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Figure 5: (a) Tree level W and Z exchange between four fermions. (b) The e↵ective vertex in
the low energy e↵ective theory (Fermi interaction).

This amplitude can be reproduced to lowest order in q2/M2
W by a low energy EFT with a

contact interaction, Fig. 5,

LF = � e2

sin2 ✓wM2
W

Jµ
�Jµ+ =

8p
2
GFJµ

�Jµ+ , (72)

GF ⌘
p

2

8

e2

sin2 ✓wM2
W

= 1.166 ⇥ 10�5 GeV2 . (73)

This is our matching condition, analogous to the matching we did for �-function scattering
in order to reproduce the low energy behavior of square well scattering. This charged
current interaction, written in terms of leptons and nucleons instead of leptons and quarks,
was postulated by Fermi to explain neutron decay; the 8/

p
2 numerical factor looks funny

here because I am normalizing the currents in the way they appear in the SM, while weak
currents are historically (pre-SM) normalized di↵erently. Neutral currents were proposed
in the 60’s and discovered in the 70’s.

Since the four-fermion Fermi interaction has dimension 6, it is an irrelevant interaction,
according to our previous discussion, explaining why we say the interactions are “weak”
and neutrinos are “weakly interacting”. Consider, for example, some low energy neutrino
scattering cross section �. Since neutrinos only interact via W and Z exchange, the cross-
section � must be proportional to G2

F which has dimension �4. But a cross section has
dimensions of area, or mass dimension �2. Since the only other scale around is the center
of mass energy

p
s, on purely dimensional grounds � must scale with energy as

�⌫ ' G2
F s , (74)

This explains why low energy neutrinos are so hard to detect, and the weak interactions
are weak; at LHC energies, however, where the e↵ective field theory has broken down, the
weak interactions are marginal and characterized by the SU(2) coupling constant g ' 0.6,
about twice as strong as the electromagnetic coupling. It is a simple result for which one
does not need the full machinery of the SM to derive.

It looks like the neutrino cross section grows with s without bound, but remember that
this EFT is only valid up to s ' MW .

2.1.2 Dimensional analysis: the blue sky

Another top-down application of EFT is to answer the question of why the sky is blue. More
precisely, why low energy light scattering from neutral atoms in their ground state (Rayleigh
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a phenomenological modification of QED to account for neutron decay. Now we have the
SM, and so we think of the Fermi theory as a “top-down” EFT: not necessary for doing
calculations since we have the SM, but very practical for processes at energies far below
the W mass, such as �-decay (Fermi’s original application of his theory) and low energy
neutral current scattering due to Z exchange (about which Fermi knew nothing).

The weak interactions refer to processes mediated by the W± or Z0 bosons, whose
masses are approximately 80 GeV and 91 GeV respectively. The couplings of these gauge
bosons to quarks and leptons can be written in terms of the electromagnetic current

jµem =
2

3
ūi�

µui �
2

3
di�

µdi � ei�
µei (64)

where i = 1, 2, 3 runs over families, and the left-handed SU(2) currents

jµa =
X
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where the  , fields in the currents are either the lepton doublets
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◆
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or the quark doublets
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u
d0

◆
,

✓
c
s0

◆
,

✓
t
b0

◆
, (67)

with the “flavor eigenstates” d0, s0 and b0 being related to the mass eigenstates d, s and b
by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix3:

q0i = Vijqj . (68)

The SM coupling of the heavy gauge bosons to these currents is

LJ =
e

sin ✓w
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� + W�
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+
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(69)

where

Jµ
± =

jµ1 ⌥ i jµ2p
2

. (70)

Tree level exchange of a W boson then gives the amplitude at low momentum exchange

iA =

✓
�i

e

sin ✓w

◆2

Jµ
�J⌫+

�igµ⌫
q2 � M2

W

= �i
e2
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✓
q2

M2
W

◆
. (71)

3The elements of the CKM matrix are named after which quarks they couple through the charged current,
namely V11 ⌘ Vud, V12 ⌘ Vus, V21 ⌘ Vcd, etc.
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the low energy e↵ective theory (Fermi interaction).
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in a consistent quantum mechanical theory must respect the unitarity of the
S matrix, which is equivalent to the conservation of total probability. This
implies that no amplitude can indefinitely grow with energy. The reaction
which best exemplifies the relationship between unitarity and EWSB is the
scattering among longitudinally polarized vector bosons. The Feynman dia-
grams for W+W− → W+W− are shown in Fig.(8.1). The polarization vectors
of a transversely/longitudinally (T/L) polarized W boson traveling along the
ẑ axis are:

ϵT =
(

0;± 1√
2
,
−i√

2

)
ϵL =

1
MW

(
|⃗k|; 0, 0, EW

)
k⃗//ẑ (8.1)

so that for EW ≫ MW ϵµ
L = kµ/MW + O(M2

W /E2
W ). Therefore

ϵW+

L · ϵW−

L ≈ kW+ · kW−

m2
W

=
s

2m2
W

(8.2)

and the leading behaviour of each diagram Di in the top row of Fig.(8.1) is:

Di ∝
kW+ · kW−

m2
W

kW+ · kW−

m2
W

=
s2

4m4
W

(8.3)

However the terms proportional to s2 cancel when we sum the five diagrams
in the top row, leaving an amplitude proportional to s. This unacceptable
behaviour is canceled by the sum of the two Higgs exchange diagrams leaving
an amplitude which tends to a constant in the high energy limit.

Figure 8.1: Vector boson scattering process.

The linear rise with s of the WW scattering amplitude in the absence
of the Higgs, which is predicted by the Low Energy Theorem (LET) 8),is
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in a consistent quantum mechanical theory must respect the unitarity of the
S matrix, which is equivalent to the conservation of total probability. This
implies that no amplitude can indefinitely grow with energy. The reaction
which best exemplifies the relationship between unitarity and EWSB is the
scattering among longitudinally polarized vector bosons. The Feynman dia-
grams for W+W− → W+W− are shown in Fig.(8.1). The polarization vectors
of a transversely/longitudinally (T/L) polarized W boson traveling along the
ẑ axis are:
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and the leading behaviour of each diagram Di in the top row of Fig.(8.1) is:
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kW+ · kW−
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=
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(8.3)

However the terms proportional to s2 cancel when we sum the five diagrams
in the top row, leaving an amplitude proportional to s. This unacceptable
behaviour is canceled by the sum of the two Higgs exchange diagrams leaving
an amplitude which tends to a constant in the high energy limit.

Figure 8.1: Vector boson scattering process.

The linear rise with s of the WW scattering amplitude in the absence
of the Higgs, which is predicted by the Low Energy Theorem (LET) 8),is
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grams for W+W− → W+W− are shown in Fig.(8.1). The polarization vectors
of a transversely/longitudinally (T/L) polarized W boson traveling along the
ẑ axis are:

ϵT =
(

0;± 1√
2
,
−i√

2

)
ϵL =

1
MW

(
|⃗k|; 0, 0, EW

)
k⃗//ẑ (8.1)

so that for EW ≫ MW ϵµ
L = kµ/MW + O(M2

W /E2
W ). Therefore

ϵW+

L · ϵW−

L ≈ kW+ · kW−

m2
W

=
s

2m2
W

(8.2)

and the leading behaviour of each diagram Di in the top row of Fig.(8.1) is:

Di ∝
kW+ · kW−

m2
W

kW+ · kW−

m2
W

=
s2

4m4
W

(8.3)

However the terms proportional to s2 cancel when we sum the five diagrams
in the top row, leaving an amplitude proportional to s. This unacceptable
behaviour is canceled by the sum of the two Higgs exchange diagrams leaving
an amplitude which tends to a constant in the high energy limit.

Figure 8.1: Vector boson scattering process.

The linear rise with s of the WW scattering amplitude in the absence
of the Higgs, which is predicted by the Low Energy Theorem (LET) 8),is
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The Higgs kicks in and cancels the divergence

to a constant



Why should I care about the scale of effective field theories

4

Power Counting

The EFT functional integral is
Z

D� eiS , (4.1)

so that the action S is dimensionless. The EFT action is the integral of a local La-
grangian density

S =

Z
ddx L (x) , (4.2)

(neglecting topological terms), so that in d spacetime dimensions, the Lagrangian
density has mass dimension d,

[L (x)] = d , (4.3)

and is the sum

L (x) =
X

i

ci Oi(x) , (4.4)

of local, gauge invariant, and Lorentz invariant operators Oi with coe�cients ci. The
operator dimension will be denoted by D , and its coe�cient has dimension d� D .

The fermion and scalar kinetic terms are

S =

Z
ddx  ̄ i/@  , S =

Z
ddx

1

2
@µ�@

µ�, (4.5)

so that dimensions of fermion and scalar fields are

[ ] =
1

2
(d� 1), [�] =

1

2
(d� 2). (4.6)

The two terms in the covariant derivative Dµ = @µ + igAµ have the same dimension,
so

[Dµ] = 1, [gAµ] = 1 . (4.7)

The gauge field strength Xµ⌫ = @µA⌫ � @⌫Aµ + . . . has a single derivative of Aµ, so
Aµ has the same dimension as a scalar field. This determines, using eqn (4.7), the
dimension of the gauge coupling g,
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20 Power Counting

� for a scalar,  for a fermion, Xµ⌫ for a field strength, and D for a derivative. For example,
an operator of type �2D such as �Dµ� is not allowed because it is not Lorentz-invariant. An
operator of type �2D2 could be either Dµ�D

µ� or �D2�, so a �2D2 operator is allowed, and
we will worry later about how many independent �2D2 operators can be constructed.

Exercise 4.2 For d = 2, 3, 4, 5, 6 dimensions, work out the field content of operators with
dimension D  d, i.e. the “renormalizable” operators.

4.1 EFT Expansion

The EFT Lagrangian follows the same rules as the previous section, and has an ex-
pansion in powers of the operator dimension

LEFT =
X

D�0,i

c(D)
i O(D)

i

⇤D�d
=

X

D�0

LD

⇤D�d
(4.13)

where O(D)
i are the allowed operators of dimension D . All operators of dimension D

are combined into the dimension D Lagrangian LD . The main di↵erence from the
previous discussion is that one does not stop at D = d, but includes operators of

arbitrarily high dimension. A scale ⇤ has been introduced so that the coe�cients c(D)
i

are dimensionless. ⇤ is the short-distance scale at which new physics occurs, analogous
to 1/a in the multipole expansion example in Sec. 2.2. As in the multipole example,
what is relevant for theoretical calculations and experimental measurements is the
product cD⇤d�D , not cD and ⇤d�D separately. ⇤ is a convenient device that makes it
clear how to organize the EFT expansion.

In d = 4,

LEFT = LD4 +
L5

⇤
+

L6

⇤2
+ . . . (4.14)

LEFT is given by an infinite series of terms of increasing operator dimension. An
important point is that the LEFT has to be treated as an expansion in powers of 1/⇤.
If you try and sum terms to all orders, you violate the EFT power counting rules, and
the EFT breaks down.

4.2 Power Counting and Renormalizability

Consider a scattering amplitude A in d dimensions, normalized to have mass dimen-
sion zero. If one works at some typical momentum scale p, then a single insertion of an
operator of dimension D in the scattering graph gives a contribution to the amplitude
of order

A ⇠

⇣ p

⇤

⌘D�d
(4.15)

by dimensional analysis. The operator has a coe�cient of mass dimension 1/⇤D�d from
eqn (4.13), and the remaining dimensions are produced by kinematic factors such as
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Gravity as an Effective Field Theory

φ′(x′) = φ(x)

A′µ(x′) = Λµ
ν(x)Aν(x) (6)

A covariant derivative can be defined with the right transformation property
(i.e., D′

µAλ = Λ̄ ν
µ Λλ

σDνAσ) by

DµA
λ = ∂µAλ + Γλ

µνA
ν (7)

where the connection Γλ
µν is defined as

Γλ
µν =

1

2
gλσ [∂µgσν + ∂νgσµ − ∂σgµν ] (8)

It is important for the effective theory that the connection involves one deriva-
tive of the metric (Γ ∼ ∂g).

Similarly we can define tensor and scalar fields, the curvatures, which
depend only on two derivatives of the metric

[Dµ, Dν]Aα ≡ Rβ
αµνAβ

Rβ
αµν = ∂µΓβ

αν − ∂νΓ
β
αµ + Γλ

ανΓ
β
λµ − Γλ

αµΓβ
λν

Rαµ ≡ Rλ
αµλ

R ≡ gαµRαµ (9)

The curvature is nonlinear in the field gµν . Despite the similarity to the
construction of the field strength tensor of Yang Mills field theory, there is
the important difference that the curvatures involve two derivatives of the
basic field (R ∼ ∂∂g).

