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Duality, confinement, gravity

(Electromagnetic) duality and confinement are often interrelated,
especially in supersymmetric Yang-Mills theories.

Seiberg & Witten (1994)

Patterns of duality invariance were observed in the late 1970s in
extended supergravity.

Ferrara, Scherk & Zumino (1977)
Cremmer & Julia (1979)

This triggered research into general aspects of duality invariance.



Impact of supergravity on theoretical physics

Realisation of Einstein’s dream to unify gravity & electromagnetism
(1976, N = 2 supergravity).

New types of gauge theories (compared with Yang-Mills theories):
1 open gauge algebra; and/or
2 linearly dependent gauge generators (e.g., gauge p-forms in

d > p > 1 dimensions).

New quantisation methods (standard Faddeev-Popov approach is
not applicable), including the Batalin-Vilkovisky formalism.

New types of anomalies (e.g., superconformal anomalies).

Modern Kaluza-Klein theories.

Renaissance of electromagnetic duality (nonlinear self-duality).

Gauge/gravity duality (AdS/CFT).

This talk is mainly devoted to deformations of U(1) duality-invariant
models for nonlinear electrodynamics and their six-dimensional
counterparts – interacting chiral form field theories, specifically:
New surprising results concerning these old subjects.
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Electromagnetic duality: Maxwell’s theory

Maxwell’s electrodynamics is the simplest and oldest example of a
duality-invariant theory in four spacetime dimensions.

LMaxwell(F ) = −1

4
F abFab =

1

2

(
E⃗ 2 − B⃗2

)
, Fab = ∂aAb − ∂bAa

The Bianchi identity and the equation of motion are

∂bF̃ab = 0 , ∂bFab = 0

with F̃ab := 1
2 εabcd F

cd the Hodge dual of F .

Since both differential equations have the same functional form, one
may consider so-called duality rotations

F + iF̃ → eiφ
(
F + iF̃

)
⇐⇒ E⃗ + iB⃗ → eiφ

(
E⃗ + iB⃗

)
, φ ∈ R

Lagrangian LMaxwell(F ) changes, but the energy-momentum tensor

T ab =
1

2

(
F + iF̃

)ac(
F − iF̃

)bd
ηcd = F acF bdηcd − 1

4
ηabF cdFcd

is invariant under U(1) duality transformations.



Electromagnetic duality: Born-Infeld theory

In 1934, Born & Infeld put forward a particular model for
nonlinear electrodynamics

LBI(F ) =
1

g2

{
1−

√
− det(ηab + gFab)

}
= −1

4
F abFab +O(F 4)

as a new fundamental theory of the electromagnetic field (with g
the coupling constant).

In 1935, Schrödinger showed that the Born-Infeld theory possessed
invariance under generalised U(1) duality rotations.

Although the great expectations of Born and Infeld never came true,
the Born-Infeld action has re-appeared in the spotlight since the
1980’s as a low-energy effective action in string theory.

Fradkin & Tseytlin (1985)
D-branes Polchinski (1995)



Born-Infeld action, duality and supersymmetry

There exist deep and mysterious connections between nonlinear duality
invariance and supersymmetry.

Maxwell-Goldstone multiplet model for partial N = 2 → N = 1
supersymmetry breakdown in M4

[Bagger & Galperin, 1996; Roček & Tseytlin, 1999]
1 is N = 1 supersymmetric extension of Born-Infeld action

[Cecotti & Ferrara, 1987]
2 is invariant under U(1) supersymmetric duality rotations.

[Brace, Morariu & Zumino, 1999; SMK & Theisen, 2000]

Maxwell-Goldstone multiplet model for partial N = 2 → N = 1
SUSY breaking for curved maximally SUSY backgrounds:
(i) R× S3; (ii) AdS3 × R; and (iii) pp-wave spacetime

[SMK & Tartaglino-Mazzucchelli, 2016]
with analogous properties.

There exist only five maximally supersymmetric backgrounds in d = 4:
[Festuccia & Seiberg, 2011]

(i) M4; (ii) AdS4; (iii) R×S3; (iv) AdS3×R; and (v) pp-wave spacetime.



