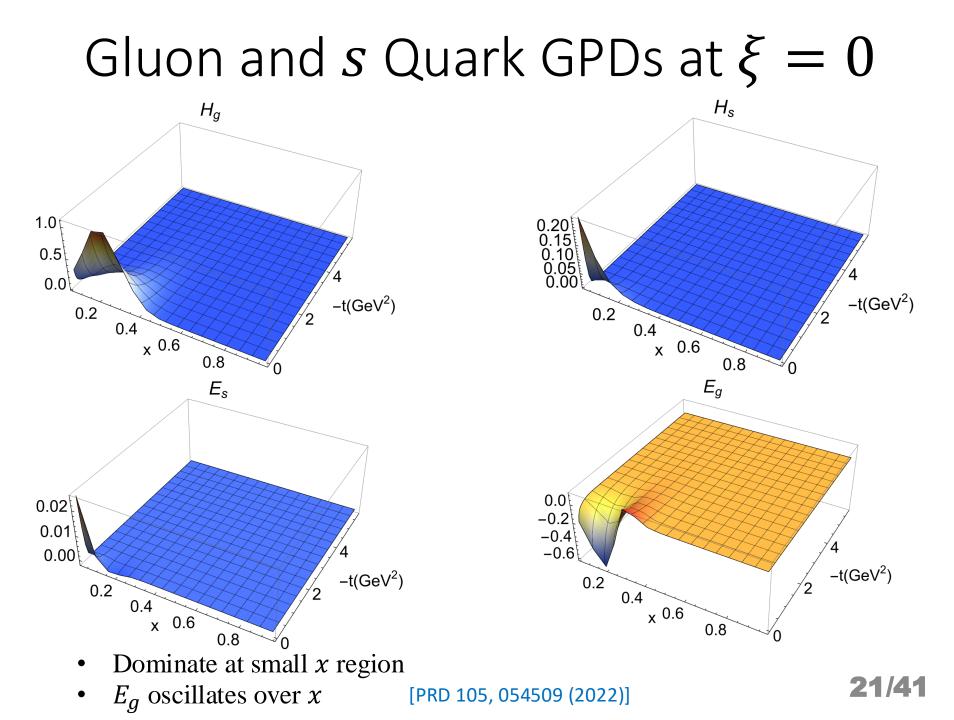
- Contributions from all Fock sectors
- Achieved qualitative features compared to various models

#### GPDs in Impact Parameter Space

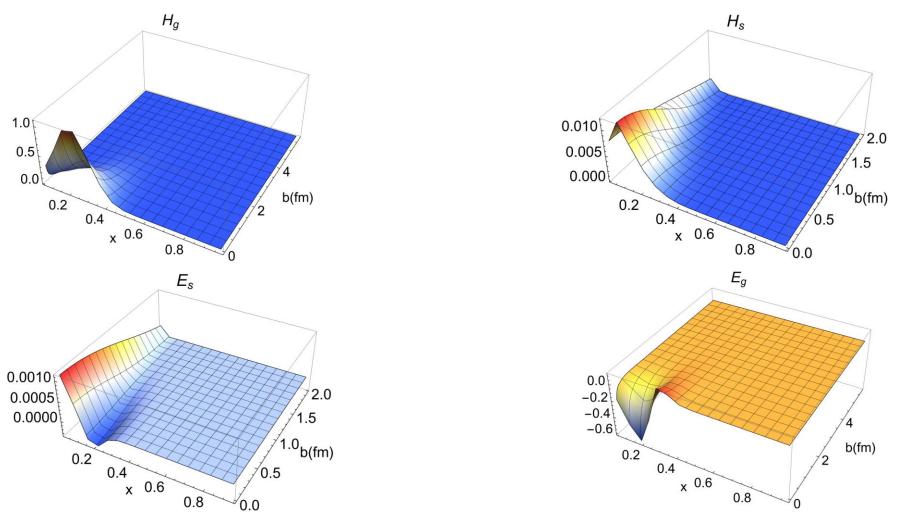




- Concentrate near the center b = 0
- Qualitative features agree with other approaches

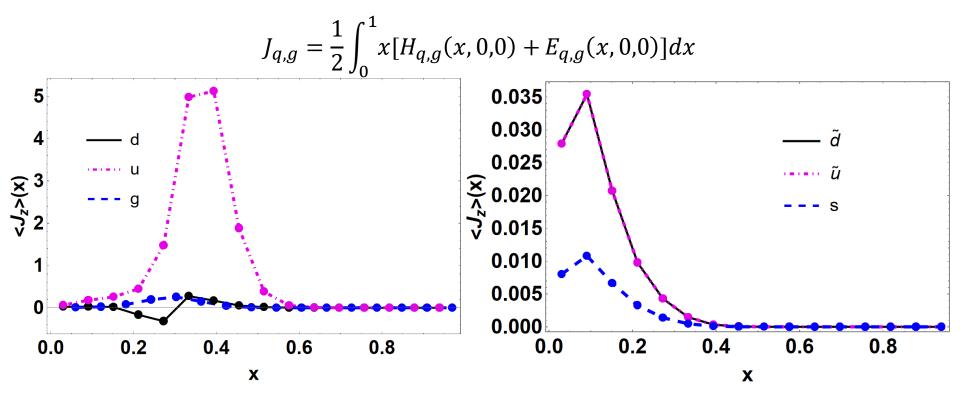


### GPDs in Impact Parameter Space



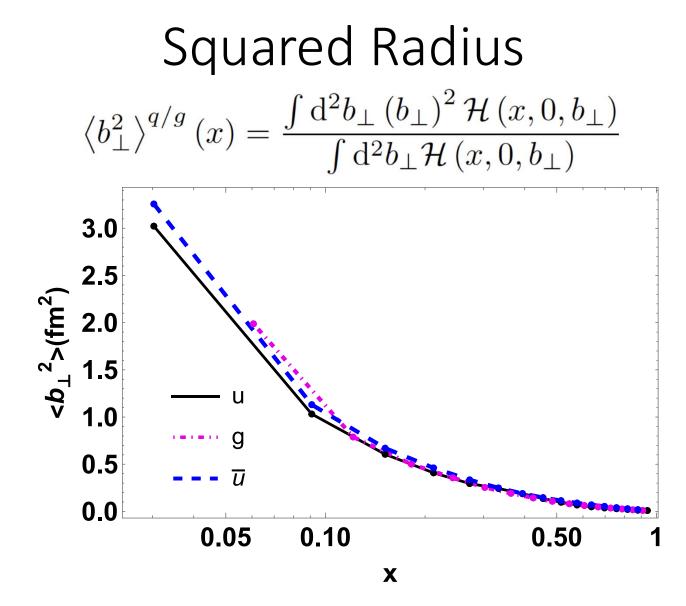
• Concentrate near the center b = 0 and small x