It is easy to construct an action for the matter fields which is invariant
under the general coordinate transformation, simply by modifying the usual
Lagrangian to use covariant derivatives and to raise and lower Lorentz indices
with gµν(x). In addition, if we want the metric to be a dynamical field we
need an action involving derivatives on the metric. The simplest invariant
function is the scalar curvature so that one would postulate

Sg =
∫

d4x
√

g
2

κ2
R (10)

4

The Classical Action for Gravity

with κ2 presently an unknown constant. We will return to this step in the
next section. Variation of the full action leads to Einstein’s Equation

Rµν −
1

2
gµνR = −8πGTµν

√
gT µν ≡ −2

∂

∂gµν
(
√

gLm) (11)

where Lm is the Lagrange density for matter, and T µν is the corresponding
energy momentum tensor, and κ2 ≡ 32πG. By investigating solutions to this
equation, it can be seen to describe Newtonian gravity in the appropriate
limit if G is identified as the Cavendish constant.

In this summary, invariance requirements take precedence over geometri-
cal ideas and indeed the fact that this is a good theory for gravity appears
only at the end of this construction.

We will use a few other facts of general relativity which deserves to be
mentioned in this section. In the weak field limit we can expand the metric
around Minkowski space introducing the dynamical part of the metric as hµν

gµν ≡ ηµν + κhµν (exactly)

gµν = ηµν − κhµν + κ2hµλh ν
λ + . . . (12)

The weak field gauge invariance is given by

x′µ = xµ + ϵµ(x) ϵ << 1

h ′
µν(x

′) = hµν(x) − ∂µϵν − ∂νϵµ (13)

and the curvatures are

Rµν =
κ

2

[

∂µ∂νh
λ
λ + ∂λ∂

λhµν − ∂µ∂λh
λ
ν − ∂λ∂νh

λ
µ

]

+ O(h2)

R = κ
[

✷hλ
λ − ∂µ∂νh

µν
]

+ O(h2) (14)

where indices are raised and lowered with ηµν . This can equally well be done
around any fixed smooth background space time metric.
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Einstein Hilbert Action is a dimension 6 operator with a  cut-off MPl

pμ
3 ¼ ðE3;þp⃗fÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−p⃗fÞ; p2

4 ¼ m2
n4 ; ð54Þ

where p⃗f ≡ jp⃗fjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν%2 ¼ ϵμ%1ϵ
ν
%1; ð55Þ

ϵμν%1 ¼
1ffiffiffi
2

p ½ϵμ%1ϵ
ν
0 þ ϵμ0ϵ

ν
%1'; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0'; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ%1 ¼ % e%iϕ
ffiffiffi
2

p ð0;−cθcϕ % isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

#
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ';

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1

2 ∂ν⟦ĥ
ð0Þ⟧Þ2.

The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡
X

σ∈1
2Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 101, 075013 (2020)

075013-10

pμ
3 ¼ ðE3;þp⃗fÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−p⃗fÞ; p2

4 ¼ m2
n4 ; ð54Þ

where p⃗f ≡ jp⃗fjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν%2 ¼ ϵμ%1ϵ
ν
%1; ð55Þ

ϵμν%1 ¼
1ffiffiffi
2

p ½ϵμ%1ϵ
ν
0 þ ϵμ0ϵ

ν
%1'; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0'; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ%1 ¼ % e%iϕ
ffiffiffi
2

p ð0;−cθcϕ % isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

#
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ';

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1
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Gravity as an Effective Field Theory

φ′(x′) = φ(x)

A′µ(x′) = Λµ
ν(x)Aν(x) (6)

A covariant derivative can be defined with the right transformation property
(i.e., D′

µAλ = Λ̄ ν
µ Λλ

σDνAσ) by

DµA
λ = ∂µAλ + Γλ

µνA
ν (7)

where the connection Γλ
µν is defined as
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2
gλσ [∂µgσν + ∂νgσµ − ∂σgµν ] (8)

It is important for the effective theory that the connection involves one deriva-
tive of the metric (Γ ∼ ∂g).

Similarly we can define tensor and scalar fields, the curvatures, which
depend only on two derivatives of the metric
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ανΓ
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λµ − Γλ
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λν

Rαµ ≡ Rλ
αµλ

R ≡ gαµRαµ (9)

The curvature is nonlinear in the field gµν . Despite the similarity to the
construction of the field strength tensor of Yang Mills field theory, there is
the important difference that the curvatures involve two derivatives of the
basic field (R ∼ ∂∂g).

It is easy to construct an action for the matter fields which is invariant
under the general coordinate transformation, simply by modifying the usual
Lagrangian to use covariant derivatives and to raise and lower Lorentz indices
with gµν(x). In addition, if we want the metric to be a dynamical field we
need an action involving derivatives on the metric. The simplest invariant
function is the scalar curvature so that one would postulate

Sg =
∫

d4x
√

g
2

κ2
R (10)

4

The Classical Action for Gravity

with κ2 presently an unknown constant. We will return to this step in the
next section. Variation of the full action leads to Einstein’s Equation

Rµν −
1

2
gµνR = −8πGTµν

√
gT µν ≡ −2

∂

∂gµν
(
√

gLm) (11)

where Lm is the Lagrange density for matter, and T µν is the corresponding
energy momentum tensor, and κ2 ≡ 32πG. By investigating solutions to this
equation, it can be seen to describe Newtonian gravity in the appropriate
limit if G is identified as the Cavendish constant.

In this summary, invariance requirements take precedence over geometri-
cal ideas and indeed the fact that this is a good theory for gravity appears
only at the end of this construction.

We will use a few other facts of general relativity which deserves to be
mentioned in this section. In the weak field limit we can expand the metric
around Minkowski space introducing the dynamical part of the metric as hµν
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where indices are raised and lowered with ηµν . This can equally well be done
around any fixed smooth background space time metric.
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7

s5 s4 s3 s2

Mcontact �
2r7

c
[7+c2✓ ]s

2
✓

3072n8⇡

2r5
c
[63�196c2✓+5c4✓ ]

9216n6⇡

2r3
c
[�185+692c2✓+5c4✓ ]

4608n4⇡
�

2rc[5+47 c2✓ ]
72n2⇡

M2n
2r7

c
[7+c2✓ ]s

2
✓

9216n8⇡

2r5
c
[�13+c2✓ ]s

2
✓

1152n6⇡

2r3
c
[97+3 c2✓ ]s

2
✓

1152n4⇡
2rc[�179+116c2✓�c4✓ ]

1152n2⇡

M0
2r7

c
[7+c2✓ ]s

2
✓

4608n8⇡

2r5
c
[�9+140c2✓�3c4✓ ]

9216n6⇡

2r3
c
[15�270c2✓�c4✓ ]

2304n4⇡
2rc[175+624 c2✓+c4✓ ]

1152n2⇡

Mradion 0 0 �
2r3

c
s2
✓

64n4⇡
2rc[7+c2✓ ]

96n2⇡

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) ! (n, n) 5DOT amplitude, where ✓ is the center-of-mass scattering angle and (cn✓, sn✓) =

(cosn✓, sinn✓).

expand the diagrams and total matrix element in s, and
label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
agator 2n and the massless graviton are presented after
summing up the s, t and u channel diagrams. At O(s5)
and O(s4), the contact diagrams along with the massive
2n state and the massless graviton state cancel each other
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3 and s
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M
(1)

=
xklmn

2

256⇡rc
[7 + cos(2✓)] csc2 ✓ (53)

where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,

M
(1)(✓) =

32

256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,
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J

�a�b!�c�d
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1

32⇡2
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d⌦ D

J

�i�f
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The amplitude grows as 

pμ
3 ¼ ðE3;þp⃗fÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−p⃗fÞ; p2

4 ¼ m2
n4 ; ð54Þ

where p⃗f ≡ jp⃗fjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν%2 ¼ ϵμ%1ϵ
ν
%1; ð55Þ

ϵμν%1 ¼
1ffiffiffi
2

p ½ϵμ%1ϵ
ν
0 þ ϵμ0ϵ

ν
%1'; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0'; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ%1 ¼ % e%iϕ
ffiffiffi
2

p ð0;−cθcϕ % isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

#
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ';

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1

2 ∂ν⟦ĥ
ð0Þ⟧Þ2.

The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡
X

σ∈1
2Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,
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Consistent with semi-classical  gravity

+
1

2
∂α

[

hαβ (∂νhµβ + ∂µhνβ)
]

(20)

with h ≡ hλ
λ. In this form only the first term contributes to the forward

matrix element of a physical transverse traceless mode.

3 Classical Effective Field Theory

Let us revisit a crucial step in the derivation of general relativity. What
is the rationale for choosing the gravitational action proportional to R and
only R? It is not due to any symmetry and, unlike other theories, cannot be
argued on the basis of renormalizability. However physically the curvature is
small so that in most applications R2 terms would be yet smaller. This leads
to a rationale based on classical effective field theory.

There are in fact infinitely many terms allowed by general coordinate
invariance, i.e.,

S =
∫

d4x
√

g
{

Λ +
2

κ2
R + c1R

2 + c2RµνR
µν + . . . + Lmatter

}

(21)

Here the gravitational Lagrangians have been ordered in a derivative expan-
sion with Λ being of order ∂0, R of order ∂2, R2 and RµνRµν of order ∂4 etc.
Note that in four dimensions we do not need to include a term RµναβRµναβ

as the Gauss Bonnet theorem allows this contribution to the action to be
written in terms of R2 and RµνRµν .

The first term in Eq.21 , i.e., Λ, is related to the cosmological constant,
λ = −8πGΛ, with Einstein’s equation becoming

Rµν −
1

2
gµνR = −8πGTµν − λgµν (22)

This is a term which in principle should be included, but cosmology bounds
| λ |< 10−56cm−2, | Λ |< 10−46GeV 4 so that this constant is unimportant at
ordinary energies[8]. We then set Λ = 0 from now on.

In contrast, the R2 terms are able to be shown to be unimportant in a
natural way. Let us drop Lorentz indices in order to focus on the important
elements, which are the numbers of derivatives. A R + R2 Lagrangian
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Gravity as an Effective Field Theory : Diffeomorphism and Mass Terms

Diffeomorphism  :

the same argument applies exactly and the Einstein–Hilbert term appears naturally as the unique
kinetic term free of any ghost-like instability. This is possible thanks to a symmetry which projects
out all unwanted dofs, namely di↵eomorphism invariance (linear di↵s at the linearized level, and
non-linear di↵s/general covariance at the non-linear level).

2.2.1 Einstein–Hilbert kinetic term

We consider a symmetric Lorentz tensor field hµ⌫ . The kinetic term can be decomposed into four
possible local contributions (assuming Lorentz invariance and ignoring terms which are equivalent
upon integration by parts):

Lspin�2
kin =

1

2
@↵hµ⌫

�
b1@↵hµ⌫ + 2b2@(µh⌫)↵ + b3@↵h⌘µ⌫ + 2b4@(µh⌘⌫)↵

�
, (2.32)

where b1,2,3,4 are dimensionless coe�cients which are to be determined in the same way as for the
vector field. We split the 10 components of the symmetric tensor field hµ⌫ into a transverse tensor
hT

µ⌫
(which carries 6 components) and a vector field �µ (which carries 4 components),

hµ⌫ = hT

µ⌫
+ 2@(µ�⌫) . (2.33)

Just as in the case of the spin-1 field, an arbitrary kinetic term of the form (2.32) with untuned
coe�cients bi would contain higher derivatives for �µ which in turn would imply a ghost. As we
shall see below, avoiding a ghost within the kinetic term automatically leads to gauge-invariance.
After substitution of hµ⌫ in terms of hT

µ⌫
and �µ, the potentially dangerous parts are

Lspin�2
kin � (b1 + b2)�

µ22�µ + (b1 + 3b2 + 2b3 + 4b4)�
µ2@µ@⌫�

⌫ (2.34)

�2hTµ⌫
�
(b2 + b4)@µ@⌫@↵�

↵ + (b1 + b2)@µ2�µ

+ (b3 + b4)2@↵�
↵ ⌘µ⌫

�
.