Duality invariance and supersymmetry

AdS/CFT correspondence provides the main evidence to believe in self-duality of
the low-energy effective action for the N = 4 SU(N) SYM theory on its
Coulomb branch where the gauge group SU(N) is spontaneously broken to
SU(N − 1)× U(1).

It predicts the N = 4 SYM effective action (in the large-N limit) is related to
the D3-brane action in AdS5 × S5

S = T3

∫
d4x

(
h−1 −

√
− det(gmn + Fmn)

)
,

gmn = h−1/2ηmn + h1/2 ∂mX
I∂nX

I , h =
Q

(X IX I )2
,

where X I , I = 1, · · · , 6, are transverse coordinates, T3 = (2πgs)−1 and
Q = gs(N − 1)/π.

The action S/T3 possesses (deformed) conformal symmetry and is self-dual in
the sense that it enjoys invariance under electromagnetic U(1) duality rotations.

Self-duality of D3-brane action is a fundamental property related to the S-duality
of type IIB string theory.

Tseytlin (1996), Green & Gutperle (1996)



Electromagnetic duality: Nonlinear electrodynamics

General theory of duality invariance in four dimensions
Gaillard & Zumino (1981)
Gibbons & Rasheed (1995)
Gaillard & Zumino (1997)

General theory of duality invariance in higher dimensions
Gibbons & Rasheed (1995)

Araki &Tanii (1999)
Aschieri, Brace, Morariu & Zumino (2000)

General theory of duality invariance for N = 1 and N = 2
supersymmetric nonlinear electrodynamics

SMK & Theisen (2000)
Partial SUSY breaking often implies U(1) duality invariance.

Remarkable reformulation of duality-invariant nonlinear
electrodynamics (manifest duality-invariant self-interaction).

Ivanov & Zupnik (2001)



U(1) duality in nonlinear electrodynamics

Nonlinear electrodynamics (effective field theory)

L(Fab) = −1

4
F abFab +O(F 4)

Using the definition

G̃ab(F ) :=
1

2
εabcd G

cd(F ) = 2
∂L(F )

∂F ab
, G (F ) = F̃ +O(F 3),

the Bianchi identity (BI) and the equation of motion (EoM) read

∂bF̃ab = 0 , ∂bG̃ab = 0 .

The same functional form of BI and EoM provides a rationale to
introduce a duality transformation(

G ′(F ′)
F ′

)
=

(
a b
c d

) (
G (F )
F

)
,

(
a b
c d

)
∈ GL(2,R)

For G ′(F ′) one should require

G̃ ′
ab(F

′) = 2
∂L′(F ′)

∂F ′ab

Transformed Lagrangian, L′(F ), always exists.



U(1) duality in nonlinear electrodynamics

The above considerations become nontrivial if the model is required to be
duality invariant (self-dual)

L′(F ) = L(F ) .

The requirement of self-duality implies the following:

Only U(1) duality transformations can consistently be defined in the
nonlinear case.(

G (F ′)
F ′

)
=

(
cosφ − sinφ
sinφ cosφ

) (
G (F )
F

)
Maxwell’s theory also allows scale duality transformations which,
however, are forbidden if the energy-momentum tensor is required to
be duality invariant.

The Lagrangian is a solution of the self-duality equation

G ab G̃ab + F ab F̃ab = 0 , G̃ab(F ) = 2
∂L(F )

∂F ab

Bialynicki-Birula (1983) (remained unnoticed for many years)
Gibbons & Rasheed (1995) Gaillard & Zumino (1997)



Fundamental properties of U(1) duality-invariant models

Duality invariance of the energy-momentum tensor.

SL(2,R) duality invariance in the presence of dilaton and axion.

Self-duality under Legendre transformation.



Duality invariance of the energy-momentum tensor

Given a duality-invariant parameter g in the self-dual theory,
∂L(F , g)/∂g is duality invariant.

δ
∂

∂g
L =

∂

∂g
δL =

1

2
λ
∂

∂g

(
G̃ · G

)
=

1

2
λ
∂

∂g

(
G̃ · G + F̃ · F

)
= 0 ,

since F is g -independent. Gaillard & Zumino (1997)

In particular, the energy-momentum tensor Tab is duality invariant.



