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• Deeply Virtual Compton Scattering (DVCS) 

𝑒 𝑝 + 𝑃 𝑃 → 𝑒′ 𝑝′ + 𝑃′ 𝑃′ + 𝛾

3D Structure in Coordinate Space

• Generalized Parton Distribution Functions (GPDs)

[X. Ji, Phys. Rev. D 55, 7114 (1997)]
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𝑏

𝐹(𝑥, 𝑏)

Definition of GPDs
• GPDs are defined through the following bilocal operator on the light front 

𝐹
Λ′Λ

Γ
𝑥, 𝜉, Δ2 = න

𝑑𝑧−

4𝜋
𝑒𝑖𝑝∙𝑥 ฬ𝑃′, Λ′ ത𝜓 −

𝑧
2

𝓌 −
𝑧
2

,
𝑧
2

Γ𝜓
𝑧
2

𝑃, Λ
𝑧+=𝑧⊥=0

• GPDs are parameterized by taking different Γ matrices 

𝐹
Λ′Λ

𝛾+

=
1

2𝑃+ ത𝑢 𝛾+𝐻(𝑥, 𝜉, 𝑡) +
𝑖𝜎+Δ

2𝑀
𝐸(𝑥, 𝜉, 𝑡) 𝑢

𝐹
Λ′Λ

𝛾+𝛾5 =
1

2𝑃+ ത𝑢 𝛾+𝛾5
෩𝐻(𝑥, 𝜉, 𝑡) +

Δ+𝛾5

2𝑀
෨𝐸(𝑥, 𝜉, 𝑡) 𝑢

[Diehl, 2003]

• Fourie transform of GPDs at 𝜉 = 0 with respect to 𝑡 produces spatial imaging

4

𝐹 𝑥, 𝑏 = න
𝑑2Δ⊥

2𝜋 2 𝑒−𝑖𝑏⊥⋅Δ⊥𝐹(𝑥, 𝜉 = 0, 𝑡 = −Δ⊥
2 )
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GPDs and Compton Form Factors

• Cross sections to Compton form factors 

• GPDs to Compton form factors (CFFs) 

ℱ 𝜉, −𝑡 = න
−1

1

𝑑𝑥
1

𝑥 − 𝜉 − 𝑖𝜖
−

1

𝑥 + 𝜉 − 𝑖𝜖
𝐹(𝑥, 𝜉, −𝑡)

෨ℱ 𝜉, −𝑡 = න
−1

1

𝑑𝑥
1

𝑥 − 𝜉 − 𝑖𝜖
+

1

𝑥 + 𝜉 − 𝑖𝜖
෨𝐹(𝑥, 𝜉, −𝑡)

GPDsCFFs

• Compton form factors are integrations of GPDs over 𝑥
• Challenging to extract GPDs from CFFs
• Exploring GPDs from theory is interesting See J. Qiu’s talk on 08/19

GPDs
Cross 

sections
Structure 
functions

Compton 
form factors

?
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t º x0
2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x) = ||∂x/ ∂x||, part icularly

d4x = J (x) d4x. We shall keep track of the Jacobian only implicit ly. The three-volume

element dω0 is t reated correspondingly.

All the above considerat ions must be independent of this reparametrizat ion. The

fundamental expressions like the Lagrangian can be expressed in terms of either x or x.

There is however one subt le point . By matter of convenience one defines the hypersphere

as that locus in four-space on which one sets the ‘init ial condit ions’ at the same ‘init ial

t ime’, or on which one ‘quant izes’ the system correspondingly in a quantum theory. The

hypersphere is thus defined as that locus in four-space with the same value of the ‘t ime-

like’ coordinate x0, i.e. x0(x0, x) = const. Correspondingly, the remaining coordinates

are called ‘space-like’ and denoted by the spat ial three-vector x = (x1, x2, x3). Because

of the (in general) more complicated metric, cuts through the four-space characterized

by x0 = const are quite different from those with x0 = const. In generalized coordinates

the covariant and contravariant indices can have rather different interpretat ion, and one

must be careful with the lowering and rising of the Lorentz indices. For example, only

∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0

which in general are completely different objects. The actual choice of x(x) is a matter

of preference and convenience.

2D Forms of H amilt onian D ynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a
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∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0
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of preference and convenience.