Preventing these higher derivative terms from arising sets

b4 = �b3 = �b2 = b1 , (2.35)

or in other words, the unique (local and Lorentz-invariant) kinetic term one can write for a spin-2
field is the Einstein–Hilbert term

Lspin�2
kin = �1

4
hµ⌫ Ê↵�

µ⌫
h↵� = �1

4
hTµ⌫ Ê↵�

µ⌫
hT

↵�
, (2.36)

where Ê is the Lichnerowicz operator

Ê↵�

µ⌫
h↵� = �1

2

⇣
2hµ⌫ � 2@(µ@↵h

↵

⌫) + @µ@⌫h� ⌘µ⌫(2h� @↵@�h
↵�)

⌘
, (2.37)

and we have set b1 = �1/4 to follow standard conventions. As a result, the kinetic term for the
tensor field hµ⌫ is invariant under the following gauge transformation,

hµ⌫ ! hµ⌫ + @(µ⇠⌫) . (2.38)

We emphasize that the form of the kinetic term and its gauge invariance is independent on whether
or not the tensor field has a mass, (as long as we restrict ourselves to a local and Lorentz-invariant
kinetic term). However just as in the case of a massive vector field, this gauge invariance cannot
be maintained by a mass term or any other self-interacting potential. So only in the massless case,
does this symmetry remain exact. Out of the 10 components of a tensor field, the gauge symmetry
removes 2⇥4 = 8 of them, leaving a massless tensor field with only two propagating dofs as is well
known from the propagation of gravitational waves in four dimensions.

In d � 3 spacetime dimensions, gravitational waves have d(d+1)/2�2d = d(d�3)/2 independent
polarizations. This means that in three dimensions there are no gravitational waves and in five
dimensions they have five independent polarizations.
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Equivalent to transformation for Gauge Theories

D.O.F counting in d dimensions 
for the massless gauge boson d-2

after integrating out the Lagrange multiplier1 �̃ ⌘ 22�. We can now perform the change of
variables � = �1+�2 and �̃ = �1��2 giving the resulting Lagrangian for the two scalar fields �1,2

L�

kin = (a1 + a2)

✓
�12�1 � �22�2 �

1

4
(�1 � �2)

2

◆
. (2.8)

As a result, the two scalar fields �1,2 always enter with opposite kinetic terms, signaling that one
of them is always a ghost2. The only way to prevent this generic pathology is to make the specific
choice a1 + a2 = 0, which corresponds to the well-known Maxwell kinetic term.

Helicity-1 mode and gauge symmetry

Now that the form of the local and covariant kinetic term has been uniquely established by the
requirement that no ghost rides on top of the helicity-0 mode, we focus on the remaining transverse
mode A?

µ
,

Lhelicity�1
kin = a1

�
@µA

?
⌫

�2
, (2.9)

which has the correct normalization if a1 = �1/2. As a result, the only possible local kinetic term
for a spin-1 field is the Maxwell one:

Lspin�1
kin = �1

4
F 2
µ⌫

(2.10)

with Fµ⌫ = @µA⌫ � @⌫Aµ. Restricting ourselves to a massless spin-1 field, (with no potential and
other interactions), the resulting Maxwell theory satisfies the following U(1) gauge symmetry:

Aµ ! Aµ + @µ⇠ . (2.11)

This gauge symmetry projects out two of the naive four degrees of freedom. This can be seen at
the level of the Lagrangian directly, where the gauge symmetry (2.11) allows us to fix the gauge
of our choice. For convenience, we perform a (3 + 1)-split and choose Coulomb gauge @iAi = 0,
so that only two dofs are present in Ai, i.e., Ai contains no longitudinal mode, Ai = At

i
+ @iAl,

with @iAt

i
= 0 and the Coulomb gauge sets the longitudinal mode Al = 0. The time-component

A0 does not exhibit a kinetic term,

Lspin�1
kin =

1

2
(@tAi)

2 � 1

2
(@iA

0)2 � 1

4
(@iAj)

2 , (2.12)

and appears instead as a Lagrange multiplier imposing the constraint

@i@
iA0 ⌘ 0 . (2.13)

The Maxwell action has therefore only two propagating dofs in At

i
,

Lspin�1
kin = �1

2
(@µA

t

i
)2 . (2.14)

To summarize, the Maxwell kinetic term for a vector field and the fact that a massless vector field
in four dimensions only propagates 2 dofs is not a choice but has been imposed upon us by the
requirement that no ghost rides along with the helicity-0 mode. The resulting theory is enriched
by a U(1) gauge symmetry which in turn freezes the helicity-0 mode when no mass term is present.
We now ‘promote’ the theory to a massive vector field.

1 The equation of motion with respect to � gives 2�̃ = 0, however this should be viewed as a dynamical relation
for �̃, which should not be plugged back into the action. On the other hand, when deriving the equation of motion
with respect to �̃, we obtain a constraint equation for �̃: �̃ = 22� which can be plugged back into the action (and
� is then treated as the dynamical field).

2 This is already a problem at the classical level, well before the notion of particle needs to be defined, since clas-
sical configurations with arbitrarily large �1 can always be constructed by compensating with a large configuration
for �2 at no cost of energy (or classical Hamiltonian).
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Diffeomorphism  :

the same argument applies exactly and the Einstein–Hilbert term appears naturally as the unique
kinetic term free of any ghost-like instability. This is possible thanks to a symmetry which projects
out all unwanted dofs, namely di↵eomorphism invariance (linear di↵s at the linearized level, and
non-linear di↵s/general covariance at the non-linear level).

2.2.1 Einstein–Hilbert kinetic term

We consider a symmetric Lorentz tensor field hµ⌫ . The kinetic term can be decomposed into four
possible local contributions (assuming Lorentz invariance and ignoring terms which are equivalent
upon integration by parts):

Lspin�2
kin =

1

2
@↵hµ⌫

�
b1@↵hµ⌫ + 2b2@(µh⌫)↵ + b3@↵h⌘µ⌫ + 2b4@(µh⌘⌫)↵

�
, (2.32)

where b1,2,3,4 are dimensionless coe�cients which are to be determined in the same way as for the
vector field. We split the 10 components of the symmetric tensor field hµ⌫ into a transverse tensor
hT

µ⌫
(which carries 6 components) and a vector field �µ (which carries 4 components),

hµ⌫ = hT

µ⌫
+ 2@(µ�⌫) . (2.33)

Just as in the case of the spin-1 field, an arbitrary kinetic term of the form (2.32) with untuned
coe�cients bi would contain higher derivatives for �µ which in turn would imply a ghost. As we
shall see below, avoiding a ghost within the kinetic term automatically leads to gauge-invariance.
After substitution of hµ⌫ in terms of hT

µ⌫
and �µ, the potentially dangerous parts are

Lspin�2
kin � (b1 + b2)�

µ22�µ + (b1 + 3b2 + 2b3 + 4b4)�
µ2@µ@⌫�

⌫ (2.34)

�2hTµ⌫
�
(b2 + b4)@µ@⌫@↵�

↵ + (b1 + b2)@µ2�µ

+ (b3 + b4)2@↵�
↵ ⌘µ⌫

�
.

Preventing these higher derivative terms from arising sets

b4 = �b3 = �b2 = b1 , (2.35)

or in other words, the unique (local and Lorentz-invariant) kinetic term one can write for a spin-2
field is the Einstein–Hilbert term

Lspin�2
kin = �1

4
hµ⌫ Ê↵�

µ⌫
h↵� = �1

4
hTµ⌫ Ê↵�

µ⌫
hT

↵�
, (2.36)

where Ê is the Lichnerowicz operator

Ê↵�

µ⌫
h↵� = �1

2

⇣
2hµ⌫ � 2@(µ@↵h

↵

⌫) + @µ@⌫h� ⌘µ⌫(2h� @↵@�h
↵�)

⌘
, (2.37)

and we have set b1 = �1/4 to follow standard conventions. As a result, the kinetic term for the
tensor field hµ⌫ is invariant under the following gauge transformation,

hµ⌫ ! hµ⌫ + @(µ⇠⌫) . (2.38)

We emphasize that the form of the kinetic term and its gauge invariance is independent on whether
or not the tensor field has a mass, (as long as we restrict ourselves to a local and Lorentz-invariant
kinetic term). However just as in the case of a massive vector field, this gauge invariance cannot
be maintained by a mass term or any other self-interacting potential. So only in the massless case,
does this symmetry remain exact. Out of the 10 components of a tensor field, the gauge symmetry
removes 2⇥4 = 8 of them, leaving a massless tensor field with only two propagating dofs as is well
known from the propagation of gravitational waves in four dimensions.

In d � 3 spacetime dimensions, gravitational waves have d(d+1)/2�2d = d(d�3)/2 independent
polarizations. This means that in three dimensions there are no gravitational waves and in five
dimensions they have five independent polarizations.

13

D.O.F counting in d dimensions 
for the massless graviton 

the same argument applies exactly and the Einstein–Hilbert term appears naturally as the unique
kinetic term free of any ghost-like instability. This is possible thanks to a symmetry which projects
out all unwanted dofs, namely di↵eomorphism invariance (linear di↵s at the linearized level, and
non-linear di↵s/general covariance at the non-linear level).

2.2.1 Einstein–Hilbert kinetic term

We consider a symmetric Lorentz tensor field hµ⌫ . The kinetic term can be decomposed into four
possible local contributions (assuming Lorentz invariance and ignoring terms which are equivalent
upon integration by parts):

Lspin�2
kin =

1

2
@↵hµ⌫

�
b1@↵hµ⌫ + 2b2@(µh⌫)↵ + b3@↵h⌘µ⌫ + 2b4@(µh⌘⌫)↵

�
, (2.32)

where b1,2,3,4 are dimensionless coe�cients which are to be determined in the same way as for the
vector field. We split the 10 components of the symmetric tensor field hµ⌫ into a transverse tensor
hT

µ⌫
(which carries 6 components) and a vector field �µ (which carries 4 components),

hµ⌫ = hT

µ⌫
+ 2@(µ�⌫) . (2.33)

Just as in the case of the spin-1 field, an arbitrary kinetic term of the form (2.32) with untuned
coe�cients bi would contain higher derivatives for �µ which in turn would imply a ghost. As we
shall see below, avoiding a ghost within the kinetic term automatically leads to gauge-invariance.
After substitution of hµ⌫ in terms of hT

µ⌫
and �µ, the potentially dangerous parts are

Lspin�2
kin � (b1 + b2)�

µ22�µ + (b1 + 3b2 + 2b3 + 4b4)�
µ2@µ@⌫�

⌫ (2.34)

�2hTµ⌫
�
(b2 + b4)@µ@⌫@↵�

↵ + (b1 + b2)@µ2�µ

+ (b3 + b4)2@↵�
↵ ⌘µ⌫

�
.

Preventing these higher derivative terms from arising sets

b4 = �b3 = �b2 = b1 , (2.35)

or in other words, the unique (local and Lorentz-invariant) kinetic term one can write for a spin-2
field is the Einstein–Hilbert term

Lspin�2
kin = �1

4
hµ⌫ Ê↵�
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Equivalent to transformation for Gauge Theories

D.O.F counting in d dimensions 
for the massless gauge boson d-2

after integrating out the Lagrange multiplier1 �̃ ⌘ 22�. We can now perform the change of
variables � = �1+�2 and �̃ = �1��2 giving the resulting Lagrangian for the two scalar fields �1,2

L�

kin = (a1 + a2)

✓
�12�1 � �22�2 �

1

4
(�1 � �2)

2

◆
. (2.8)

As a result, the two scalar fields �1,2 always enter with opposite kinetic terms, signaling that one
of them is always a ghost2. The only way to prevent this generic pathology is to make the specific
choice a1 + a2 = 0, which corresponds to the well-known Maxwell kinetic term.

Helicity-1 mode and gauge symmetry

Now that the form of the local and covariant kinetic term has been uniquely established by the
requirement that no ghost rides on top of the helicity-0 mode, we focus on the remaining transverse
mode A?

µ
,

Lhelicity�1
kin = a1

�
@µA

?
⌫

�2
, (2.9)

which has the correct normalization if a1 = �1/2. As a result, the only possible local kinetic term
for a spin-1 field is the Maxwell one:

Lspin�1
kin = �1

4
F 2
µ⌫

(2.10)

with Fµ⌫ = @µA⌫ � @⌫Aµ. Restricting ourselves to a massless spin-1 field, (with no potential and
other interactions), the resulting Maxwell theory satisfies the following U(1) gauge symmetry:

Aµ ! Aµ + @µ⇠ . (2.11)

This gauge symmetry projects out two of the naive four degrees of freedom. This can be seen at
the level of the Lagrangian directly, where the gauge symmetry (2.11) allows us to fix the gauge
of our choice. For convenience, we perform a (3 + 1)-split and choose Coulomb gauge @iAi = 0,
so that only two dofs are present in Ai, i.e., Ai contains no longitudinal mode, Ai = At

i
+ @iAl,

with @iAt

i
= 0 and the Coulomb gauge sets the longitudinal mode Al = 0. The time-component

A0 does not exhibit a kinetic term,

Lspin�1
kin =

1

2
(@tAi)

2 � 1

2
(@iA

0)2 � 1

4
(@iAj)

2 , (2.12)

and appears instead as a Lagrange multiplier imposing the constraint

@i@
iA0 ⌘ 0 . (2.13)

The Maxwell action has therefore only two propagating dofs in At

i
,

Lspin�1
kin = �1

2
(@µA

t

i
)2 . (2.14)

To summarize, the Maxwell kinetic term for a vector field and the fact that a massless vector field
in four dimensions only propagates 2 dofs is not a choice but has been imposed upon us by the
requirement that no ghost rides along with the helicity-0 mode. The resulting theory is enriched
by a U(1) gauge symmetry which in turn freezes the helicity-0 mode when no mass term is present.
We now ‘promote’ the theory to a massive vector field.