Non-compact duality: Coupling to dilaton and axion

Given a U(1) duality-invariant model, L(Fmn) = L(ω, ω̄), its compact duality
group U(1) is enhanced to the non-compact SL(2,R) group by coupling Fab to
dilaton φ and axion a by replacing

L(F ) → L(F , τ, τ̄) = L(e−φ/2 F ) +
1

4
aF · F̃ , τ = a+ i e−φ

Gibbons & Rasheed (1996) Gaillard & Zumino (1997)

The duality group acts by transformations

(
G ′

F ′

)
=

(
a b
c d

)(
G
F

)
, τ ′ =

aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,R)

Maxwell’s theory coupled to the dilaton and axion

L(F , τ, τ̄) = −
1

4
e−φFmnFmn +

1

4
aF̃mnFmn

is Weyl invariant (conformal in flat space), with τ being Weyl inert.
τ & τ̄ local couplings.
Non-minimal operator =⇒ generalised heat kernel techniques.



Non-compact duality and quantum theory

Let Γ(τ, τ̄) be the effective action obtained by integrating out the
gauge field in the path integral.

Both Weyl and rigid SL(2,R) duality transformations are anomalous
at the quantum level. However, the logarithmically divergent part of
Γ(τ, τ̄) is invariant under these transformations.

General structure of the logarithmic divergence of Γ(τ, τ̄)

L =
1

2(Im τ)2

[
D2τD2τ̄ − 2(Rmn −

1

3
gmnR)∇mτ∇n τ̄

]
+

1

12(Im τ)4

[
α∇mτ∇mτ∇n τ̄∇n τ̄ + β∇mτ∇m τ̄∇nτ∇n τ̄

]
where D2τ := ∇m∇mτ + i

Im τ
∇mτ∇mτ , and α and β are numerical parameters.

Osborn (2003)∫
d4x

√
−g L is SL(2,R) invariant.∫

d4x
√
−g L is invariant under Weyl transformations

gmn(x) → e2σ(x)gmn(x) , τ(x) → τ(x)

Contribution to the Weyl anomaly: δσΓ(τ, τ̄) ∝
∫
d4x

√
−g σ L



Self-duality under Legendre transformation

Legendre transformation for nonlinear electrodynamics L(F ).

Associate with L(F ) an equivalent auxiliary model defined by

L(F ,FD) = L(F )− 1

2
F · F̃D , FD

ab = ∂aAD
b − ∂bAD

a ,

in which Fab is an unconstrained two-form (auxiliary field).

Eliminate Fab using its equation of motions G (F ) = FD to yield

LD(FD) :=
(
L(F )− 1

2
F · F̃D

) ∣∣∣
F=F (FD)

.

If L(F ) solves the self-duality equation G · G̃ + F · F̃ = 0, then

LD(F ) = L(F ) .

Self-dual electrodynamics



General structure of self-dual electrodynamics

Given a model for nonlinear electrodynamics, its Lagrangian L(Fab)
can be realised as a real function of one complex variable,

L(Fab) = L(ω, ω̄) , ω = α+ iβ ,

with α = 1
4 F

abFab and β = 1
4 F

abF̃ab the EM invariants.

L(ω, ω̄) = −1

2

(
ω + ω̄

)
+ ω ω̄ Λ(ω, ω̄) .

Self-duality equation (SDE), G · G̃ + F · F̃ = 0, turns into

Im

{
∂(ω Λ)

∂ω
− ω̄

(
∂(ω Λ)

∂ω

)2 }
= 0 .

Assuming Λ(ω, ω̄) to be real analytic at ω = 0 (existence of weak-field limit), the
general solution of SDE involves a real function of one real argument f (ωω̄)

Λ(ω, ω̄) =
∞∑
n=0

∑
p+q=n

cp,q ωpω̄q , cp,q = cq,p ∈ R

SDE uniquely fixes the level-n coefficients cp,q with p ̸= q through those at
lower levels, while cr,r remain undetermined.

Functional freedom: Real function of one real variable.



General structure of self-dual electrodynamics

Omitting the requirement of Λ(ω, ω̄) being real analytic at ω = 0,
new solutions of the self-duality equation become possible.