2D Forms of H amilt onian Dynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a

i
¶

¶t
j(t) = H j(t) i

¶

¶x+
j(x+ ) =

1

2
P- j(x+ )

P0 = m2 + P2
P- =

m2 + P̂2

P+

𝑥1, 𝑥2, 𝑥3

𝑃0, 𝑃

𝑥− = 𝑥0 − 𝑥3,
𝑥⊥ = 𝑥1,2

𝑃− = 𝑃0 − 𝑃3,
𝑃+ = 𝑃0 + 𝑃3,𝑃⊥ = 𝑃1,2

Main advantages:

• Simple vacuum
• GPDs are defined on the light front
• Frame-independent wave function

Light-front Quantization

Equal time quantization Light-front quantization [Dirac, 1949]

𝐹
Λ′Λ

Γ
𝑥, 𝜉, Δ2

= න
𝑑𝑧−

4𝜋
𝑒𝑖𝑝∙𝑥 ฬ𝑃′, Λ′ ത𝜓 −

𝑧
2

𝓌 −
𝑧
2

,
𝑧
2

Γ𝜓
𝑧
2

𝑃, Λ
𝑧+=𝑧⊥=0
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Basis Light-Front Quantization
• Hamiltonian eigenvalue equation

𝑃− ۧ𝛽 = 𝑃𝛽
− ۧ𝛽

𝑷−: Light-Front Hamiltonian

| ۧ𝜷 : Eigenstates (wave function)

𝑷𝜷
−: Eigenvalues (mass)

[Dirac, 1949]

[Vary, et.al, Phys.Rev.C ’10] 

| ۧ𝑃, Λ = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞 ത𝑞 + ⋅⋅⋅⋅⋅⋅- Fock sector expansion:

- Single particle 
      basis in |𝑞𝑞𝑞ۧ

𝛼 = |𝑛1, 𝑚1, 𝑛2, 𝑚2, 𝑛3, 𝑚3ۧ

2D harmonic oscillator

⨂ |𝑘1
+, 𝑘2

+, 𝑘3
+ۧ⨂|𝜆1, 𝜆2, 𝜆3, 𝐶ۧ

Discretized longitudinal 

momentum

Helicity and color



𝑖

(2𝑛𝑖 + 𝑚𝑖 + 1) ≤ 𝑁max 

𝑖

𝑘𝑖
+ = 𝐾max

• Basis setup

• Advantages:
         -    Rotational symmetry in transverse plane
         -    Exact factorization between center-of-mass motion and intrinsic motion
         -    Harmonic oscillator basis supplies adequate infrared behavior

Λ = 

𝑖

(𝜆𝑖 + 𝑚𝑖)

7
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Light-Front Hamiltonian
• QCD light-front Hamiltonian can be derived from QCD Lagrangian

ℒ𝑄𝐶𝐷 = ത𝜓 𝑖𝐷 − 𝑚 𝜓 −
1

4
𝐺𝜇𝜈

𝛼 𝐺𝛼
𝜇𝜈/

𝜓: quark field operator

𝐴𝜇
𝑎 : gluon field operator

𝑃𝑄𝐶𝐷
− =

𝐴+ = 0

8
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Publications on Nucleon GPDs

• | ۧ𝒒𝒒𝒒 :

            Proton GPD [Xu et al., Phys.Rev.D104,094036 (2021)]

            Proton angular momentum [Liu et al., Phys.Rev.D105,094018 (2022)]

            Proton twist-3 GPDs [Zhang et al., Phys.Rev.D109,034031 (2024)]

            Proton chiral odd GPDs [Kaur et al., Phys. Rev. D 109, 014015 (2024)]

 
• ۧ|𝒒𝒒𝒒 + ۧ|𝒒𝒒𝒒𝒈 :

           Proton spin structure [Xu et al.,  Phys.Rev.D,108 9, 094002 (2023)] 

            Gluon GPDs [Lin et al., Phys.Lett.B,847 138305  (2023)]

ۧProton = ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢 ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + ⋯

• ۧ|𝒒𝒒𝒒 + ۧ|𝒒𝒒𝒒𝒈 + 𝒒𝒒𝒒𝒒ഥ𝒒

          Proton structure with sea quarks [arxiv:2408.xxxxx]

9
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ۧProton = Ψ1 ۧ𝑞𝑞𝑞 + Ψ2 𝑞𝑞𝑞𝑔 + Ψ31 𝑞𝑞𝑞 𝑢 ത𝑢 + Ψ32 𝑞𝑞𝑞 𝑑 ҧ𝑑 + Ψ33 𝑞𝑞𝑞 𝑠 ҧ𝑠