1 The equation of motion with respect to � gives 2�̃ = 0, however this should be viewed as a dynamical relation
for �̃, which should not be plugged back into the action. On the other hand, when deriving the equation of motion
with respect to �̃, we obtain a constraint equation for �̃: �̃ = 22� which can be plugged back into the action (and
� is then treated as the dynamical field).

2 This is already a problem at the classical level, well before the notion of particle needs to be defined, since clas-
sical configurations with arbitrarily large �1 can always be constructed by compensating with a large configuration
for �2 at no cost of energy (or classical Hamiltonian).

9

Let’s think of a Massive Photon 

2.1.2 Proca mass term

Starting with the Maxwell action, we consider a covariant mass term AµAµ corresponding to the
Proca action

LProca = �1

4
F 2
µ⌫

� 1

2
m2AµA

µ , (2.15)

and emphasize that the presence of a mass term does not change the fact that the kinetic has been
uniquely fixed by the requirement of the absence of ghost. An immediate consequence of the Proca
mass term is the breaking of the U(1) gauge symmetry (2.11), so that the Coulomb gauge can no
longer be chosen and the longitudinal mode is now dynamical. To see this, let us use the previous
decomposition Aµ = A?

µ
+ @µ�̂ and notice that the mass term now introduces a kinetic term for

the helicity-0 mode � = m�̂,

LProca = �1

2
(@µA

?
⌫
)2 � 1

2
m2(A?

µ
)2 � 1

2
(@µ�)

2 . (2.16)

A massive vector field thus propagates three dofs, namely two in the transverse modes A?
µ
and one

in the longitudinal mode �. Physically, this can be understood by the fact that a massive vector
field does not propagate along the light-cone, and the fluctuations along the line of propagation
correspond to an additional physical dof.

Before moving to the Abelian Higgs mechanism which provides a dynamical way to give a
mass to bosons, we first comment on the discontinuity in number of dofs between the massive
and massless case. When considering the Proca action (2.16) with the properly normalized fields
A?

µ
and �, one does not recover the massless Maxwell action (2.9) or (2.10) when sending the

boson mass m ! 0. A priori this seems to signal the presence of a discontinuity which would
allow us to distinguish between for instance a massless photon and a massive one no matter how
tiny the mass. In practise however, the di↵erence is physically indistinguishable so long as the
photon couples to external sources in a way which respects the U(1) symmetry. Note however that
quantum anomalies remain sensitive to the mass of the field so the discontinuity is still present at
this level, see Refs. [196, 203].

To physically tell the di↵erence between a massless vector field and a massive one with tiny
mass, one has to probe the system, or in other words include interactions with external sources

Lsources = �AµJ
µ . (2.17)

The U(1) symmetry present in the massless case is preserved only if the external sources are
conserved, @µJµ = 0. Such a source produces a vector field which satisfies

2A?
µ
= Jµ (2.18)

in the massless case. The exchange amplitude between two conserved sources Jµ and J 0
µ
mediated

by a massless vector field is given by

Amassless
JJ 0 =

Z
d4xA?

µ
J 0µ =

Z
d4xJ 0µ 1

2
Jµ . (2.19)

On the other hand, if the vector field is massive, its response to the source Jµ is instead

(2�m2)A?
µ
= Jµ and 2� = 0 . (2.20)

In that case one needs to consider both the transverse and the longitudinal modes of the vector
field in the exchange amplitude between the two sources Jµ and J 0

µ
. Fortunately, a conserved
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Mass term explicitly breaks the gauge redundancy

As it stands, the limit m ! 0 of the lagrangian (4.1) is not a smooth limit because

we lose a degree of freedom – for m = 0 we have Maxwell electromagnetism which in

D = 4 propagates only 2 degrees of freedom, the two polarizations of a massless helicity 1

particle. Also, the limit does not exist unless the source is conserved, as this is a consistency

requirement in the massless case.

The Stückelberg trick consists of introducing a new scalar field �, in such a way that

the new action has gauge symmetry but is still dynamically equivalent to the original action.

It will expose a di↵erent m ! 0 limit which is smooth, in that no degrees of freedom are

gained or lost. We introduce a field, �, by making the replacement

Aµ ! Aµ + @µ�, (4.2)

following the pattern of the gauge symmetry we want to introduce [46]. This is emphati-

cally not a change of field variables. It is not a decomposition of Aµ into transverse and

longitudinal parts (Aµ is not meant to identically satisfy @µAµ = 0 after the replacement),

and it is not a gauge transformation (the lagrangian (4.1) isn’t gauge invariant). Rather,

this is creating a new lagrangian from the old one, by the addition of a new field �. Fµ⌫

is invariant under this replacement, since the replacement looks like a gauge transformation

and Fµ⌫ is gauge invariant. The only thing that changes is the mass term and the coupling

to the source,

S =

Z
dDx � 1

4
Fµ⌫F

µ⌫ � 1

2
m2(Aµ + @µ�)

2 + AµJ
µ � �@µJ

µ. (4.3)

We have integrated by parts in the coupling to the source. The new action now has the

gauge symmetry

�Aµ = @µ⇤, �� = �⇤. (4.4)

By fixing the gauge � = 0, called the unitary gauge (a gauge condition for which it is

permissible to substitute back into the action, because the potentially lost � equation is

implied by the divergence of the Aµ equation) we recover the original massive lagrangian

(4.1), which means (4.3) and (4.1) are equivalent theories. They both describe the three

degrees of freedom of a massive spin 1 in D = 4. The new lagrangian (4.3) does the job

using more fields and gauge symmetry.

The Stükelberg trick is a terrific illustration of the fact that gauge symmetry is a

complete sham. It represents nothing more than a redundancy of description. We can take
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any theory and make it a gauge theory by introducing redundant variables. Conversely,

given any gauge theory, we can always eliminate the gauge symmetry by eliminating the

redundant degrees of freedom. The catch is that removing the redundancy is not always a

smart thing to do. For example, in Maxwell electromagnetism it is impossible to remove

the redundancy and at the same time preserve manifest Lorentz invariance and locality. Of

course, electromagnetism with gauge redundancy removed is still electromagnetism, so it

is still Lorentz invariant and local, it is just not manifestly so. With the Stükelberg trick

presented here, on the other hand, we are adding and removing extra gauge symmetry in a

rather simple way, which does not mess with the manifest Lorentz invariance and locality.

We see from (4.3) that � has a kinetic term, in addition to cross terms. Rescaling

� ! 1
m� in order to normalize the kinetic term, we have

S =

Z
dDx � 1

4
Fµ⌫F

µ⌫ � 1

2
m2AµA

µ � mAµ@
µ� � 1

2
@µ�@

µ�+ AµJ
µ � 1

m
�@µJ

µ, (4.5)

and the gauge symmetry reads

�Aµ = @µ⇤, �� = �m⇤. (4.6)

Consider now the m ! 0 limit. Note that if the current is not conserved (or its

divergence does not go to zero with at least a power of m [47]), then the scalar becomes

strongly coupled to the divergence of the source and the limit does not exist. Assuming a

conserved source, the lagrangian becomes in the limit

L = �1

4
Fµ⌫F

µ⌫ � 1

2
@µ�@

µ�+ AµJ
µ, (4.7)

and the gauge symmetry is

�Aµ = @µ⇤, �� = 0. (4.8)

It is now clear that the number of degrees of freedom is preserved in the limit. For D = 4

two of the three degrees of freedom go into the massless vector, and one goes into the scalar.

In the limit, the vector decouples from the scalar, and we are left with a massless gauge

vector interacting with the source, as well as a completely decoupled free scalar. This m ! 0

limit is a di↵erent limit than the non-smooth limit we would have obtained by taking m ! 0

straight away in (4.1). We have scaled � ! 1
m� in order to canonically normalize the scalar

kinetic term, so we are actually using a new scalar �new = m�old which does not scale with
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be able to tell whether the graviton mass is mathematically zero or not, in violation of our

intuition that the physics of nature should be continuous in its parameters. This is the vDVZ

(van Dam, Veltman, Zakharov) discontinuity [29, 30] (see also [43, 44]). It is present in other

physical predictions as well, such as the emission of gravitational radiation [45].

4 The Stückelberg trick

We have seen that there is a discontinuity in the physical predictions of linear massless

gravity and the massless limit of linear massive gravity, known as the vDVZ discontinuity.

In this section, we will expose the origin of this discontinuity. We will see explicitly that

the correct massless limit of massive gravity is not massless gravity, but rather massless

gravity plus extra degrees of freedom, as expected since the gauge symmetry which kills the

extra degrees of freedom only appears when the mass is strictly zero. The extra degrees of

freedom are a massless vector, and a massless scalar which couples to the trace of the energy

momentum tensor. This extra scalar coupling is responsible for the vDVZ discontinuity.

Taking m ! 0 straight away in the lagrangian (3.1) does not yield not a smooth limit,

because degrees of freedom are lost. To find the correct limit, the trick is to introduce new

fields and gauge symmetries into the massive theory in a way that does not alter the theory.

This is the Stükelberg trick. Once this is done, a limit can be found in which no degrees of

freedom are gained or lost.

4.1 Vector example

To introduce the idea, we consider a simpler case, the theory of a massive photon Aµ coupled

to a (not necessarily conserved) source Jµ,

S =

Z
dDx � 1

4
Fµ⌫F

µ⌫ � 1

2
m2AµA

µ + AµJ
µ, (4.1)

where Fµ⌫ ⌘ @µA⌫ �@⌫Aµ. The mass term breaks the would-be gauge invariance, �Aµ = @µ⇤,

and for D = 4 this theory describes the 3 degrees of freedom of a massive spin 1 particle.

Recall that the propagator for a massive vector is �i
p2+m2

�
⌘µ⌫ +

pµp⌫
m2

�
, which goes like ⇠ 1

m2

for large momenta, invalidating the usual power counting arguments.
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m, so the smooth limit we are taking is to scale the old scalar degree of freedom up as we

scale m down, in such a way that the new scalar degree of freedom remains preserved.

Rather than unitary gauge, we can instead fix a Lorentz-like gauge for the action (4.3),

@µA
µ +m� = 0. (4.9)

This gauge fixes the gauge freedom up to a residual gauge parameter satisfying (⇤�m2)⇤ =

0. We can add the gauge fixing term

SGF =

Z
dDx � 1

2
(@µA

µ +m�)2 . (4.10)

As in the massless case, quantum mechanically this term results from the Fadeev-Popov

gauge fixing procedure. Classically, we may justify it on the grounds that the equations of

motion obtained from the action plus the gauge fixing term are the same as the gauge fixed

equations of motion (the gauge condition itself, however, is not obtained as an equation of

motion, and must be imposed separately). Adding the gauge fixing term diagonalized the

lagrangian,

S + SGF =

Z
dDx

1

2
Aµ(⇤ � m2)Aµ +

1

2
�(⇤ � m2)�+ AµJ

µ � 1

m
�@µJ

µ, (4.11)

and the propagators for Aµ and � are respectively

�i⌘µ⌫
p2 +m2

,
�i

p2 +m2
, (4.12)

which go like ⇠ 1
p2 at high momenta. Thus we have managed to restore the good high energy

behavior of the propagators.

It is possible to find the gauge invariant mode functions for Aµ and �, which can then

be compared to the unitary gauge mode functions of the massive photon. In the massless

limit, there is a direct correspondence; � is gauge invariant and becomes the longitudinal

photon, the Aµ has the usual Maxwell gauge symmetry and its gauge invariant transverse

modes are exactly the transverse modes of the massive photon.