## Angular Momentum Distribution



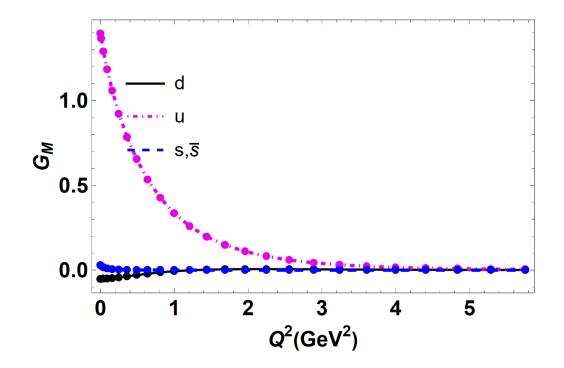
| parton     | d     | u      | dbar  | ubar  | s/sbar | g     |
|------------|-------|--------|-------|-------|--------|-------|
| percentage | 0.63% | 93.02% | 0.63% | 0.63% | 0.19%  | 4.71% |

- *u* is dominant, gluon contributes about 5%, *d* is negative
- $\bar{u}$  quark is almost the same as  $\bar{d}$
- $d=\overline{d}$  is a coincidence



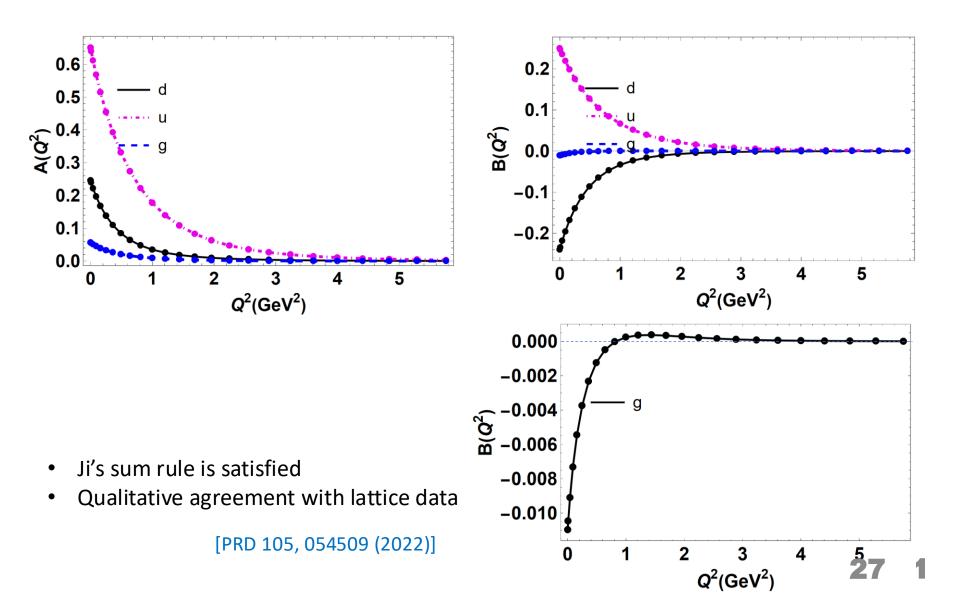
- Gluon radius > sea quark radius > valence quark radius
- As  $x \to 1$ , nucleon behaves like point particle

#### Magnetic Form Factor for Different Quarks

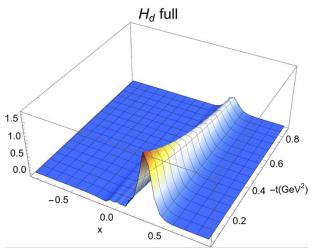


- $G_M^d(0) = -0.053$
- $G_M^u(0) = 1.396$
- $G_M^s(0) = -0.028$

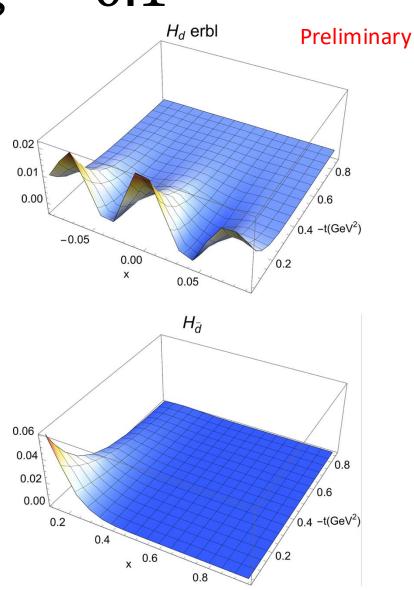
#### **Gravitational Form Factors**



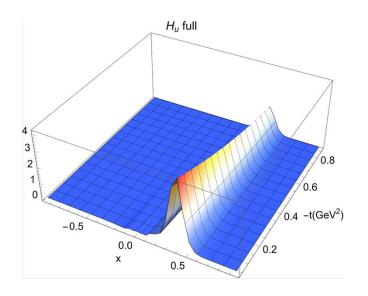
## GPDs at $\xi = 0.1$

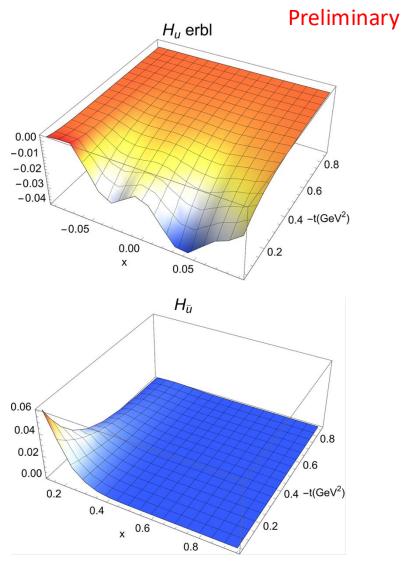


- We use symmetric frame
- *d* quark GPD *H* from -1 < x < 1
- At  $\xi = 0.1$ , DGLAP region dominates
- Discontinuity at  $x = \pm \xi$