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝒈ഥ𝝍 𝜸𝝁𝑻𝒂 𝝍 𝑨𝝁
𝒂 +

𝒈𝟐𝑪𝑭

𝟐
 𝒋+

𝟏

𝒊𝝏+ 𝟐 𝒋+ +
𝒈𝟐𝑪𝑭

𝟐
 ഥ𝝍𝜸𝝁𝑨𝝁

𝜸+

𝒊𝝏+ 𝑨𝝂𝜸𝝂𝝍

𝑷− = 𝑯𝑲.𝑬. + 𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕

𝑯𝑲.𝑬. = 

𝒊

𝒑𝒊
𝟐 + 𝒎𝒒

𝟐

𝒑𝒊
+

Light-Front Hamiltonian

10



Fock Sector Decomposition
ۧProton → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑢 ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠

Truncation parameter: 𝑁max = 7 and 𝐾max = 16

53.03%

26.39%

3.26%

8.64%

8.68%

20.58%

𝑞𝑞𝑞𝑔

𝑞𝑞𝑞 𝑠 ҧ𝑠

𝑞𝑞𝑞 𝑑 ҧ𝑑

𝑞𝑞𝑞

𝑞𝑞𝑞 𝑢 ത𝑢

In five quark Fock sectors, current quark masses are used

𝒎𝒖 𝒎𝒅 𝒎𝒇 𝒈 𝒃 𝒃𝒊𝒏𝒔𝒕

0.99 GeV 0.94 GeV 5.9 GeV 3.0 0.6 GeV 2.7 GeV

11



• Elastic scattering of proton

𝑒 𝑝 + ℎ 𝑃 → 𝑒 𝑝′ + ℎ(𝑃′)

• Elastic electron scattering established the extended nature of the proton

• Fourier transformation of these form factors provides spatial distributions of 
charge and magnetization

[R. Hofstadter, Nobel Prize 1961]

Electromagnetic Form Factor

Dirac Form Factor Pauli Form Factor

⟨𝑃′, Λ′  𝐽𝜇 0  𝑃, Λۧ=

 ത𝑢 P′, Λ′ 𝛾𝜇𝐹1 𝑞2 +
𝑖𝜎𝜇𝜈

2𝑚𝑁
𝑞𝜈𝐹2 𝑞2 𝑢(𝑃, Λ)

12

𝑃 𝑃’



Electromagnetic Form Factors
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𝐺𝐸 = 𝐹1 −
𝑄2

4𝑀2 𝐹2

𝐺𝑀 = 𝐹1 + 𝐹2

[arXiv: 2408.11298]



Parton Distribution Functions
• Deep Inelastic Scattering (SLAC 1968)

𝑒 𝑝 + ℎ 𝑃 = 𝑒′ 𝑝′ + 𝑋(𝑃′)

• Parton distribution functions (PDFs) are extracted from DIS processes

• Encode longitudinal momentum distribution and polarization of the constituents

Discovery of spin ½ quarks and 
partonic structure

𝑋

𝑋

Φ Γ 𝑥, 𝑄2 = න
𝑑𝑧−

8𝜋
 𝑒𝑖𝑥𝑃+𝑧−/2⟨𝑃, Λ ത𝜓 𝑧 Γ𝜓 0 𝑃, Λۧ

14
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Unpolarized PDF

• Fitting the initial scale by matching the ⟨𝑥ۧ moment at 10 GeV2

• Narrower peak than global fits

x(s+s)in BLFQ

x(u+d)in BLFQ

xg/10 in BLFQ

0.01 0.05 0.1 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0

x

x(d+u)

x(s+s)

xg/10

BLFQ

JAM

0.2

0.4

0.6

0.8

1.0 μ2=10.0 GeV2

xu

xd

NNPDF

𝜇0
2 = 0.22 ± 0.01 GeV2

[arXiv: 2408.11298]
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Helicity PDF

0.01 0.050.10 0.50 1
- 0.15

- 0.10

- 0.05

0.00

0.05

x

xΔd

µ2= 5 GeV2

BLFQ

HERMES

COMPASS

- 0.2

0.0

0.2

0.4

0.6
xΔu

xΔd

µ2= 5 GeV2

0.05 0.1 0.5 1

x

xΔu

µ2= 5 GeV2

NNPDFpol1.1

JAM xΔg

µ2= 1 GeV2

• Small-x region reasonably agrees with global fit/exp. data
• Narrower peak than global fits