ModMax theory

LMM(ω, ω̄) = − 1
2

(
ω + ω̄

)
cosh γ +

√
ωω̄ sinh γ ,

ω = α+ iβ , α = 1
4 F

abFab , β = 1
4 F

abF̃ab ,

with γ ≥ 0 a parameter.
Bandos, Lechner, Sorokin & Townsend arXiv:2007.09092

The corresponding Λ(ω, ω̄) is

ΛMM(ω, ω̄) =
sinh γ√
ωω̄

− 1

2

( 1

ω
+

1

ω̄

)
(cosh γ − 1) ,

Unique conformal solution of the self-duality equation.



Formulation with manifestly U(1) invariant interaction

Self-duality equation G · G̃ + F · F̃ = 0 is a nonlinear equation on
the Lagrangian L(F ), and U(1) duality-invariant deformations of
L(F ) are difficult to control.

In 2001, Ivanov & Zupnik proposed a reformulation of nonlinear
electrodynamics with the property that U(1) duality invariance
becomes equivalent to manifest U(1) invariance of the interaction.

Nonlinear twisted self-duality constraint, which was put forward by
Bossard & Nicolai (2011) and by Carrasco, Kallosh & Roiban
(2012), proves to be a variant of the Ivanov-Zupnik formulation.



Formulation with manifestly U(1) invariant interaction

The Ivanov-Zupnik formulation involves an auxiliary (unconstrained)
antisymmetric tensor Vab = −Vba, which is equivalently described by
a symmetric rank-2 spinor Vαβ = Vβα and its conjugate V̄α̇β̇ , where
α, β = 1, 2.
L(Fab) is replaced with a new Lagrangian

L(Fab,Vab) =
1

4
F abFab +

1

2
V abVab − V abFab + Lint(Vab) .

The original Lagrangian L(Fab) is obtained from L(Fab,Vab) by
integrating out the auxiliary variables.
The condition of U(1) duality invariance proves to be equivalent to
the requirement that the self-interaction

Lint(Vab) = Lint(ν, ν̄) , ν := V ab
+ V+ab

V ab
± =

1

2

(
V ab ± iṼ ab

)
, Ṽ± = ∓iV± , V = V+ + V−

is invariant under linear U(1) transformations ν → eiφν, with φ ∈ R,

Lint(ν, ν̄) = Lint(e
iφν, e−iφν̄) =⇒ Lint(ν, ν̄) = h(νν̄) ,

h an arbitrary real function of one real variable (functional freedom).



Conformal duality-invariant electrodynamics

ModMax theory

LMM(ω, ω̄) = − 1
2 cosh γ

(
ω + ω̄

)
+ sinh γ

√
ωω̄ ,

ω = α+ iβ , α = 1
4 F

abFab , β = 1
4 F

abF̃ab ,

with γ ≥ 0 a parameter.
Bandos, Lechner, Sorokin & Townsend arXiv:2007.09092

Derivation of ModMax using the Ivanov-Zupnik approach
SMK arXiv:2106.07173

This unique conformal duality-invariant model corresponds to

Lint(ν, ν̄) = κ
√
νν̄ ,

with κ a coupling constant. Integrating out the auxiliary variables
Vαβ and V̄α̇β̇ leads to LMM(ω, ω̄) with

sinh γ =
κ

1− (κ/2)2
.



TT̄ -like flows in four dimensions

TT̄ deformations of QFTs in two dimensions:

Zamolodchikov (2004)
Smirnov & Zamolodchikov, arXiv:1608.05499
Cavaglià, Negro, Szécsényi &Tateo, arXiv:1608.05534 ......

Remarkably active research direction

In four dimensions, we are forced to work with effective field theories,
hence TT̄ -like flows



TT̄ -like deformations in four dimensions

Two examples of TT̄ -like flows

Born-Infeld theory (λ = g2)

LBI(F ) =
1

λ

{
1−

√
− det(ηab +

√
λFab)

}
=

1

λ

{
1−

√
1 +

λ

2
F 2 − λ2

16
(F F̃ )2

}
It holds that

∂LBI

∂λ
=

1

8

(
T abTab −

1

2
(T a

a)
2
)

ModMax theory

LMM = −1

4
F 2 cosh(γ) +

1

4

√
(F 2)2 +

(
F F̃

)2

sinh(γ)

It holds that (root TT̄ )

∂LMM

∂γ
=

1

2

√
T abTab −

1

4
(T a

a)2 =
1

2

√
T abTab

Can the above results be manifestations of a general pattern?