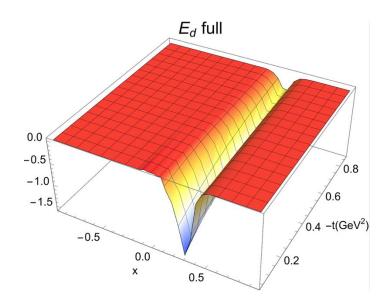
## GPDs at $\xi = 0.1$





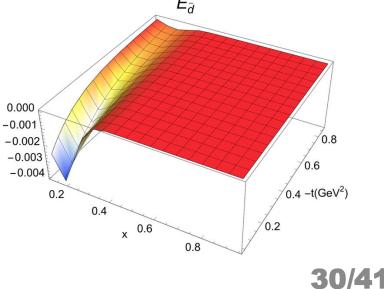
- *u* quark GPD *H* from -1 < x < 1
- At  $\xi = 0.1$ , DGLAP region dominates
- Discontinuity at x = +ξ, not sure at x = -ξ

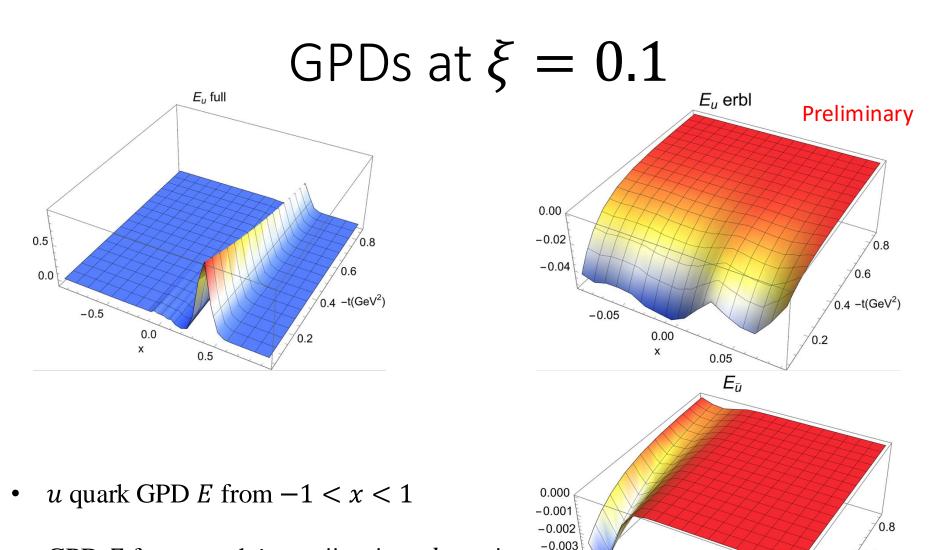
# GPDs at $\xi = 0.1$



Preliminary

- *d* quark GPD *E* from -1 < x < 1
- At  $\xi = 0.1$ , DGLAP region dominates
- Discontinuity at  $x = \pm \xi$





-0.004

0.2

0.4

x 0.6

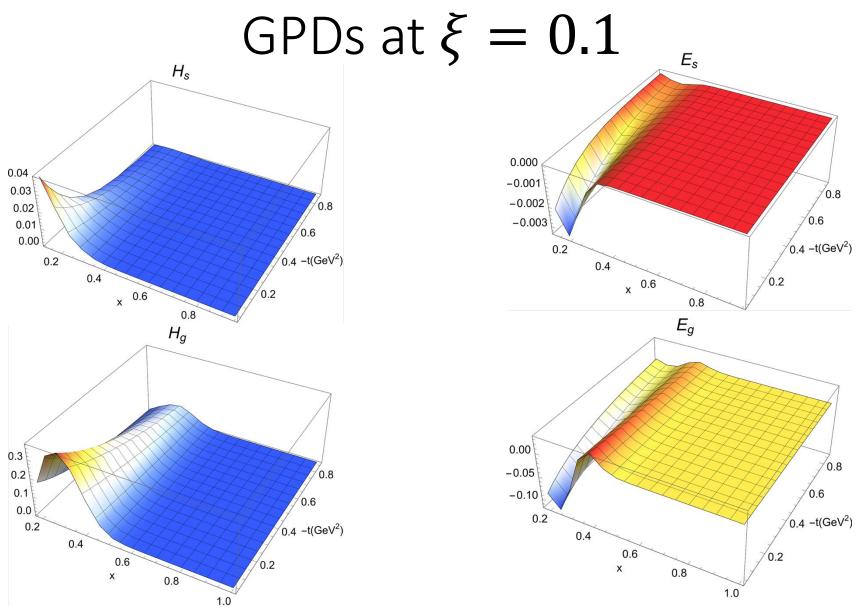
0.8

- GPD *E* for *u* quark is smaller than *d* quark
- Discontinuity at  $x = -\xi$ , not sure at  $x = \xi$

0.6

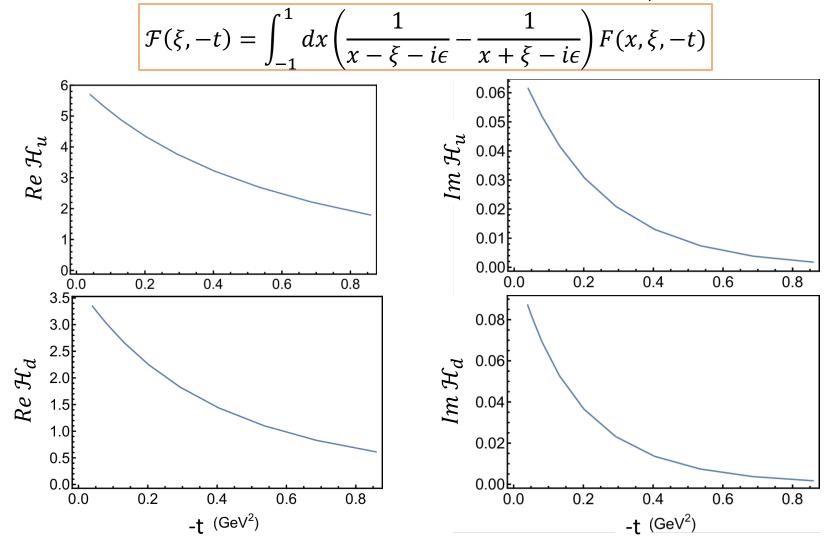
0.4 -t(GeV<sup>2</sup>)