[arXiv: 2408.11298]



/4117

Transversity PDF

• Narrower peak than global fits
• Tensor charges: 𝛿𝑢 = 0.81 ± 0.08, 𝛿𝑑 = −0.22 ± 0.01

BLFQ JAM

0.01 0.05 0.10 0.50 1

- 0.2

0.0

0.2

0.4

0.6

x

xδu

xδdµ2= 4 GeV2

[PRL 132, 091901 (2024)] [PRD 98, 091501 (2018)]

[arXiv: 2408.11298]
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𝑢 and 𝑑 Quark GPDs at 𝜉 = 0

• Contributions from all Fock sectors

• Achieved qualitative features compared to various models 
19
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GPDs in Impact Parameter Space

• Concentrate near the center 𝑏 = 0 

• Qualitative features agree with other approaches
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Gluon and 𝑠 Quark GPDs at 𝜉 = 0

• Dominate at small 𝑥 region

• 𝐸𝑔 oscillates over 𝑥 21[PRD 105, 054509 (2022)]
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GPDs in Impact Parameter Space

• Concentrate near the center 𝑏 = 0 and small 𝑥 
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Angular Momentum Distribution

parton d u dbar ubar s/sbar g

percentage 0.63% 93.02% 0.63% 0.63% 0.19% 4.71%

• 𝑢 is dominant, gluon contributes about 5%, 𝑑 is negative

• ത𝑢 quark is almost the same as ҧ𝑑
• 𝑑= ҧ𝑑 is a coincidence 24

𝐽𝑞,𝑔 =
1

2
න

0

1

𝑥[𝐻𝑞,𝑔 𝑥, 0,0 + 𝐸𝑞,𝑔 𝑥, 0,0 ]𝑑𝑥
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Squared Radius

• Gluon radius > sea quark radius > valence quark radius

• As 𝑥 → 1, nucleon behaves like point particle
25



/4126

Magnetic Form Factor for Different Quarks

• 𝐺𝑀
𝑑 0 = −0.053

• 𝐺𝑀
𝑢 0 = 1.396

• 𝐺𝑀
𝑠 0 = −0.028
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Gravitational Form Factors

• Ji’s sum rule is satisfied
• Qualitative agreement with lattice data

[PRD 105, 054509 (2022)]



/41

GPDs at 𝜉 = 0.1

• 𝑑 quark GPD 𝐻 from −1 < 𝑥 < 1

• At 𝜉 = 0.1, DGLAP region 

dominates 

 

• Discontinuity at 𝑥 = ±𝜉

• We use symmetric frame

28

Preliminary
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GPDs at 𝜉 = 0.1

• 𝑢 quark GPD 𝐻 from −1 < 𝑥 < 1

• At 𝜉 = 0.1, DGLAP region 

dominates 

 

• Discontinuity at 𝑥 = +𝜉, not sure 

at 𝑥 = −𝜉
29

Preliminary
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GPDs at 𝜉 = 0.1

• 𝑑 quark GPD 𝐸 from −1 < 𝑥 < 1

• At 𝜉 = 0.1, DGLAP region 

dominates 

 

• Discontinuity at 𝑥 = ±𝜉

30

Preliminary
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GPDs at 𝜉 = 0.1

• 𝑢 quark GPD 𝐸 from −1 < 𝑥 < 1

• GPD 𝐸 for 𝑢 quark is smaller than 𝑑 quark

• Discontinuity at 𝑥 = −𝜉, not sure at 𝑥 = 𝜉

31

Preliminary
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GPDs at 𝜉 = 0.1

32

• Gluon and 𝑠 quark GPDs in DGLAP region at 𝜉 = 0.1
• For non-zero skewness, 𝐸𝑠 changes sign
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Compton Form Factors at 𝜉 = 0.1

• Real part of ℋ𝑑 falls faster than ℋ𝑢 

• Imaginary part of ℋ falls faster than real part

ℱ 𝜉, −𝑡 = න
−1

1

𝑑𝑥
1

𝑥 − 𝜉 − 𝑖𝜖
−

1

𝑥 + 𝜉 − 𝑖𝜖
𝐹(𝑥, 𝜉, −𝑡)