TT̄ -like deformations

Ferko, SMK, Smith & Tartaglino-Mazzucchelli (2023)
Consider a U(1) duality-invariant theory with Lagrangian L(F ). An
observable O(F ) is duality invariant if it obeys the equation

∂O
∂Fab

Gab = 0 , δϕFab = φGab(F )

Theorem 1: Any two duality-invariant observables O1(F ) and O2(F )
prove to be functionally dependent,

Υ(O1,O2) = 0

Theorem 2: Every duality-invariant observable O(F ) is as a function
of the energy-momentum tensor, O = f (Tab).

Corollary: Given a one-parameter family of U(1) duality-invariant
theories, L(F , g), Lagrangian obeys TT̄ -like flow equation

∂

∂g
L = S(Tab) .



TT̄ -like deformations in four dimensions

Consider a one-parameter family of theories L(λ)(F ) satisfying the
differential equation and boundary condition

∂L(λ)(F )

∂λ
:= O(λ)(F ) = O(F ;λ) , L(0)(F ) = L(F ) ,

with O(λ)(F ) being a duality-invariant function,

∂O(λ)

∂Fab
G

(λ)
ab (F ) = 0

If the Lagrangian L(F ) describes a U(1) duality-invariant theory satisfying

G ab G̃ab + F ab F̃ab = 0 ,

then all theories associated with the Lagrangians L(λ)(F ) are duality
invariant.



TT̄ -like flows for gauge (2n − 1)-forms in 4n dimensions

The Gaillard-Zumino-Gibbons-Rasheed formalism for nonlinear
electrodynamics in d = 4 was extended to d = 4n dimensions,
n > 1, in the late 1990s.

Gibbons & Rasheed (1995), Araki & Tanii (1999)

In a curved space M4n, a self-interacting theory of a gauge p-form
Aµ1...µp (for p = 2n − 1) such that its Lagrangian, L = L(F ), is a
function of the field strength Fµ1...µp+1 = (p + 1)∂[µ1

Aµ2...µp+1].

In order for this theory to possess U(1) duality invariance, its
Lagrangian must satisfy the self-duality equation

Gµ1...µp+1 G̃µ1...µp+1 + Fµ1...µp+1 F̃µ1...µp+1 = 0 ,

with G̃µ1...µp+1(F ) = (p + 1)!∂L(F )/∂Fµ1...µp+1

Every solution of the self-duality equation defines a U(1)
duality-invariant theory. Infinitesimal U(1) duality transformation is

δ

(
G
F

)
=

(
0 −φ
φ 0

)(
G
F

)
, φ ∈ R



TT̄ -like flows for gauge (2n − 1)-forms in 4n dimensions

Duality-invariant observable O(F )

∂O(F )

∂Fµ1...µp+1

Gµ1...µp+1 = 0 .

Such observables generate consistent flows in the space of field
theories describing the dynamics of self-interacting gauge p-forms.

Let L(γ)(F ) and O(γ)(F ) be two scalar functions that depend on a
real parameter γ and satisfy the following conditions:

1 L(γ) and O(γ) obey the equations

∂

∂γ
L(γ) = O(γ) ,

∂O(γ)(F )

∂Fµ1...µp+1

G (γ)
µ1...µp+1

= 0 .

2 L(F ) ≡ L(0)(F ) is a solution of the self-duality equation.

Then L(γ)(F ) is a solution of the self-duality equation ∀γ.
In the n > 1 case, we do not yet know whether all flows of self-dual
theories are generated by the energy-momentum tensor.



Deformations of chiral two-form gauge theories in d = 6

d = 6 counterparts of U(1) duality-invariant models for nonlinear
electrodynamics are interacting chiral two-form gauge theories.

PST formulation for chiral two-forms in six dimensions
Pasti, Sorokin & Tonin (1996, 1997)

Every deformation of interacting chiral two-form gauge theory is
generated by the energy-momentum tensor.

Ferko, SMK, Lechner, Sorokin & Tartaglino-Mazzucchelli (2024)
Some technical details are provided below.