0.2



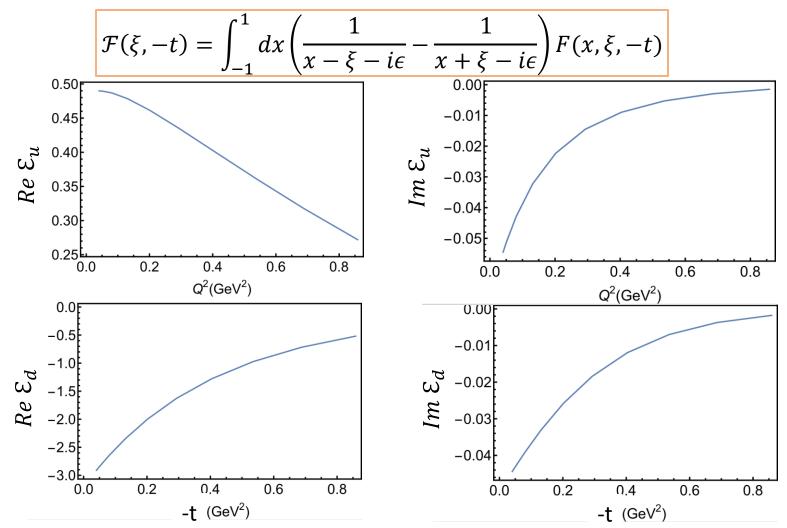
- Gluon and *s* quark GPDs in DGLAP region at  $\xi = 0.1$
- For non-zero skewness,  $E_s$  changes sign

#### Compton Form Factors at $\xi = 0.1$



- Real part of  $\mathcal{H}_d$  falls faster than  $\mathcal{H}_u$
- Imaginary part of  $\mathcal{H}$  falls faster than real part

**Compton Form Factors at**  $\xi = 0.1$ 



- Real part of  $\mathcal{E}_d$  follows the trend of electromagnetic form factors
- Imaginary part of *u* falls faster than *d*

### Conclusions

- GPDs provide spatial imaging of proton on the light front
- BLFQ: a nonperturbative framework based on light-front QCD Hamiltonian
- Based on  $|qqq\rangle + |qqqg\rangle + |qqq q\bar{q}\rangle$  sectors we investigate proton 3D structure
- Achieved qualitative features compared to other approaches
- Explored the GPDs of valence and sea quarks and gluon
- Explored skewness-dependent GPDs including both DGLAP and ERBL regions, and investigated the Compton form factors





Chinese Academy of Sciences, Huizhou Campus, China.

**Physics Topics and Tools** 

- » Physics of EIC and EicC
- » Hadron spectroscopy and reactions
- » Hadron/nuclear structure
- » Spin physics
- » Relativistic many-body physics
- » QCD phase structure
- » Light-front field theory
- » AdS/CFT and holography
- » Nonperturbative QFT methods
- » Effective field theories
- » Lattice field theories
- » Quantum computing
- » Present and future facilities

- International Advisory Committee
- » Stanley J. Brodsky (SLAC)
- » Ho-Meoyng Choi (Kyungpook National U.)
- » Stanislaw D. Glazek (Warsaw U.)
- » Chueng-Ryong Ji (NCSU)
- » Dayashankar Kulshreshtha (Delhi U.)
- » Gerald A. Miller (INT & U. Washington)
- » Wally Melnitchouk (TJNAF)
- » Barbara Pasquini (Pavia U.)
- » Wayne Nicholas Polyzou (U. of Iowa)

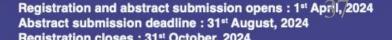
SCNT

» Nico G. Stefanis (Ruhr U.)

- » Wojciech Broniowski (JKU & Cracow, INP)
- » Tobias Frederico (ITA)
- » John R. Hiller (Idaho U.)
- » Vladimir Karmanov (Lebedev Inst.)
- » Cédric Lorcé (Ecole Polytechnique)
- » Anuradha Misra (Mumbai U.)
- » Teresa Peña (IST & Lisboa U.)
- » Giovanni Salmè (INFN Roma)
- » James P. Vary (Iowa State U.)

#### Local Organizing Committee

- » Xingbo Zhao (IMP,chair)
- » Jiangshan Lan (IMP,co-chair)
- » Yang Li (USTC)
- » Chandan Mondal (IMP)
- » Satvir Kaur (IMP)
- » Siqi Xu (IMP)
- » Yair Mulian (IMP)
- » Yuxiang Zhao (IMP)