34

𝐼𝑚
ℋ

𝑢
 

𝑅
𝑒

ℋ
𝑢

𝑅
𝑒

ℋ
𝑑

 

-t -t

𝐼𝑚
ℋ

𝑑
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Compton Form Factors at 𝜉 = 0.1

• Real part of ℰ𝑑 follows the trend of electromagnetic form factors

• Imaginary part of 𝑢 falls faster than 𝑑 35

𝐼𝑚
ℇ

𝑑

-t -t

𝑅
𝑒

ℇ
𝑢

𝑅
𝑒

ℇ
𝑑

𝐼𝑚
ℇ

𝑢

ℱ 𝜉, −𝑡 = න
−1

1

𝑑𝑥
1

𝑥 − 𝜉 − 𝑖𝜖
−

1

𝑥 + 𝜉 − 𝑖𝜖
𝐹(𝑥, 𝜉, −𝑡)
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Thank you!

Conclusions
• GPDs provide spatial imaging of proton on the light front

• BLFQ: a nonperturbative framework based on light-front QCD Hamiltonian

• Based on | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞 ത𝑞  sectors we investigate proton 3D structure

• Achieved qualitative features compared to other approaches

• Explored the GPDs of valence and sea quarks and gluon

• Explored skewness-dependent GPDs including both DGLAP and ERBL regions, and 
investigated the Compton form factors
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𝑇(𝐿)
𝞵𝞶

= 𝑇(2)
𝞵𝞶

+ 𝑇(3)
𝞵𝞶

+ 𝑇(4)
𝞵𝞶 𝑇(𝑁𝐿)

𝞵𝞶
= 𝑇(3)

𝞵𝞶
+ 𝑇(4)

𝞵𝞶
+ 𝑇(5)

𝞵𝞶 … … …

(L)

GPDs and Compton Form Factors

Cross-section
Compton 

form factors
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GPDs and Compton Form Factors

Cross-section
Structure 
functions
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Deeply Virtual Compton Scattering
➢ The deeply virtual Compton scattering describes the process: 𝑒 + 𝑝 → 𝑒 + 𝑝 +  𝛾

GPDs

𝑃′

𝑞′𝑄2𝛾∗

𝑥 + 𝜉

𝑃

𝑥 − 𝜉

𝑘𝑘′ Hard part:
Perturbative 
description

Soft part:
Non-perturbative 
description

GPDs

𝑃′

𝑞′𝑄2𝛾∗

𝑥 + 𝜉

𝑃

𝑥 − 𝜉

𝑘𝑘′

DGLAP

𝑃′

𝜉 − 𝑥

𝑃

−𝜉 − 𝑥

−1 < 𝑥 < −𝜉

ERBL

𝑃′

𝑥 + 𝜉

𝑃

𝜉 − 𝑥

−𝜉 < 𝑥 < 𝜉

DGLAP

𝑃′

𝑥 + 𝜉

𝑃

𝑥 − 𝜉

𝜉 < 𝑥 < 1

➢ Soft part        Generalized parton distribution functions (GPDs)
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Definition of GPDs

➢ GPDs are defined through the following bilocal operator: 

𝐹
Λ′Λ

Γ
𝑥, 𝜉, Δ2 = න

𝑑𝑧−

4𝜋
𝑒𝑖𝑝∙𝑥 ฬ𝑃′, Λ′ ത𝜓 −

𝑧
2

𝓌 −
𝑧
2

,
𝑧
2

Γ𝜓
𝑧
2

𝑃, Λ
𝑧+=𝑧⊥=0

➢ GPDs are parameterized by taking different Γ matrices: 

𝐹
Λ′Λ

𝛾+

=
1

2𝑃+ ത𝑢 𝛾+𝐻 +
𝑖𝜎+Δ

2𝑀
𝐸 𝑢,

𝐹
Λ′Λ

𝛾+𝛾5 =
1

2𝑃+ ത𝑢 𝛾+𝛾5
෩𝐻 +

Δ+𝛾5

2𝑀
෨𝐸 𝑢,

𝐹
Λ′Λ

𝑖𝜎𝑗+𝛾5 = −
𝑖휀𝑇

𝑖𝑗

2𝑃+ ത𝑢 𝑖𝜎+𝑖𝐻𝑇 +
𝛾+Δ𝑇

𝑖 − Δ+𝛾𝑖

2𝑀
𝐸𝑇 +

𝑃+Δ𝑇
𝑖 − Δ+𝑃𝑇

𝑖

𝑀2
෩𝐻𝑇 +

𝛾+𝑃𝑇
𝑖 − 𝑃+𝛾𝑖

𝑀
෨𝐸𝑇 𝑢

[Stephan.M, 2009]

