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Å Deeply Virtual Compton Scattering (DVCS) 

Ὡὴ ὖὖ ᴼὩὴ ὖ ὖ ‎

3D Structure in Coordinate Space

Å Generalized Parton Distribution Functions (GPDs)

[X. Ji, Phys. Rev. D 55, 7114 (1997)]
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Definition of GPDs
Å GPDs are defined through the following bilocal operator on the light front 
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Å GPDs are parameterized by taking different ɜ matrices 
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[Diehl, 2003]

ÅFourie transform of GPDs at ‚ π with respect to ὸ produces spatial imaging
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GPDs and Compton Form Factors

Å Cross sections to Compton form factors 

Å GPDs to Compton form factors (CFFs) 
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GPDsCFFs

Å Compton form factors are integrations of GPDs over ὼ
Å Challenging to extract GPDs from CFFs
Å Exploring GPDs from theory is interesting {ŜŜ WΦ vƛǳΩǎ ǘŀƭƪ ƻƴ луκмф
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Figure 1: Diracôs three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x) = ||Öx/ Öx||, part icularly

d4x = J (x) d4x. We shall keep track of the Jacobian only implicit ly. The three-volume

element dɤ0 is t reated correspondingly.

All the above considerat ions must be independent of this reparametrizat ion. The

fundamental expressions like the Lagrangian can be expressed in terms of either x or x.

There is however one subt le point . By matter of convenience one deýnes the hypersphere

as that locus in four-space on which one sets the óinit ial condit ionsôat the same óinit ial

t imeô, or on which oneóquant izesôthe system correspondingly in a quantum theory. The

hypersphere is thus deýned as that locus in four-space with the same value of theótime-

likeôcoordinate x0, i.e. x0(x0, x) = const. Correspondingly, the remaining coordinates

are called óspace-likeôand denoted by the spat ial three-vector x = (x1, x2, x3). Because

of the (in general) more complicated metric, cuts through the four-space characterized

by x0 = const are quite different from those with x0 = const. In generalized coordinates

the covariant and contravariant indices can have rather different interpretat ion, and one

must be careful with the lowering and rising of the Lorentz indices. For example, only

Ö0 = Ö/Öx0 is a ótime-derivat iveôand only P0 aóHamiltonianô, as opposed to Ö0 and P0

which in general are completely different objects. The actual choice of x(x) is a matter

of preference and convenience.

2D Forms of H amilt onian D ynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a
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Main advantages:

Å Simple vacuum
Å GPDs are defined on the light front
Å Frame-independent wave function

Light-front Quantization

Equal time quantization Light-front quantization [Dirac, 1949]
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Basis Light-Front Quantization
Å Hamiltonian eigenvalue equation

ὖ ἃ‍ ὖ ἃ‍

╟ : Light-Front Hamiltonian

ȿἃ♫: Eigenstates (wave function)

╟♫: Eigenvalues (mass)

[Dirac, 1949]

[Vary, et.al, Phys.Rev.C õ10] 

ȿ ἃὖȟɤ ȿ ἃήήή ήήήὫήήή ήή  ẗẗẗẗẗẗ- Fock sector expansion:

- Single particle 
      basis in ȿήήήἃ

‌ ȿὲȟάȟὲȟάȟὲȟάἃ

2D harmonic oscillator

ἆ ȿὯȟὯȟὯἃἆȿ‗ȟ‗ȟ‗ȟὅἃ

Discretized longitudinal 

momentum

Helicity and color

ςὲ ά ρ ὔ Ὧ ὑ

Å Basis setup

Å Advantages:
         -    Rotational symmetry in transverse plane
         -    Exact factorization between center-of-mass motion and intrinsic motion
         -    Harmonic oscillator basis supplies adequate infrared behavior