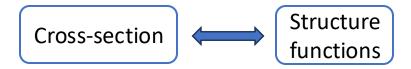




#### **GPDs and Compton Form Factors**

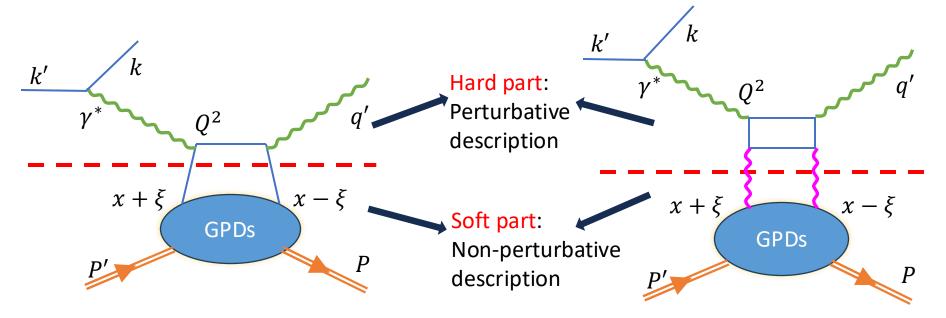
#### **GPDs and Compton Form Factors**

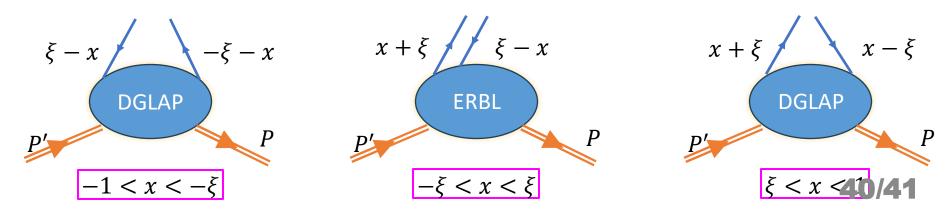
$$\begin{split} \frac{d^3 \sigma_{\text{DVCS}}}{dx_{Bj} dQ^2 d|t| d\phi d\phi_S} &= \Gamma |T_{\text{DVCS}}|^2 \\ &= \frac{\Gamma}{Q^2 (1-\epsilon)} \Big\{ F_{UU,T} + \epsilon F_{UU,L} + \epsilon \cos 2\phi F_{UU}^{\cos 2\phi} + \sqrt{\epsilon(\epsilon+1)} \cos \phi F_{UU}^{\cos \phi} + (2h) \sqrt{2\epsilon(1-\epsilon)} \sin \phi F_{LU}^{\sin \phi} \\ &+ (2\Lambda) \Big[ \sqrt{\epsilon(\epsilon+1)} \sin \phi F_{UL}^{\sin \phi} + \epsilon \sin 2\phi F_{UL}^{\sin 2\phi} + (2h) \Big( \sqrt{1-\epsilon^2} F_{LL} + 2\sqrt{\epsilon(1-\epsilon)} \cos \phi F_{LL}^{\cos \phi} \Big) \Big] \\ &+ (2\Lambda_T) \Big[ \sin(\phi - \phi_S) (F_{UT,T}^{\sin(\phi - \phi_S)} + \epsilon F_{UT,L}^{\sin(\phi - \phi_S)}) + \epsilon \sin(\phi + \phi_S) F_{UT}^{\sin(\phi + \phi_S)} + \epsilon \sin(3\phi - \phi_S) F_{UT}^{\sin(3\phi - \phi_S)} \\ &+ \sqrt{2\epsilon(1+\epsilon)} (\sin \phi_S F_{UT}^{\sin \phi_S} + \sin(2\phi - \phi_S) F_{UT}^{\cos(2\phi - \phi_S)}) \Big] \\ &+ (2h) (2\Lambda_T) \Big[ \sqrt{1-\epsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} + \sqrt{2\epsilon(1-\epsilon)} \cos \phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\epsilon(1-\epsilon)} \cos(2\phi - \phi_S) F_{LT}^{\cos(2\phi - \phi_S)} \Big] \Big\}. \end{split}$$



# **Deeply Virtual Compton Scattering**

→ The deeply virtual Compton scattering describes the process:  $e + p \rightarrow e + p + \gamma$ 





### **Definition of GPDs**

GPDs are defined through the following bilocal operator:

[Stephan.M, 2009]

$$F_{\Lambda'\Lambda}^{[\Gamma]}(x,\xi,\Delta^2) = \int \frac{dz^-}{4\pi} e^{ip\cdot x} \left\langle P',\Lambda' \middle| \bar{\psi}\left(-\frac{z}{2}\right) w\left(-\frac{z}{2},\frac{z}{2}\right) \Gamma\psi\left(\frac{z}{2}\right) \middle| P,\Lambda \right\rangle \middle|_{z^+=z^\perp=0}$$

 $\succ$  GPDs are parameterized by taking different  $\Gamma$  matrices:

$$F_{\Lambda'\Lambda}^{[\gamma^+]} = \frac{1}{2P^+} \bar{u} \left[ \gamma^+ H + \frac{i\sigma^{+\Lambda}}{2M} E \right] u,$$

$$F_{\Lambda'\Lambda}^{[\gamma^+\gamma_5]} = \frac{1}{2P^+} \bar{u} \left[ \gamma^+ \gamma_5 \tilde{H} + \frac{\Delta^+ \gamma_5}{2M} \tilde{E} \right] u,$$

$$F_{\Lambda'\Lambda}^{[i\sigma^{j+}\gamma_5]} = -\frac{i\varepsilon_T^{ij}}{2P^+} \bar{u} \left[ i\sigma^{+i}H_T + \frac{\gamma^+ \Delta_T^i - \Delta^+ \gamma^i}{2M} E_T + \frac{P^+ \Delta_T^i - \Delta^+ P_T^i}{M^2} \tilde{H}_T + \frac{\gamma^+ P_T^i - P^+ \gamma^i}{M} \tilde{E}_T \right] u$$

We use symmetric frame

#### Light-Front Hamiltonian (qqq)

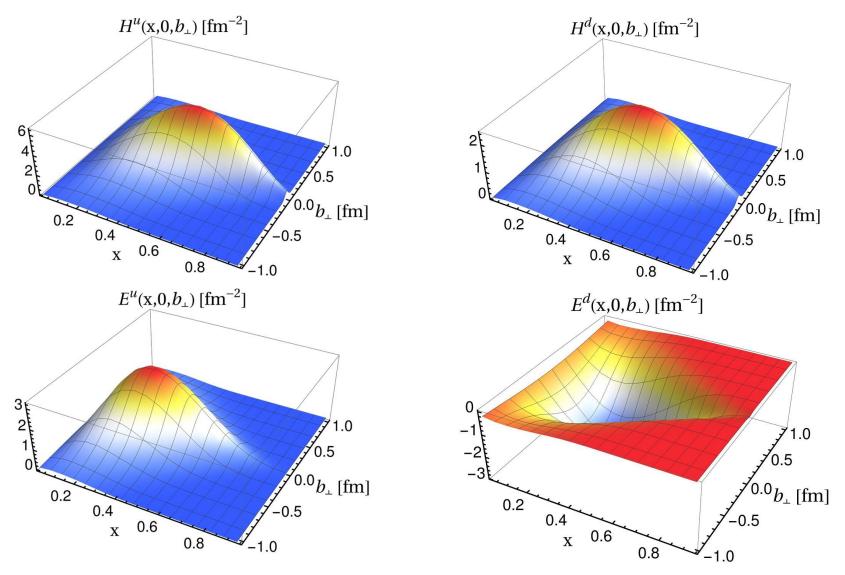
$$P^{-} = H_{K.E.} + H_{trans} + H_{longi} + H_{OGE}$$