➢ We use symmetric frame
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Light-Front Hamiltonian (qqq)

𝑷− = 𝑯𝑲.𝑬. + 𝑯𝒕𝒓𝒂𝒏𝒔 + 𝑯𝒍𝒐𝒏𝒈𝒊 + 𝑯𝑶𝑮𝑬

𝑯𝒕𝒓𝒂𝒏𝒔 ~ 𝜿𝑻
𝟒𝒓𝟐

𝑯𝒍𝒐𝒏𝒈𝒊 ~ − 

𝒊𝒋

𝜿𝑳
𝟒𝝏𝒙𝒊

𝒙𝒊𝒙𝒋𝝏𝒙𝒋

𝑯𝑲.𝑬. = 

𝒊

𝒑𝒊
𝟐 + 𝒎𝒒

𝟐

𝒑𝒊
+

[S. J. Brodsky, G. de Teramond arXiv: 1203.4025]

[Y. Li, X. Zhao , P Maris , J. P. Vary, PLB 758(2016)]

[S. Xu et al, PRD 104 094036(2021)]

𝑯𝑶𝑮𝑬 =

42

[S. Xu et al, PRD 104 094036(2021)]
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Result without Dynamical Gluon

➢ 0 skewness GPDs in transverse coordinate space
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Result without Dynamical Gluon
1

2
= 𝑆𝐽𝑖

𝑞
+ 𝐿𝐽𝑖

𝑞
+ 𝐽𝐽𝑖

𝑔
Angular momentum decomposite:

➢ 91% quark spin, 9% orbital 
angular momentum

➢ Angular momentum 
distribution concentrates 
in 1fm

➢ Orbital angular momentum 
contributes positively 
inside 0.8fm, and 
negatively outside 0.8fm. 

Gluon contributes 0 
under qqq Fock sector

Proton angular momentum 
distribution in coordinate space
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Result without Dynamical Gluon

➢ nonzero skewness GPDs
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Result without Dynamical Gluon

➢ GPDs in longitudinal coordinate space
➢ We can get differaction pattern as expected
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Light-Front Hamiltonian (qqq, qqqg)

𝑷− = 𝑯𝑲.𝑬. + 𝑯𝒕𝒓𝒂𝒏𝒔 + 𝑯𝒍𝒐𝒏𝒈𝒊 + 𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕

𝑯𝒕𝒓𝒂𝒏𝒔 ~ 𝜿𝑻
𝟒𝒓𝟐

𝑯𝒍𝒐𝒏𝒈𝒊 ~ − 

𝒊𝒋

𝜿𝑳
𝟒𝝏𝒙𝒊

𝒙𝒊𝒙𝒋𝝏𝒙𝒋

𝑯𝑲.𝑬. = 

𝒊

𝒑𝒊
𝟐 + 𝒎𝒒

𝟐

𝒑𝒊
+

[S. J. Brodsky, G. de Teramond arXiv: 1203.4025]

[Y. Li, X. Zhao , P Maris , J. P. Vary, PLB 758(2016)]

[S. Xu et al, PRD 104 094036(2021)]

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = −
𝑪𝑭𝟒𝝅𝜶𝒔

𝑸𝟐 

𝒊,𝒋(𝒊<𝒋)

ഥ𝒖𝒔𝒊
′ 𝒌𝒊

′ 𝜸𝝁𝒖𝒔𝒊
𝒌𝒊 ഥ𝒖𝒔𝒋

′ 𝒌𝒋
′ 𝜸𝝁𝒖𝒔𝒋

(𝒌𝒋) ( ۧ|𝑞𝑞𝑞 )

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝑯𝑽𝒆𝒓𝒕𝒆𝒙 + 𝑯𝒊𝒏𝒔𝒕

= 𝒈ഥ𝝍 𝜸𝝁𝑻𝒂 𝝍 𝑨𝝁
𝒂 +

𝒈𝟐𝑪𝑭

𝟐
 𝒋+

𝟏

𝒊𝝏+ 𝟐 𝒋+
( ൿۧ|𝑞𝑞𝑞 + |𝑞𝑞𝑞𝑔 )
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Result with Dynamical Gluon
𝑁max = 9  𝐾max = 16