4.2 Graviton Stükelberg and origin of the vDVZ discontinuity

Now consider massive gravity,

S =

Z
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µ⌫ , (4.13)
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Let’s think of a Massive Graviton 

The rest of the paper is organized as follows: Details of the organization

2 A strong coupling scale for massive gravity in 4-dimensions

We briefly discuss the strong coupling scales in the Fierz Pauli theory. The Fierz

Pauli theory is constructed by adding a ghost free Lorentz invariant mass term of

the form,
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Z
d4x

p
gR +m2((hµ⌫)

2 � h2). (2.1)

Here we have expanded the metric in the weak field approximation with a flat

Minkowski background. The mass terms break di↵eomorphism invaiance and prop-

agates longitudinal polarization modes. The estimation of the growth of scattering

amplitudes in this theory can be most easily studied by restoring the gauge invari-

ance using the Stückelberg formalism. Schematically, restoring the gauge invariance

involves introducing a vector field Aµ, with two transverse degrees of freedom and

a scalar � with one degree of freedom. This is e↵ectively therefore the addition of

Goldstone bosons, and using the equivalence theorem to estimate the high energy

scattering amplitudes. Using canonically normalize the fields as A0 = 1
2mMPA,�0 =

1
2m

2MP�, h0 = 1
2MPh, expansion of the Ricci scalar, the determinant of the matrix

and the inverse of the metric in Einstein-Hilbert term gives a slew of interaction

terms. It can be observed that � always appears with two derivatives, A appears

with one derivative, and h appears with no derivatives. A generic interaction term

with nh powers of the tensor, nA powers of the vector and n� powers of the scalar

can be written as,

⇠ m2M2
P (@A

0)nA(@2�0)n�(h0
µ⌫)

nh = (⇤�)
4�nh�2nA�3n�h0nh(@A0)nA(@2�0)n� (2.2)
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n� + nA + nh � 2
(2.3)
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(@2�)3

⇤5
5

, ⇤5 = (MPm
4)1/5 (2.4)

This suggests that the scattering amplitude of a theroy with a single massive graviton

should grow with energy like s5. This scaling, known as the ⇤5 theory, can be
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equations of motion (the gauge condition itself, however, is not obtained as an equation of

motion, and must be imposed separately). Adding the gauge fixing term diagonalized the
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where Lm=0 is the lagrangian of the massless graviton. We want to preserve the gauge

symmetry �hµ⌫ = @µ⇠⌫ + @⌫⇠µ present in the m = 0 case, so we introduce a Stückelberg field

Aµ patterned after the gauge symmetry,

hµ⌫ ! hµ⌫ + @µA⌫ + @⌫Aµ. (4.14)

The Lm=0 term remains invariant because it is gauge invariant and (4.14) looks like a gauge

transformation, so all that changes is the mass term,

S =

Z
dDx Lm=0 � 1

2
m2(hµ⌫h

µ⌫ � h2) � 1

2
m2Fµ⌫F

µ⌫ � 2m2 (hµ⌫@
µA⌫ � h@µA

µ)

+hµ⌫T
µ⌫ � 2Aµ@⌫T

µ⌫ , (4.15)

where we have integrated by parts in the last term, and where Fµ⌫ ⌘ @µA⌫ � @⌫Aµ.

There is now a gauge symmetry

�hµ⌫ = @µ⇠⌫ + @⌫⇠µ, �Aµ = �⇠µ, (4.16)

and fixing the gauge ⇠µ = 0 recovers the original massive gravity action (as in the vector

case, this is a gauge condition for which it is permissible to substitute back into the action,

because the potentially lost Aµ equation is implied by the divergence of the hµ⌫ equation).

At this point, we might consider scaling Aµ ! 1
mAµ to normalize the vector kinetic term,

then take the m ! 0 limit. In this limit, we would end up with a massless graviton and

a massless photon, for a total of 4 degrees of freedom (in 4 dimensions). So at this point,

m ! 0 is still not a smooth limit, since we would be losing one of the original 5 degrees of

freedom.

We have to go one step further and introduce a scalar gauge symmetry, by introducing

another Stückelberg field �,

Aµ ! Aµ + @µ�. (4.17)

The action (4.15) now becomes

S =

Z
dDx Lm=0 � 1

2
m2(hµ⌫h

µ⌫ � h2) � 1

2
m2Fµ⌫F

µ⌫

� 2m2 (hµ⌫@
µA⌫ � h@µA

µ) � 2m2
�
hµ⌫@

µ@⌫� � h@2�
�
+ hµ⌫T

µ⌫

� 2Aµ@⌫T
µ⌫ + 2�@@T, (4.18)

where @@T ⌘ @µ@⌫T µ⌫ and we have integrated by parts in the last term.
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Stuckelberg 5 propagating degrees of freedom 
2 transverse + 3 longitudinal 

There are now two gauge symmetries

�hµ⌫ = @µ⇠⌫ + @⌫⇠µ, �Aµ = �⇠µ (4.19)

�Aµ = @µ⇤, �� = �⇤. (4.20)

By fixing the gauge � = 0 we recover the lagrangian (4.15) .

Suppose we now rescale Aµ ! 1
mAµ, � ! 1

m2�, under which the action becomes

S =

Z
dDx Lm=0 � 1

2
m2(hµ⌫h

µ⌫ � h2) � 1

2
Fµ⌫F

µ⌫

� 2m (hµ⌫@
µA⌫ � h@µA

µ) � 2
�
hµ⌫@

µ@⌫� � h@2�
�
+ hµ⌫T

µ⌫

� 2

m
Aµ@⌫T

µ⌫ +
2

m2
�@@T, (4.21)

and the gauge transformations become

�hµ⌫ = @µ⇠⌫ + @⌫⇠µ, �Aµ = �m⇠µ

�Aµ = @µ⇤, �� = �m⇤, (4.22)

where we have absorbed one factor on m into the gauge parameter ⇤.

Now take the m ! 0 limit. (If the source is not conserved and the divergences do not

go to zero fast enough with m [47], then � and Aµ become strongly coupled to the divergence

of the source, so we now assume the source is conserved.) In this limit, the theory now takes

the form

S =

Z
dDx Lm=0 � 1

2
Fµ⌫F

µ⌫ � 2
�
hµ⌫@

µ@⌫� � h@2�
�
+ hµ⌫T

µ⌫ , (4.23)

we will see that this has all 5 degrees of freedom; a scalar tensor vector theory where the

vector is completely decoupled but the scalar is kinetically mixed with the tensor.

To see this, we will un-mix the scalar and tensor, at the expense of the minimal coupling

to T µ⌫ , by a field redefinition. Consider the change

hµ⌫ = h0
µ⌫ + ⇡⌘µ⌫ , (4.24)

where ⇡ is any scalar. This is the linearization of a conformal transformation. The change

in the massless spin 2 part is (no integration by parts here)

Lm=0(h) = Lm=0(h
0) + (D � 2)


@µ⇡@

µh0 � @µ⇡@⌫h
0µ⌫ +

1

2
(D � 1)@µ⇡@

µ⇡

�
. (4.25)
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Assume source is conserved , vanishing 
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This is simply the linearization of the e↵ect of a conformal transformation on the Einstein-

Hilbert action.

By taking ⇡ = 2
D�2� in the transformation (4.24), we can arrange to cancel all the

o↵-diagonal h� terms in the lagrangian (4.23), trading them in for a � kinetic term. The

lagrangian (4.23) now takes the form,

S =

Z
dDx Lm=0(h

0) � 1

2
Fµ⌫F

µ⌫ � 2
D � 1

D � 2
@µ�@

µ�+ h0
µ⌫T

µ⌫ +
2

D � 2
�T, (4.26)

and the gauge transformations read

�h0
µ⌫ = @µ⇠⌫ + @⌫⇠µ, �Aµ = 0 (4.27)

�Aµ = @µ⇤, �� = 0. (4.28)

There are now (for D = 4) manifestly five degrees of freedom, two in a canonical massless

graviton, two in a canonical massless vector, and one in a canonical massless scalar7.

Note however, that the coupling of the scalar to the trace of the stress tensor survives

the m = 0 limit. We have exposed the origin of the vDVZ discontinuity. The extra scalar

degree of freedom, since it couples to the trace of the stress tensor, does not a↵ect the

bending of light (for which T = 0), but it does a↵ect the newtonian potential. This extra

scalar potential exactly accounts for the discrepancy between the massless limit of massive

gravity and massless gravity.

As a side note, one can see from this Stückelberg trick that violating the Fierz-Pauli

tuning for the mass term leads to a ghost. Any deviation from this form, and the Stückelberg

scalar will acquire a kinetic term with four derivatives ⇠ (⇤�)2, indicating that it carries

two degrees of freedom, one of which is ghostlike [48, 49]. The Fierz-Pauli tuning is required

to exactly cancel these terms, up to total derivative.

Returning to the action for m 6= 0 (and a not necessarily conserved source), we now

know to apply the transformation hµ⌫ = h0
µ⌫ +

2
D�2�⌘µ⌫ , which yields,

7Ordinarily the Maxwell term should come with a 1/4 and the scalar kinetic term with a 1/2, but we

leave di↵erent factors here just to avoid unwieldiness.
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1. Scalar couples to the trace of the stress energy tensor and does not decouple.  
2.  Behaves like a Scalar-Tensor/Brans-Dicke Theory. Affects the Newtonian Potential 
3.  vanDam-Veltman-Zakharov Discontinuity. M-> 0 limit not smooth under Stuckleberg
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pμ
3 ¼ ðE3;þp⃗fÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−p⃗fÞ; p2

4 ¼ m2
n4 ; ð54Þ

where p⃗f ≡ jp⃗fjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν%2 ¼ ϵμ%1ϵ
ν
%1; ð55Þ

ϵμν%1 ¼
1ffiffiffi
2

p ½ϵμ%1ϵ
ν
0 þ ϵμ0ϵ

ν
%1'; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0'; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ%1 ¼ % e%iϕ
ffiffiffi
2

p ð0;−cθcϕ % isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

#
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ';

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1

2 ∂ν⟦ĥ
ð0Þ⟧Þ2.

The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,
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s
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is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
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coefficients like so:
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MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,
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onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 101, 075013 (2020)

075013-10

pμ
3 ¼ ðE3;þp⃗fÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−p⃗fÞ; p2

4 ¼ m2
n4 ; ð54Þ

where p⃗f ≡ jp⃗fjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν%2 ¼ ϵμ%1ϵ
ν
%1; ð55Þ

ϵμν%1 ¼
1ffiffiffi
2

p ½ϵμ%1ϵ
ν
0 þ ϵμ0ϵ

ν
%1'; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0'; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ%1 ¼ % e%iϕ
ffiffiffi
2

p ð0;−cθcϕ % isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

#
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ';

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1
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interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element
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which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
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energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡
X

σ∈1
2Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 101, 075013 (2020)

075013-10

Power Counting  
1. Each external polarization grows as s/m2 

2. Each vertex grows as s 
3. The propagator grows as 1/s

Amplitude grows as Discontinuity as m-> 0. Does not reduce to  
Einstein-Hilbert action

Λ5 = (Mplm4)1/5 ≪ MplUnitarity is violated at a scale  

De-Rham, Gabadadze, Tolley (2010)
Cheung and Remen (2017)
Bonifacio, Rosen, Hinterbichler (2019)
Georgi, Arkani-Hamed, Schwartz (2001)
Schwartz (2003)
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where the interaction potential U is the most general one that reduces to Fierz-Pauli at

linear order,

U(g(0), h) = U2(g
(0), h) + U3(g

(0), h) + U4(g
(0), h) + U5(g

(0), h) + · · · , (6.35)

U2(g
(0), h) =

⇥
h2

⇤
� [h]2 , (6.36)

U3(g
(0), h) = +C1

⇥
h3

⇤
+ C2

⇥
h2

⇤
[h] + C3 [h]

3 , (6.37)

U4(g
(0), h) = +D1

⇥
h4

⇤
+D2

⇥
h3

⇤
[h] +D3

⇥
h2

⇤2
+D4

⇥
h2

⇤
[h]2 +D5 [h]

4 , (6.38)

U5(g
(0), h) = +F1

⇥
h5

⇤
+ F2

⇥
h4

⇤
[h] + F3

⇥
h3

⇤
[h]2 + F4

⇥
h3

⇤ ⇥
h2

⇤
+ F5

⇥
h2

⇤2
[h]

+F6

⇥
h2

⇤
[h]3 + F7 [h]

5 , (6.39)
...

The square bracket indicates a trace, with indices raised with g(0),µ⌫ , i.e. [h] = g(0)µ⌫hµ⌫ ,

[h2] = g(0)µ↵h↵�g(0)�⌫h⌫µ, etc. The coe�cients C1, C2, etc. are generic coe�cients. Note that

the coe�cients in Un(g(0), h) for n > D are redundant by one, because there is a combination

of the various contractions, the characteristic polynomial LTD
n (h) (see Appendix A), which

vanishes identically. Thus one of the coe�cients in Un(g(0), h) for n > D (or any one linear

combination) can be set to zero.