 $H_{K.E.} = \sum_{i} \frac{p_i^2 + m_q^2}{p_i^+}$  [S. Xu et al, PRD 104 094036(2021)]

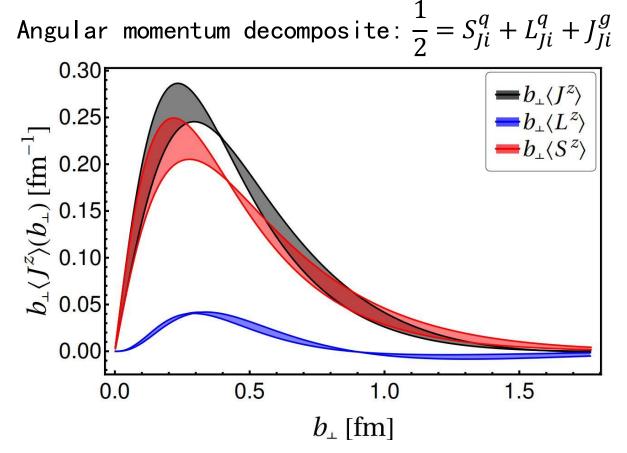
 $H_{trans} \sim \kappa_T^4 r^2$  [S. J. Brodsky, G. de Teramond arXiv: 1203.4025]

$$H_{longi} \sim -\sum_{ij} \kappa_L^4 \partial_{x_i} \left( x_i x_j \partial_{x_j} \right) \quad [Y. Li, X. Zhao, P Maris, J. P. Vary, PLB 758(2016)]$$

$$\boldsymbol{H_{OGE}} = \frac{1}{2} \sum_{a \neq b} \frac{C_F 4\pi \alpha_s}{Q_{ab}^2} \bar{u}(k'_a, s'_a) \gamma^{\mu} u(k_a, s_a) \bar{u}(k'_b, s'_b) \gamma^{\nu} u(k_b, s_b) g_{\mu\nu}$$
[S. Xu et al, PRD 104 094036(2021)]



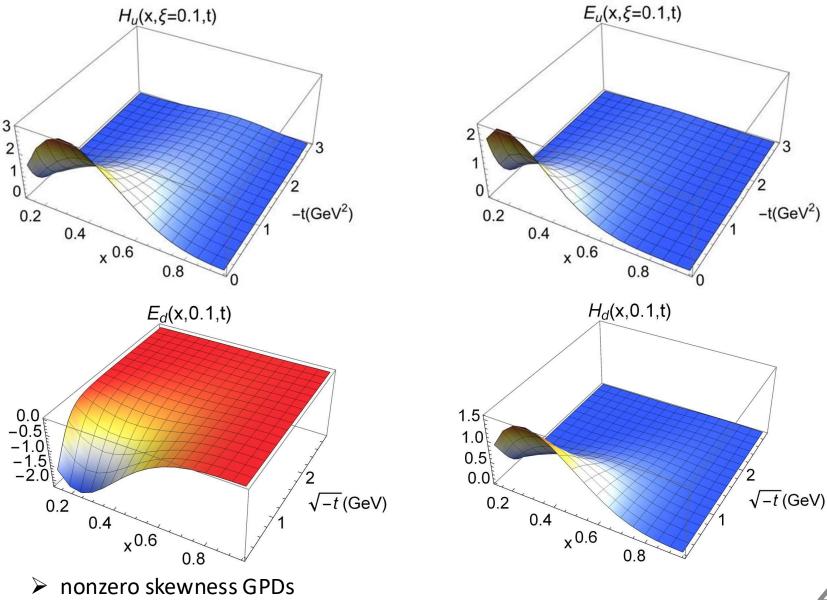
O skewness GPDs in transverse coordinate space

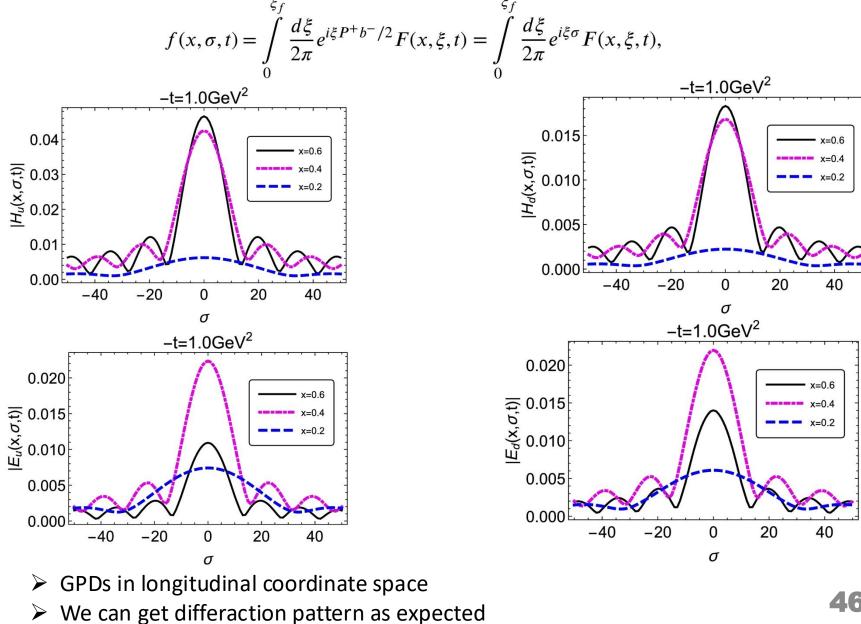


Proton angular momentum distribution in coordinate space

- 91% quark spin, 9% orbital angular momentum
- Angular momentum distribution concentrates in 1fm
- Orbital angular momentum contributes positively inside 0.8fm, and negatively outside 0.8fm.