𝜉 = 0
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Result with Dynamical Gluon

49

-- B. Lin et. al., Phys. Lett. B 847 (2023) 138305

49

𝑱𝒅 𝑱𝒖 𝑱𝒈 𝑳𝒅 𝑳𝒖 𝑳𝒈

-7.7% 94.5% 13.2% 2.9% 22.0% -12.6%

Total angular momentum 
for different parton

Orbital angular momentum 
for different parton

➢ 12.3% orbital angular momentum, 87.7% quark and gluon spin
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Result with Dynamical Gluon

0.05 0.10 0.50 1
0

10

20

30

40

50

0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

-- [1] R. Dupre et. al., Phys. 

Rev. D 95 (1) (2017) 011501

➢ At x>0.1, quark radius>gluon radius

➢ At 0.05<x<0.1, gluon radius > quark radius

➢ As 𝑥 → 1, nucleon behaves like point particle
50
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2D GPDs at t=0
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2D GPDs at t=0
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Twist-3 generalized parton distribution

The twist-3 GPDs are parameterized by taking different Dirac gamma matrices: 

𝐹
Λ′Λ

1
=

𝑀

2 𝑃+ 2 ത𝑢 𝛾+𝐻2 +
𝑖𝜎+Δ

2𝑀
𝐸2 𝑢,

𝐹
Λ′Λ

𝛾5 =
𝑀

2 𝑃+ 2 ത𝑢 𝛾+𝛾5
෩𝐻2 +

𝑃+𝛾5

𝑀
෨𝐸2 𝑢,

𝐹
Λ′Λ

𝛾𝑗

=
𝑀

2 𝑃+ 2 ത𝑢 𝑖𝜎+𝑗𝐻2𝑇 +
𝛾+Δ𝑇

𝑗
− Δ+𝛾𝑗

2𝑀
𝐸2𝑇 +

𝑃+Δ𝑇
𝑗

− Δ+𝑃𝑇
𝑗

𝑀2
෩𝐻2𝑇 +

𝛾+𝑃𝑇
𝑗

− 𝑃+𝛾𝑗

𝑀
෨𝐸2𝑇 𝑢,

𝐹
Λ′Λ

𝛾𝑗𝛾5 =
−𝑖휀𝑇

𝑖𝑗
𝑀

2 𝑃+ 2 ത𝑢 𝑖𝜎+𝑖𝐻2𝑇
′ +

𝛾+Δ𝑇
𝑖 − Δ+𝛾𝑖

2𝑀
𝐸2𝑇

′ +
𝑃+Δ𝑇

𝑗
− Δ+𝑃𝑇

𝑗

𝑀2
෩𝐻2𝑇

′ +
𝛾+𝑃𝑇

𝑗
− 𝑃+𝛾𝑗

𝑀
෨𝐸2𝑇

′ 𝑢,

𝐹
Λ′Λ

𝑖𝜎𝑖𝑗𝛾5 =
−𝑖휀𝑇

𝑖𝑗
𝑀

2 𝑃+ 2 ത𝑢 𝛾+𝐻′2 +
𝑖𝜎+Δ

2𝑀
𝐸′2 𝑢

𝐹
Λ′Λ

𝑖𝜎+−𝛾5 =
𝑀

2 𝑃+ 2 ത𝑢 𝛾+𝛾5
෩𝐻′2 +

𝑃+𝛾5

𝑀
෨𝐸′2 𝑢

[Stephan.M 2009]
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Twist-3 generalized parton distribution

We calculated these twist-3 GPDs based on the LFWFs obtained by applying BLFQ 

framework, and results are given: 

Γ = 𝛾𝑖

Γ = 𝛾𝑖𝛾5

𝐻2𝑇, 𝐸2𝑇, ෩𝐻2𝑇, ෨𝐸2𝑇

𝐻′2𝑇, 𝐸′2𝑇, ෩𝐻′2𝑇, ෨𝐸′2𝑇

64

Results at qqq Fock state
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Twist-3 generalized parton distribution

Γ = 1

Γ = 𝛾5

𝐻2, 𝐸2

෩𝐻2, ෨𝐸2

Γ = 𝑖𝜎𝑖𝑗𝛾5

Γ = 𝑖𝜎+−𝛾5

𝐻′2, 𝐸′2

෩𝐻′2, ෨𝐸′2

65
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