ɤ ‗ ά
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Light-Front Hamiltonian
Å QCD light-front Hamiltonian can be derived from QCD Lagrangian

fl ‪ὭὈά‪
ρ

τ
Ὃ Ὃ/

‪: quark field operator

ὃ : gluon field operator

ὖ

ὃ π
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Publications on Nucleon GPDs

Å ȿ ἃ▲▲▲:

            Proton GPD [Xu et al., Phys.Rev.D104,094036 (2021)]

            Proton angular momentum [Liu et al., Phys.Rev.D105,094018 (2022)]

            Proton twist-3 GPDs [Zhang et al., Phys.Rev.D109,034031 (2024)]

            Proton chiral odd GPDs [Kaur et al., Phys. Rev. D 109, 014015 (2024)]

 
Å ἃȿ▲▲▲ ἃȿ▲▲▲▌:

           Proton spin structure [Xu et al.,  Phys.Rev.D,108 9, 094002 (2023)] 

            Gluon GPDs [Lin et al., Phys.Lett.B,847 138305  (2023)]

ἃ0ÒÏÔÏÎἃήήή ήήήὫήήή όό ήήή ὨӶὨ ήήή ίӶί Ễ

Å ἃȿ▲▲▲ ἃȿ▲▲▲▌ ▲▲▲▲▲

          Proton structure with sea quarks [arxiv:2408.xxxxx]
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ἃ0ÒÏÔÏÎɰ ἃήήήɰ ήήήὫɰ ήήή όό ɰ ήήή ὨӶὨ ɰ ήήή ίӶί
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Fock Sector Decomposition
ἃ0ÒÏÔÏÎᴼ ἃήήή ήήήὫήήήόό ήήήὨӶὨ ήήήίӶί

Truncation parameter: ὔ χ and ὑ ρφ

53.03%

26.39%

3.26%

8.64%

8.68%

20.58%

ήήήὫ
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In five quark Fock sectors, current quark masses are used

□◊ □▀ □█ ▌ ╫ ╫░▪▼◄

0.99 GeV 0.94 GeV 5.9GeV 3.0 0.6 GeV 2.7 GeV
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ÅElastic scattering of proton

Ὡὴ Ὤὖ ᴼὩὴ Ὤὖ

ÅElastic electron scattering established the extended nature of the proton

ÅFourier transformation of these form factors provides spatial distributions of 
charge and magnetization

[R. Hofstadter, Nobel Prize 1961]

Electromagnetic Form Factor

Dirac Form Factor Pauli Form Factor

ἂὖȟɤᴂ ὐ π ὖȟɤἃ=

 ό0ȟɤᴂ‎Ὂ ή ήὊ ή όὖȟɤ
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Electromagnetic Form Factors

ὶ πȢχς πȢπυ ÆÍ

Arrington 05

Arrington 07
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[arXiv: 2408.11298]



Parton Distribution Functions
Å Deep Inelastic Scattering (SLAC 1968)

Ὡὴ Ὤὖ Ὡὴ ὢὖ

Å Parton distribution functions (PDFs) are extracted from DIS processes

Å Encode longitudinal momentum distribution and polarization of the constituents

Discovery of spin ½ quarks and 
partonic structure
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Unpolarized PDF

Å Fitting the initial scale by matching the ἂὼἃ moment at ρπ 'Å6

Å Narrower peak than global fits

x(s+s)in BLFQ

x(u+d)in BLFQ

xg/10 in BLFQ
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[arXiv: 2408.11298]
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Helicity PDF
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Å Small-x region reasonably agrees with global fit/exp. data
Å Narrower peak than global fits

[arXiv: 2408.11298]
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Transversity PDF

Å Narrower peak than global fits
Å Tensor charges: ‏ό πȢψρ πȢπψ, ‏Ὠ πȢςς πȢπρ
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[arXiv: 2408.11298]
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ό and Ὠ Quark GPDs at ‚ π

Å Contributions from all Fock sectors

Å Achieved qualitative features compared to various models 
19