Gluon contributes 0 under qqq Fock sector





# Light-Front Hamiltonian (qqq, qqqg)

$$P^{-} = H_{K.E.} + H_{trans} + H_{longi} + H_{Interact}$$

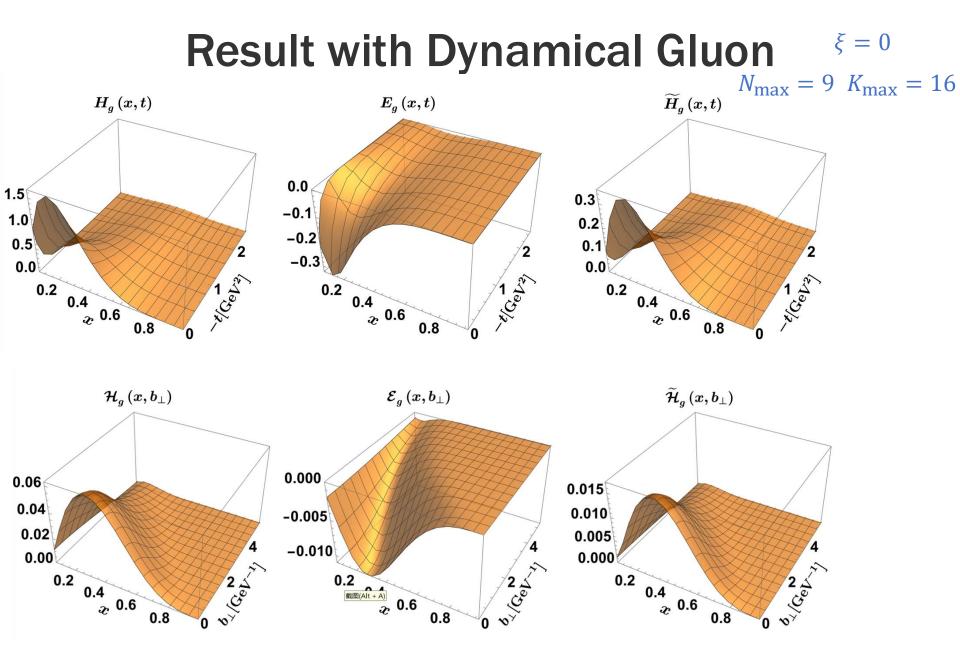
$$H_{K.E.} = \sum_{i} \frac{p_{i}^{2} + m_{q}^{2}}{p_{i}^{+}} \qquad [S. Xu \text{ et al, PRD 104 094036(2021)}]$$

$$H_{trans} \sim \kappa_{T}^{4} r^{2} \qquad [S. J. Brodsky, G. de Teramond arXiv: 1203.4025]$$

$$H_{longi} \sim -\sum_{ij} \kappa_{L}^{4} \partial_{x_{i}} \left( x_{i} x_{j} \partial_{x_{j}} \right) \qquad [Y. Li, X. Zhao, P Maris, J. P. Vary, PLB 758(2016)]$$

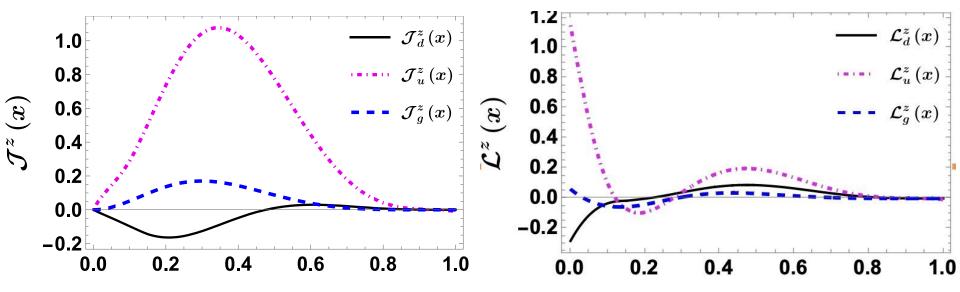
$$H_{Interact} = -\frac{C_{F} 4\pi \alpha_{s}}{Q^{2}} \sum_{i,j(i < j)} \overline{u}_{s_{i}'} (k_{i}') \gamma^{\mu} u_{s_{i}} (k_{i}) \overline{u}_{s_{j}'} (k_{j}') \gamma_{\mu} u_{s_{j}} (k_{j}) \qquad (|qqq\rangle)$$

$$H_{Interact} = H_{Vertex} + H_{inst}$$
  
=  $g\overline{\psi} \gamma^{\mu} T^{a} \psi A^{a}_{\mu} + \frac{g^{2} C_{F}}{2} j^{+} \frac{1}{(i\partial^{+})^{2}} j^{+}$  (|qqq> + |qqqg>)



 $\mathcal{J}^{z}(x) = \frac{1}{2}x \left[ H(x,0,0) + E(x,0,0) \right]$ 

-- B. Lin et. al., Phys. Lett. B 847 (2023) 138305

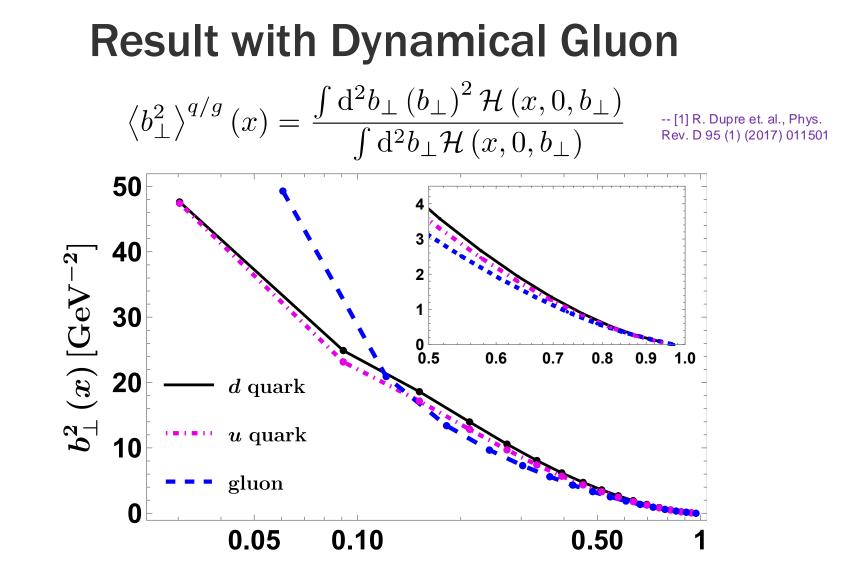


xTotal angular momentum for different parton

xOrbital angular momentum for different parton

| J <sub>d</sub> | Ju    | Jg    | L <sub>d</sub> | L <sub>u</sub> | $L_g$  |
|----------------|-------|-------|----------------|----------------|--------|
| -7.7%          | 94.5% | 13.2% | 2.9%           | 22.0%          | -12.6% |