If we like, we can re-organize the terms in the potential by raising and lowering with

the full metric gµ⌫ rather than the absolute metric g(0)µ⌫ ,

S =
1

22

Z
dDx


(
p

�gR) �
p

�g
1

4
m2V (g, h)

�
, (6.40)

where

V (g, h) = V2(g, h) + V3(g, h) + V4(g, h) + V5(g, h) + · · · , (6.41)

V2(g, h) = hh2i � hhi2, (6.42)

V3(g, h) = +c1hh3i + c2hh2ihhi + c3hhi3, (6.43)

V4(g, h) = +d1hh4i + d2hh3ihhi + d3hh2i2 + d4hh2ihhi2 + d5hhi4, (6.44)

V5(g, h) = +f1hh5i + f2hh4ihhi + f3hh3ihhi2 + f4hh3ihh2i + f5hh2i2hhi

+f6hh2ihhi3 + f7hhi5, (6.45)
...

55

Most general potential 
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55

Tune coefficients to raise the scale, avoid ghosts 

More recently, it was observed that the Boulware-Deser ghost can be eliminated with the proper

choice of parameters [3, 4, 9]. In particular, working in the high-energy theory of scalars, the

couplings at each power in the graviton can be chosen to yield total derivative interactions. For

example, in Eq. (2) this parameter choice corresponds to

c1 = 2c3 +
1

2
, c2 = �3c3 �

1

2
,

d1 = �6d5 +
3

2
c3 +

5

16
, d2 = 8d5 �

3

2
c3 �

1

4
,

d3 = 3d5 �
3

4
c3 �

1

16
, d4 = �6d5 +

3

4
c3,

(5)

with c3 and d5 free parameters. The resulting theory is a non-linear generalization of the Fierz-

Pauli term. Moreover, the theory enjoys a parametrically higher cuto↵ ⇤3 [2, 3], since the

parameter choice eliminates dangerous scalar self-interactions.

3 Calculation of Scattering Amplitudes

For our analysis, we have computed the general tree-level amplitude for massive graviton scatter-

ing. In what follows, we describe the setup and notation of our amplitudes calculation, followed

by a set of consistency checks for our final expressions.

3.1 Setup and Notation

A massive graviton has a momentum vector kµ satisfying kµkµ = �m2. To construct a basis

of polarization tensors, we decompose the space orthogonal to kµ in terms of a basis of three

polarization vectors ✏iµ satisfying

kµ✏iµ = 0 (6)

and split according to transverse (i = 1, 2) and longitudinal (i = 3) polarizations. For example,

in a frame in which kµ = (!, 0, 0, k) and ! =
p
k2 +m2, the polarization vectors satisfy

✏1µ = (0, 1, 0, 0)

✏2µ = (0, 0, 1, 0)

✏3µ =
1

m
(k, 0, 0,!),

(7)

with the normalization ✏iµ✏
jµ = �ij. By construction, at high energies ✏3µ ⇠ kµ/m, which is the

Goldstone equivalence limit.

5

De-Rahm, Gabadadze, Tolley 2011, … 
Cheung and Remen, 2020,.. 
Bonifiacio, Rosen, Hinterbichler, 2021,  …
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4 , (6.38)

U5(g
(0), h) = +F1

⇥
h5

⇤
+ F2

⇥
h4

⇤
[h] + F3

⇥
h3

⇤
[h]2 + F4

⇥
h3

⇤ ⇥
h2

⇤
+ F5

⇥
h2

⇤2
[h]

+F6

⇥
h2

⇤
[h]3 + F7 [h]

5 , (6.39)
...

The square bracket indicates a trace, with indices raised with g(0),µ⌫ , i.e. [h] = g(0)µ⌫hµ⌫ ,

[h2] = g(0)µ↵h↵�g(0)�⌫h⌫µ, etc. The coe�cients C1, C2, etc. are generic coe�cients. Note that

the coe�cients in Un(g(0), h) for n > D are redundant by one, because there is a combination

of the various contractions, the characteristic polynomial LTD
n (h) (see Appendix A), which

vanishes identically. Thus one of the coe�cients in Un(g(0), h) for n > D (or any one linear

combination) can be set to zero.

If we like, we can re-organize the terms in the potential by raising and lowering with

the full metric gµ⌫ rather than the absolute metric g(0)µ⌫ ,

S =
1

22

Z
dDx


(
p

�gR) �
p

�g
1

4
m2V (g, h)

�
, (6.40)

where

V (g, h) = V2(g, h) + V3(g, h) + V4(g, h) + V5(g, h) + · · · , (6.41)

V2(g, h) = hh2i � hhi2, (6.42)

V3(g, h) = +c1hh3i + c2hh2ihhi + c3hhi3, (6.43)

V4(g, h) = +d1hh4i + d2hh3ihhi + d3hh2i2 + d4hh2ihhi2 + d5hhi4, (6.44)

V5(g, h) = +f1hh5i + f2hh4ihhi + f3hh3ihhi2 + f4hh3ihh2i + f5hh2i2hhi

+f6hh2ihhi3 + f7hhi5, (6.45)
...
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Tune coefficients to raise the scale, avoid ghosts 

More recently, it was observed that the Boulware-Deser ghost can be eliminated with the proper

choice of parameters [3, 4, 9]. In particular, working in the high-energy theory of scalars, the

couplings at each power in the graviton can be chosen to yield total derivative interactions. For

example, in Eq. (2) this parameter choice corresponds to

c1 = 2c3 +
1

2
, c2 = �3c3 �

1

2
,

d1 = �6d5 +
3

2
c3 +

5

16
, d2 = 8d5 �

3

2
c3 �

1

4
,

d3 = 3d5 �
3

4
c3 �

1

16
, d4 = �6d5 +

3

4
c3,

(5)

with c3 and d5 free parameters. The resulting theory is a non-linear generalization of the Fierz-

Pauli term. Moreover, the theory enjoys a parametrically higher cuto↵ ⇤3 [2, 3], since the

parameter choice eliminates dangerous scalar self-interactions.

3 Calculation of Scattering Amplitudes

For our analysis, we have computed the general tree-level amplitude for massive graviton scatter-

ing. In what follows, we describe the setup and notation of our amplitudes calculation, followed

by a set of consistency checks for our final expressions.

3.1 Setup and Notation

A massive graviton has a momentum vector kµ satisfying kµkµ = �m2. To construct a basis

of polarization tensors, we decompose the space orthogonal to kµ in terms of a basis of three

polarization vectors ✏iµ satisfying

kµ✏iµ = 0 (6)

and split according to transverse (i = 1, 2) and longitudinal (i = 3) polarizations. For example,

in a frame in which kµ = (!, 0, 0, k) and ! =
p
k2 +m2, the polarization vectors satisfy

✏1µ = (0, 1, 0, 0)

✏2µ = (0, 0, 1, 0)

✏3µ =
1

m
(k, 0, 0,!),

(7)

with the normalization ✏iµ✏
jµ = �ij. By construction, at high energies ✏3µ ⇠ kµ/m, which is the

Goldstone equivalence limit.
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Realizations of this set up : dRGT gravity, Bi/Multigravity 

De-Rahm, Gabadadze, Tolley 2011, … 
Cheung and Remen, 2020,.. 
Bonifiacio, Rosen, Hinterbichler, 2021,  …

8



Compactified 5D theory

Compactified 5D Theory

This growth cannot occur in a compactified 5-D 
 model … Compactification is an IR phenomenon, UV 

behavior determined by power-counting is |Amp| ∝E3/(M5)3!

Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):

26 / 38
SEH

5D / 1

M3
5

Z
d5x

p
�gR5D

<latexit sha1_base64="6IKtZRrIyKzTXpwwQ3AuZfmCdw0="></latexit>

What happens in the compactified theory?

Compactification (IR phenomenon) should not change the high energy (UV) behavior,

High energy growth

8

FIG. 2. Cancellations in the orbifolded torus model for

(2, 2) ! (2, 2) KK states. (Clockwise) From top left O(s5 �

�s2). The radion starts to contribute only at O(s3).

where �i(f) = �a(c)��b(d), are the initial and final helicity
states, and the Wigner D functions are normalized in the
usual way,

Z
d⌦ D

J

�1�2
(✓,�).DJ

0⇤
�10�2

(✓,�) =
4⇡

2J + 1
�JJ 0��1�10

(56)
The leading partial wave amplitude is obtained for J = 0,
which gives us ,

a
J=0
00!00(14 ! 23) =

s

M
2
Pl

ln
�
sr

2
c

�
+ . . . . (57)

Partial wave unitarity demands that the real part of the
amplitude must be bounded by unity, and therefore we
conclude that the 4D 2 ! 2 scattering becomes strongly
coupled at s ⇠ M

2
Pl
. We need one more step to complete

this analysis from a 5D perspective. While each indi-
vidual scattering amplitude grows only like s, as in the
case of compactified Yang-Mills theory there are coupled
channels of the first N KK modes whose scattering am-
plitudes grow like Ns/M

2
Pl
. Identifying N /

p
src, the

expected s
3/2

/M
3
5 growth is recovered for the underly-

ing five-dimensional gravityand directly demonstrate the
theory is valid up to a scale ⇤3/2. Phenomenologically,
the 5DOT torus model as described here is unviable as
the radion, a massless scalar would couple directly to the
stress energy tensor in a theory with matter. Therefore
without a proper stabilization mechanism that provides
the radion a mass, this theory would be equivalent to a
Brans-Dicke like theory.

B. Cancellations in the Randall Sundrum model

While the calculation for the RS model proceeds in
the same way as the torus, the convenience of the KK
momentum conservation is not present anymore. The
wave functions for the RS model are obtained by solv-
ing the Sturm-Liouville problem, and are a combination
of the Bessel functions J and Y . The spectrum con-
sists of a massless graviton and a radion, along with a
tower of massive spin-2 states, which unlike the 5DOT
are not uniformly distributed. Moreover, as described
in Appendix. ??, the 3 point and the 4 point couplings

FIG. 3. Cancellations in the RS for (1, 1) ! (1, 1) KK states.

(Clockwise) From top left O(s5 � s2). The radion starts to

contribute only at O(s3).

are overlap integrals of wave functions which consist of
a combination Bessel functions, which need to be eval-
uated numerically. The coupling forms and the tensor
structures are presented in Appendix. ??. Notably while
the massless graviton couples only diagonally, the radion
couples to all intermediate KK states.
Since we no longer have KK number conservation, all

intermediate massive propagators contribute, and need
to be included for the cancellations to take place accu-
rately. Hence we needed a very high degree of numerical
accuracy in our calculation. The problem is compounded
by the sheer number of terms for every intermediate KK
mode (O(10k)) due to the tensor structures at cubic or-
der in coupling. We present the results for scattering of
(1, 1) ! (1, 1) by Laurent expanding the matrix elements
in powers of s. The matrix elements that need to be com-
puted are the same as, Fig. ??, the caveat now being all
intermediate states contribute to this process. Therefore,
we study the convergence of the amplitude as a function
of the maximum number intermediate KK state Nmax.
In Fig. 3, we present the cancellations in amplitudes for
scattering of (1, 1) ! (1, 1), from O(s5 � s

2), as a func-
tion of the number of the intermediate states NKK . The
plots are separated in two categories, first the contact
diagram dubbed SG, and the sum of s, t, u channel dia-
grams with increasing number of KK states. At order s5

and s
4, only the contact diagram and the diagrams with

and arbitrary number of massive intermediate KK states
contribute. The y axis represents the matrix element in
arbitrary units. We separate the contact diagram in the
black solid line , while the sum of all diagrams (including
the contact) are represented in various colors as a func-
tion of NKK . We observe that at O(s5) � O(s4), the
overall matrix element keeps going down as the number
of intermediate KK modes go up. The convergence is
quite fast, and in fact only the first few modes ensure
cancellations by orders of magnitude. We include up to
100 intermediate KK modes, and observe that the cancel-
lations can be obtained down to machine precision level.
In general, we find that by truncating the intermediate
propagators at Nmax � 10, the sum of amplitudes for the
residual higher mode number scale as,

M
(k)
Nmax

/ O

✓
1

N
2k+1
max

◆
, k 2 (2, 3, 4, 5) (58)

A. Flat Extra dimension compactified on a torus 
B. The Randall Sundrum Model (ADS) 

Examine Strong coupling scale

5D diffeomorphism with a 5D Planck mass 
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7

s5 s4 s3 s2

Mcontact �
2r7

c
[7+c2✓ ]s

2
✓

3072n8⇡

2r5
c
[63�196c2✓+5c4✓ ]