TT̄ -like flows for chiral 2n-forms in 4n + 2 dimensions

PST formulation for chiral p-forms in 4n + 2 ≡ 2p + 2 dimensions
Pasti, Sorokin & Tonin (1996, 1997)
Buratti, Lechner and Melotti (2019)

Aµ(p) = Aµ1...µp is a gauge p-form potential on a time orientable

spacetime Md with metric gµν , and

Fµ(p+1) = (p + 1)∂[µ1
Aµ2...µp+1]

its gauge-invariant field strength.

Introduce a normalized timelike vector field vµ,

vµvµ = −1 .

Its existence is guaranteed on (Md , gµν).

Associate with Fµ(p+1) the electric field

Eµ(p) = Fµ1...µpνv
ν , Eµ1...µp−1σv

σ = 0 ,

and the magnetic field

Bµ(p) = F̃µ1...µpνv
ν , Bµ1...µp−1σv

σ = 0 ,
˜̃
F = F



TT̄ -like flows for chiral 2n-forms in 4n + 2 dimensions

Action functional

S [A, a] =

∫
ddx

√
−g

[
1

2p!
E · B −H(Bµ(p), gµν)

]
, vµ =

∂µa√
−∂a · ∂a

Existence of a scalar field a(x), such that vµ is past directed and
timelike, is guaranteed on every globally hyperbolic spacetime.

The scalar function H(Bµ(d), gµν) must satisfy a differential
condition in order for S [A, a] to be invariant under PST gauge
transformations (see below). Defining the derivative of H by

δBH(B, g) =
1

p!
δBµ1...µpHµ1...µp , Hµ1...µp−1νv

ν = 0 ,

the master equation on H is

B[µ1...µp
Bµp+1...µ2p ] = H[µ1...µp

Hµp+1...µ2p ] ,

Analogue of the self-duality equation in 4n dimensions



TT̄ -like flows for gauge 2n-forms in 4n + 2 dimensions

PST gauge transformations

δAµ(p) = pv[µ1
ψµ2...µp ] , δa = 0 ;

δAµ(p) = − φ√
−∂a∂a

(
Eµ(p) − Hµ(p)

)
, δa = φ .

a(x) is a Stueckelberg field. Useful gauge condition ∂µa = δµ
0.

Gauge freedom associated with the first transformation allows us to
write the equation of motion for A in the form

Eµ(p) − Hµ(p) = 0

Nonlinear self-duality condition



TT̄ -like flows for chiral 2n-forms in 4n + 2 dimensions

Ferko, SMK, Lechner, Sorokin & Tartaglino-Mazzucchelli (2024)

Invariant observable O(Bµ(p), gµν) is a scalar function satisfying the
first-order differential equation

O[µ1...µp
Hµp+1...µ2p ] = 0 .

On the mass shell such quantities are vµ-field independent and
hence Lorentz (or general coordinate) invariant.

Suppose the interaction term depends on a parameter γ,

S [A, a; γ] =

∫
ddx

√
−g

[
1

2p!
E · B −H(Bµ(p), gµν ; γ)

]
,

such that H(Bµ(p), gµν ; γ) is a solution of the equation

B[µ1...µp
Bµp+1...µ2p ] = H[µ1...µp

Hµp+1...µ2p ]

for every value of γ. Then

O =
∂

∂γ
H(B, g ; γ)

is an invariant observable.



TT̄ -like flows for chiral 2n-forms in 4n + 2 dimensions

Let H(γ)(Bµ(p), gµν) and O(γ)(Bµ(p), gµν) be two scalar functions that
depend on a real parameter γ and satisfy the following conditions:

H(γ) and O(γ) obey the equations

∂

∂γ
H(γ) = O(γ) , O(γ)

[µ1...µp
H

(γ)
µp+1...µ2p ]

= 0 ;

H(0)(Bµ(p), gµν) is a solution of

B[µ1...µp
Bµp+1...µ2p ] = H[µ1...µp

Hµp+1...µ2p ]

Then H(γ)(Bµ(p), gµν) is a solution of the master equation at every value
of the parameter γ.

Six-dimensional story (n = 1):

Any two invariant observables O1 and O2 are functionally dependent.

Every invariant observable O proves to be a function of
the energy-momentum tensor, O = f (Tµν).
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