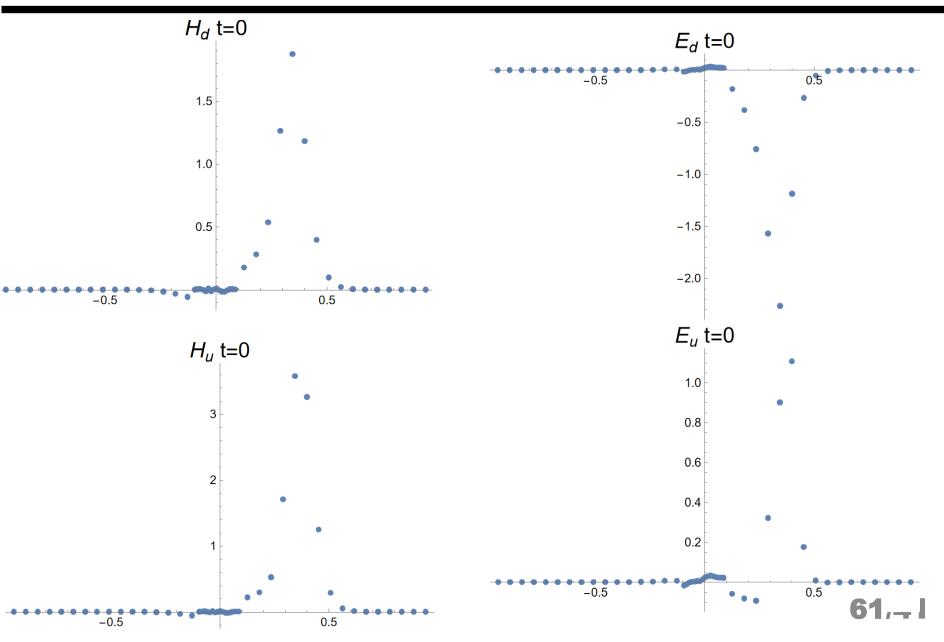
12.3% orbital angular momentum, 87.7% quark and gluon spin



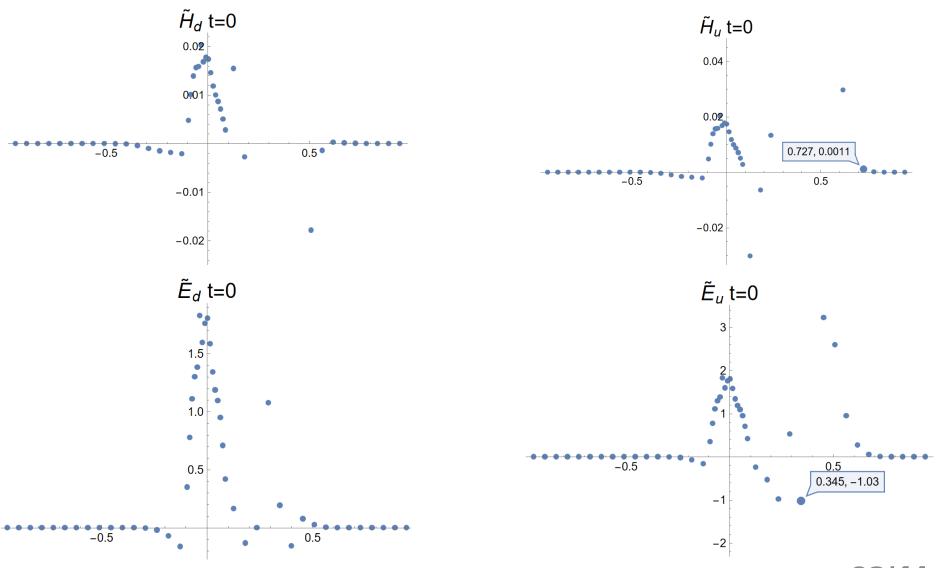
 $\boldsymbol{x}$ 

- > At x>0.1, quark radius>gluon radius
- > At 0.05 < x < 0.1, gluon radius > quark radius
- As  $x \to 1$ , nucleon behaves like point particle

### 2D GPDs at t=0



## 2D GPDs at t=0

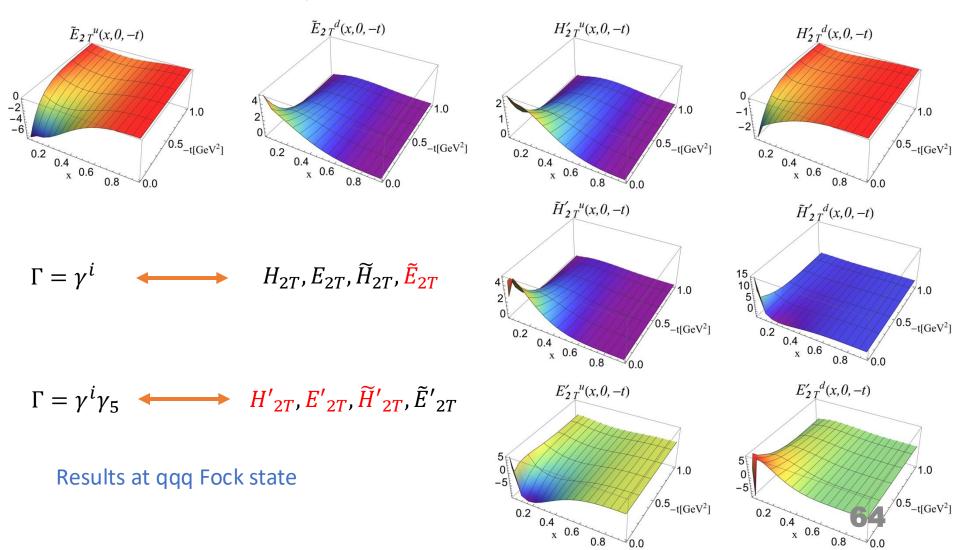


## Twist-3 generalized parton distribution

The twist-3 GPDs are parameterized by taking different Dirac gamma matrices:

# Twist-3 generalized parton distribution

We calculated these twist-3 GPDs based on the LFWFs obtained by applying BLFQ framework, and results are given:



# Twist-3 generalized parton distribution