9216n6⇡

2r3
c
[�185+692c2✓+5c4✓ ]

4608n4⇡
�

2rc[5+47 c2✓ ]
72n2⇡

M2n
2r7

c
[7+c2✓ ]s

2
✓

9216n8⇡

2r5
c
[�13+c2✓ ]s

2
✓

1152n6⇡

2r3
c
[97+3 c2✓ ]s

2
✓

1152n4⇡
2rc[�179+116c2✓�c4✓ ]

1152n2⇡

M0
2r7

c
[7+c2✓ ]s

2
✓

4608n8⇡

2r5
c
[�9+140c2✓�3c4✓ ]

9216n6⇡

2r3
c
[15�270c2✓�c4✓ ]

2304n4⇡
2rc[175+624 c2✓+c4✓ ]

1152n2⇡

Mradion 0 0 �
2r3

c
s2
✓

64n4⇡
2rc[7+c2✓ ]

96n2⇡

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) ! (n, n) 5DOT amplitude, where ✓ is the center-of-mass scattering angle and (cn✓, sn✓) =

(cosn✓, sinn✓).

expand the diagrams and total matrix element in s, and
label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
agator 2n and the massless graviton are presented after
summing up the s, t and u channel diagrams. At O(s5)
and O(s4), the contact diagrams along with the massive
2n state and the massless graviton state cancel each other
out. The underlying reason for this due to a 4D di↵eo-
morphism invariance being part of the full 5D di↵eomor-
phism. This feature will be clearer when we discuss the
sum rules for cancellation. At order s

3 and s
2 however,

the massless radion plays an important role in the cancel-
lation, which will be elucidated in more detail within the

context of sum rules. In Fig. 2, we present the pattern
of cancellations at every order in s

�, for all phase space
points between (�⇡,⇡) for the scattering of KK states
(2, 2) ! (2, 2). We observe that although the angular
distributions for various individual diagrams are quite
di↵erent, the cancellations between various diagrams is
exact for every phase space point. Notice that the radion
plays a significant role in the cancellations from O(s3).
This cancellation is therefore extremely intricate, and re-
quires a subtle conspiracy between various field degrees
of freedom of the underlying 5D theory. Any calculation
that does not take into account the full field content and
all possible diagrams will encounter a high energy growth
greater than O(s), which is misleading and incorrect.

The only non-zero contribution therefore appears at
O(s). In general, for a process (k, l) ! (m,n) in the
5DOT model,

M
(1)

=
xklmn

2

256⇡rc
[7 + cos(2✓)] csc2 ✓ (53)

where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,

M
(1)(✓) =

32

256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,

a
J

�a�b!�c�d
=

1

32⇡2

Z
d⌦ D

J

�i�f
(✓,�)Ma�b!�c�d

(s, ✓,�) ,

(55)

Coupled channel analysis



Understanding the problem : Geometrical Deconstruction of Dimensions



minimal discretization truncated KK theory

Figure 1: In the minimal deconstruction links are only between nearest neighbors. In the site basis
for the truncated KK theory, there are links between every pair of sites, but the strength of the link
dies off with distance. These links which are non-local in theory space remain in the limit of a large
number of sites.

Now, we assume the compact dimension is a circle and expand the metric in KK modes:

gµν(x, z) =
∑

Gj
µν(x)e2πi

jz
R . We continue the convention that lower-case fields are in the site

basis and uppercase fields are in the KK basis. Then L contains the mass terms:

L = M2
Plm

2
1n

2([GnG−n]− [Gn][G−n]) + · · · (4.5)

The scale for the masses is set by the radius: m1 = 2π/R; and we have introduced the effective

4D Planck scale of the low energy theory: M2
Pl = M3

5DR. We see that the spectrum comprises

a massless graviton, a doubly degenerate tower of massive gravitons, and the massless radion

and graviphoton.1

Now we truncate the theory to N modes, and go back to position space via the discrete

Fourier transform Gn = 1
N e2πi

na
N ga. Then, the mass terms become:

L2 = n2GnG−n =
n2

N2
e2πin

∆a
N gaga+∆a =

2n2

N2
cos

2πn∆a

N
gaga+∆a (4.6)

Evidently, there are links between distant sites. As N → ∞

L2 →
1

6π2
N(2g2a −

1

∆a2
gaga+∆a) (4.7)

1It might seem that the theory would have been simpler if we had compactified on an interval instead of

a circle, thereby removing the mass degeneracy and the graviphoton. In fact, because the KK wavefunctions

for the interval are sines instead of exponentials, the interactions in the circle are much easier to work with.

This point is discussed further in Appendix B.
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Understanding the problem : Geometrical Deconstruction of Dimensions

to the scalar longitudinal mode of hµν by substituting Aµ → Aµ + φ,µ. This establishes an

artificial U(1) symmetry for which φ is the Goldstone boson. We will return to this symmetry

in Section 3. Using a more schematic notation, the Lagrangian becomes:

L = M2
Plh!h+M2

Plm
2
g(A!A+ h!φ) + · · · (2.4)

In this Lagrangian, φ only gets a kinetic term from mixing with h. Naturally, because φ

always appears with two derivatives, the only way it could get a proper kinetic term is

through mixing. Nevertheless, this feature is the source of all the bizarre features of massive

gravitons discussed in [1, 2] and expounded here.

To study the interacting theory, we need to canonically normalize the fields: hcµν =

MPlhµν , Ac
µ = mgMPlAµ, and φc = m2

gMPlφ. Thus, each interaction will have an associated

scale which we can read directly off the Lagrangian. Because all the strong interactions,

involving the Goldstone fields, come out of the mass term in (2.1), we can derive a general

formula:

m2
gM

2
PlA

nA
µ φnφhnh = Λ

4−nA−nφ−hh

λ AcnA
µ φcnφhcnh (2.5)

where

Λλ =
(

mλ−1
g MPl

)1/λ
, λ =

3nφ + 2nA + nh − 4

nφ + nA + nh − 2
(2.6)

This implies, for example, that the strongest vertex is φ3 which has the scale Λ5 = (m4
gMPl)1/5.

The amplitude for a simple exchange diagram involving this vertex will grow as A ∼ E10/Λ10
5 .

Incidentally, it may seem strange that the Lagrangian (2.1) should be based on
√
gR

when general coordinate invariance is explicitly broken by the mass term. But this partial

GC symmetry guarantees that all the interactions coming from the
√
gR term involve only

transverse polarizations. If this were not true, and a term like M2
Pl∂

2h3 were present with

arbitrary tensor structure, it would produce interactions of φ which a simple calculation shows

get strong at Λ7. So, the GC symmetry in the
√
gR term, which has all the interactions in

unitary gauge, actually raises the scale of strong coupling. While this is not a qualitative

improvement, it does demonstrate that Λ5 is not the lowest possible scale where a theory for

single massive graviton based on Fierz-Pauli could break down. In fact, the whole point of

introducing Goldstone bosons as a symmetry breaking effect is that we can start at Λ5; the

cancellation of the Λ7 diagrams, which would be obscure in unitary gauge, is given for free.

We continue our review by looking at the minimal lattice explored in [2]. The theory

space picture looks like:

(2.7)

The associated Lagrangian is simply (2.1) with the mass terms replaced by hopping terms:

Lmin =
∑

j

M2
√

gjR[gj ] +M2m2
√

gj(gjµν − gj+1
µν )(gµρj gνσj − gµνj gρσj )(gjρσ − gj+1

ρσ ) (2.8)

– 3 –

Discretize a dimension with nearest neighbour interaction

The mass terms correspond to broken diffeormorphisms,  
which can be replaced by Stuckelberg/Goldstone  fields.  

The hopping terms break all but one of the general coordinate invariances. So we restore

these symmetries by by replacing:

gj+1
µν →

∂yαj
∂xµ

∂yβj
∂xν

gj+1
αβ (yj) (2.9)

Next, we expand metrics around flat space and the yj in terms of vector and scalar

Goldstones ajµ and φj (using lower case and j for the site basis). Then the Lagrangian looks

like:

Lmin = M2hj!hj +M2m2{(hj − hj+1)
2 + (hj − hj+1)!φj + aj!aj + φjφjφj + φjajaj}+ · · ·

(2.10)

To diagonalize the mass matrix, we take the standard linear combinations: hj = e2πi
jn
N Gn,

aj = e2πi
jn
N An, and φj = e2πi

jn
N Φn (uppercase and n for the momentum basis). Then,

summing over j, and using the approximation mn ∼ m n
N the Lagrangian becomes:

Lmin = NM2Gn!G−n

+NM2m2{
n2

N2
GnG−n +

n

N
Gn!Φ−n +An!A−n + ΦnΦmΦ−n−m +ΦnAmA−n−m + · · · }

Just as with a single massive graviton, we can read of the strength of the interactions after
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We then read off that the strong coupling scale, set by the Φ3 vertex is:

Λmin = (Nm4
1MPl)

1/5 (2.12)

This scale seems reasonable. Formally, Λmin goes to ∞ as N → ∞, and so we can

reproduce linearized 5D gravity at low energy. However, within a consistent effective field

theory, we can never take Λmin higher than the mass of the heaviest modes in the theory

mN ∼ Nm1. This constraint, can be written as:

Λmin < Λmax = M5D(RM5D)
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where R = 1/m1 is the size of the discrete dimension and M5D = (m1M2
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1/3 is the 5D

Planck scale. Since Λmax must be less than M5D this theory has no hope of looking like 5D
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Nevertheless, there is nothing wrong with taking N → ∞ keeping MPl fixed in the

minimal discretization. The resulting continuum theory will be a consistent effective field

theory, even if it cannot be interpreted as having a smooth extra dimension. The argument

in [2] for why the continuum limit will be non-local can be paraphrased as follows. The

interactions in (2.10) are in terms of φj , but φj gets a kinetic terms from coupling to hj −
hj+1 = ∆zhj . Equivalently, Φ = ∆zφj = φj − φj+1 is the physical, propagating field. So the

dangerous interactions are really φ3
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Φ3 which have a non-local continuum limit.
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minimal discretization truncated KK theory

Figure 1: In the minimal deconstruction links are only between nearest neighbors. In the site basis
for the truncated KK theory, there are links between every pair of sites, but the strength of the link
dies off with distance. These links which are non-local in theory space remain in the limit of a large
number of sites.

Now, we assume the compact dimension is a circle and expand the metric in KK modes:

gµν(x, z) =
∑

Gj
µν(x)e2πi

jz
R . We continue the convention that lower-case fields are in the site

basis and uppercase fields are in the KK basis. Then L contains the mass terms:

L = M2
Plm

2
1n

2([GnG−n]− [Gn][G−n]) + · · · (4.5)

The scale for the masses is set by the radius: m1 = 2π/R; and we have introduced the effective

4D Planck scale of the low energy theory: M2
Pl = M3

5DR. We see that the spectrum comprises

a massless graviton, a doubly degenerate tower of massive gravitons, and the massless radion

and graviphoton.1

Now we truncate the theory to N modes, and go back to position space via the discrete

Fourier transform Gn = 1
N e2πi

na
N ga. Then, the mass terms become:

L2 = n2GnG−n =
n2

N2
e2πin

∆a
N gaga+∆a =

2n2

N2
cos

2πn∆a

N
gaga+∆a (4.6)

Evidently, there are links between distant sites. As N → ∞

L2 →
1

6π2
N(2g2a −

1

∆a2
gaga+∆a) (4.7)

1It might seem that the theory would have been simpler if we had compactified on an interval instead of

a circle, thereby removing the mass degeneracy and the graviphoton. In fact, because the KK wavefunctions

for the interval are sines instead of exponentials, the interactions in the circle are much easier to work with.

This point is discussed further in Appendix B.
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to the scalar longitudinal mode of hµν by substituting Aµ → Aµ + φ,µ. This establishes an

artificial U(1) symmetry for which φ is the Goldstone boson. We will return to this symmetry

in Section 3. Using a more schematic notation, the Lagrangian becomes:

L = M2
Plh!h+M2

Plm
2
g(A!A+ h!φ) + · · · (2.4)

In this Lagrangian, φ only gets a kinetic term from mixing with h. Naturally, because φ

always appears with two derivatives, the only way it could get a proper kinetic term is

through mixing. Nevertheless, this feature is the source of all the bizarre features of massive

gravitons discussed in [1, 2] and expounded here.

To study the interacting theory, we need to canonically normalize the fields: hcµν =

MPlhµν , Ac
µ = mgMPlAµ, and φc = m2

gMPlφ. Thus, each interaction will have an associated

scale which we can read directly off the Lagrangian. Because all the strong interactions,

involving the Goldstone fields, come out of the mass term in (2.1), we can derive a general

formula:

m2
gM

2
PlA

nA
µ φnφhnh = Λ

4−nA−nφ−hh

λ AcnA
µ φcnφhcnh (2.5)

where

Λλ =
(

mλ−1
g MPl

)1/λ
, λ =

3nφ + 2nA + nh − 4

nφ + nA + nh − 2
(2.6)

This implies, for example, that the strongest vertex is φ3 which has the scale Λ5 = (m4
gMPl)1/5.

The amplitude for a simple exchange diagram involving this vertex will grow as A ∼ E10/Λ10
5 .

Incidentally, it may seem strange that the Lagrangian (2.1) should be based on
√
gR

when general coordinate invariance is explicitly broken by the mass term. But this partial

GC symmetry guarantees that all the interactions coming from the
√
gR term involve only

transverse polarizations. If this were not true, and a term like M2
Pl∂

2h3 were present with

arbitrary tensor structure, it would produce interactions of φ which a simple calculation shows

get strong at Λ7. So, the GC symmetry in the
√
gR term, which has all the interactions in

unitary gauge, actually raises the scale of strong coupling. While this is not a qualitative

improvement, it does demonstrate that Λ5 is not the lowest possible scale where a theory for

single massive graviton based on Fierz-Pauli could break down. In fact, the whole point of

introducing Goldstone bosons as a symmetry breaking effect is that we can start at Λ5; the

cancellation of the Λ7 diagrams, which would be obscure in unitary gauge, is given for free.

We continue our review by looking at the minimal lattice explored in [2]. The theory

space picture looks like:

(2.7)

The associated Lagrangian is simply (2.1) with the mass terms replaced by hopping terms:

Lmin =
∑

j

M2
√

gjR[gj ] +M2m2
√

gj(gjµν − gj+1
µν )(gµρj gνσj − gµνj gρσj )(gjρσ − gj+1

ρσ ) (2.8)
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Discretize a dimension with nearest neighbour interaction

The mass terms correspond to broken diffeormorphisms,  
which can be replaced by Stuckelberg/Goldstone  fields.  

The hopping terms break all but one of the general coordinate invariances. So we restore

these symmetries by by replacing:

gj+1
µν →

∂yαj
∂xµ

∂yβj
∂xν

gj+1
αβ (yj) (2.9)

Next, we expand metrics around flat space and the yj in terms of vector and scalar

Goldstones ajµ and φj (using lower case and j for the site basis). Then the Lagrangian looks

like:

Lmin = M2hj!hj +M2m2{(hj − hj+1)
2 + (hj − hj+1)!φj + aj!aj + φjφjφj + φjajaj}+ · · ·

(2.10)

To diagonalize the mass matrix, we take the standard linear combinations: hj = e2πi
jn
N Gn,

aj = e2πi
jn
N An, and φj = e2πi

jn
N Φn (uppercase and n for the momentum basis). Then,

summing over j, and using the approximation mn ∼ m n
N the Lagrangian becomes:

Lmin = NM2Gn!G−n

+NM2m2{
n2

N2
GnG−n +

n

N
Gn!Φ−n +An!A−n + ΦnΦmΦ−n−m +ΦnAmA−n−m + · · · }

Just as with a single massive graviton, we can read of the strength of the interactions after

going to canonical normalization: Gn = 1
√

NM
Gc

n, An = 1
√

NMm
Ac

n, and Φn =
√

N
nMm2Φc

n. In

terms of the the physical scales MPl = M
√
N and m1 = m/N the strongest interactions look

like:

L = · · · +
1

NMPlm4
1

Φc
1Φ

c
1Φ

c
−2 +

1

NMPlm2
1

Φc
1A

c
1A

c
−2 + · · · (2.11)

We then read off that the strong coupling scale, set by the Φ3 vertex is:

Λmin = (Nm4
1MPl)

1/5 (2.12)

This scale seems reasonable. Formally, Λmin goes to ∞ as N → ∞, and so we can

reproduce linearized 5D gravity at low energy. However, within a consistent effective field

theory, we can never take Λmin higher than the mass of the heaviest modes in the theory

mN ∼ Nm1. This constraint, can be written as:

Λmin < Λmax = M5D(RM5D)
−5/8 (2.13)

where R = 1/m1 is the size of the discrete dimension and M5D = (m1M2
Pl)

1/3 is the 5D

Planck scale. Since Λmax must be less than M5D this theory has no hope of looking like 5D

gravity in the continuum limit.

Nevertheless, there is nothing wrong with taking N → ∞ keeping MPl fixed in the

minimal discretization. The resulting continuum theory will be a consistent effective field

theory, even if it cannot be interpreted as having a smooth extra dimension. The argument

in [2] for why the continuum limit will be non-local can be paraphrased as follows. The

interactions in (2.10) are in terms of φj , but φj gets a kinetic terms from coupling to hj −
hj+1 = ∆zhj . Equivalently, Φ = ∆zφj = φj − φj+1 is the physical, propagating field. So the

dangerous interactions are really φ3
j ∼

1
∆3

z
Φ3 which have a non-local continuum limit.
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Formally never recovers the full 5D

In a full/truncated  KK theory,  
we need all interactions and not just nearest neighbour ones 

Arkani-Hamed, Georgi, Schwartz 2002

Arkani-Hamed, Schwartz 2003

Schwartz 2003



Compact Extra Dimensions : A primer

field original (−) gauge (−) eqs. motion propagating
d.o.f fixing d.o.f.

(J = 2) hµν 10 0 −5 5
(J = 1) hµi 4n −4 −(n − 1) 3(n − 1)

(J = 0) hij
n(n+1)

2 −n 0 n(n−1)
2

Table 1: Number of degrees of freedom (d.o.f.) off-shell and on-shell for each field component

are described by an ordinary quantum field theory up to energy scales larger that the Grand
Unification scale 1016 GeV. Above this scale quantum gravity effects or string theory imply
a radical revision of fundamental physics. According to the ADD proposal, instead, this
radical revision is needed right above the weak scale! The proposal is specified by three
main features

• There exists a number of n new spacial compact dimensions. For instance a simple
manifold could be just M4 × T n.

• The fundamental Planck scale of the theory is very low MD ∼ TeV.

• The SM degrees of freedom are localized on a 3D-brane stretching along the 3 non-
compact space dimensions.

As we will now explain, these three requirement allow for a drastically different viewpoint
on the hierarchy problem, without leading to any stark disagreement with experimental
observations. Let us focus on gravity first. As we have already seen in the simple case of
Kaluza-Klein’s theory, the macroscopic Planck mass M2

4 of the effective 4D theory is related
to the microscopic MD via

M2
4 = M2+n

D Vn (58)

where Vn is the compactification volume. For a torus we have Vn = (2πR)n and the above
result follows from a simple generalization of the analysis we previously did on S1. We can
also obtain this relation by considering directly the effective action for a purely zero mode
gµν(xµ, xi) ≡ ḡµν(xµ) fluctuation of the metric along M4

2M2+n
D

∫

d4xµdnxi√gRD(g) ↔ 2MDVn

∫

d4xµ√ḡR4(ḡ) (59)

where we have explicitly indicated the dimensionality of the Ricci tensor. The main remark
of ADD is based on eq. (58). Provided the volume of compactification is large enough,
even a low gravity scale MD can reproduce the physical value M4 = 2 × 1018 GeV. Before
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fields. According to this expansion the 5D kinetic action integrated over x5 becomes
∫

Lφdx5 = −1
2

∫

[

(∂µφ)2 − (∂5φ)2
]

=

1
2

∞
∑

−∞

[

−|∂µφn|2 +
n2

R2
|φn|2

]

. (32)

The original 5D massless field has been decomposed in a tower of Kaluza-Klein scalars φn

with mass
mn = n/R. (33)

If we work at energy E, only a limited number n ∼ ER of KK can be produced. In particular,
for E < 1/R only the zero mode φ0 is available. At such low energies the model looks 4-
dimensional. The KK particles appear only virtually, and their effect is reproduced by a
suitable set of local operators involving only the massless 4D fields. In the specific example
we are considering, the full space-time symmetry is just the 4-dimensional Poincaré group
times translations along the fifth direction: P4 × U(1). The KK particle states represent
just the irreducible representations of this group. In particular the index n represents the
charge under the U(1) group of 5D translations: 5D translational invariance shows up in 4D
as the conservation of the KK indices ni summed over the incoming and outgoing particles
in a collision.

Along similar lines one can study the KK decomposition of a gauge vector field AM . But
rather than discussing it in detail we go directly to the case of the graviton: the technical
issues, associated to gauge invariance, are analogous for both vector and tensor field. So let
us consider the original theory of Kaluza and Klein [13]: 5D Einstein gravity compactified
on M4 × S1 with the action

2M3
5

∫

M4×S1

√
gR(g) (34)

We can write the full metric tensor in block form

gMN(x, x5) =
(

gµν gµ5

g5µ g55

)

=
(

ηµν + hµν hµ5

hµ5 1 + h55

)

. (35)

To work out the spectrum we must compute the quadratic action in the linearized field
hMN and then use the gauge freedom provided by the linearized 5D diffeomorphisms, xM →
xM + ϵM(x, x5)

hMN → hMN + δhMN = hMN + ∂N ϵM + ∂MϵN . (36)

to eliminate the redundant degrees of freedom. Here and in what follows, working at linear
order, indices are raised and lowered using the Lorentz metric ηMN . We stress that the
compactification of the fifth dimension implies that all our fields, including ϵM are periodic
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Anstaz- The Fundamental Theory is 5 or D dimensional

dimensions of the various quantities that will appear. The infinitesimal distance is related
to the coordinates and the metric tensor by

ds2 = gMNdxMdxN (2.1)

We will always be using the (+,−,−, . . . ,−) sign convention for the metric. Assuming
that the coordinates carry proper dimensions (that is they are NOT angular variables) the
metric tensor is dimensionless, [g] = 0. Since we can calculate the Christoffel symbols as

ΓA
MN ∼ gAB∂MgNB (2.2)

we get that the Christoffel symbols carry dimension one, [Γ] = 1. Since RMN ∼ Γ2,
the Ricci tensor will carry dimension two, [RMN ] = 2, and similarly the curvature scalar
[R] = 2. The main point is that all of this is independent of the total number of dimensions,
since these were based on local equations. In order to generalize the Einstein-Hilbert action
to more than four dimensions, we simply assume that the action will take the same form
as in four dimensions:

S4+n ∼
∫

d4+nx
√

g(4+n)R(4+n). (2.3)

In order to make the action dimensionless, we need to multiply by the appropriate power
of the fundamental Planck scale M∗. Since d4+nx carries dimension −n − 4, and R(4+n)

carries dimension 2, this has to be the power n + 2, thus we take

S4+n = −Mn+2
∗

∫

d4+nx
√

g(4+n)R(4+n). (2.4)

What we need to find out is how the usual four dimensional action

S4 = −M2
P l

∫

d4x
√

g(4)R(4). (2.5)

is contained in this higher dimensional expression. Here MP l is the observed 4D Planck
scale ∼ 1018 GeV. For this we need to make some assumption about the geometry of the
space-time. We will for now assume, that spacetime is flat, and that the n extra dimensions
are compact. So the metric is given by

ds2 = (ηµν + hµν)dxµdxν − r2dΩ2
(n), (2.6)

where xµ is a four dimensional coordinate, dΩ2
(n) corresponds to the line element of the flat

extra dimensional space in some parametrization, ηµν is the flat (Minkowski) 4D metric,
and hµν is the 4D fluctuation of the metric around its minimum. The reason why we
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(2.6). This does not mean that there wouldn’t be additional terms (and in fact there will

4

be as we will see very soon). From this we can now calculate the expressions that appear
in (2.4):

√

g(4+n) = rn
√

g(4), R(4+n) = R(4), (2.7)

where these latter quantities are to be calculated from h. Therefore we get

S4+n = −Mn+2
∗

∫

d4+nx
√

g(4+n)R(4+n) = −Mn+2
∗

∫

dΩ(n)r
n

∫

d4x
√

g(4)R(4). (2.8)

The factor
∫

dΩ(n)rn is nothing but the volume of the extra dimensional space which we
denote by V(n). For toroidal compactification it would simply be given by V(n) = (2πr)n.
Comparing (2.8) with (2.5) we find the matching relation for the gravitational couplings
that we have looked for:

M2
P l = Mn+2

∗ V(n) = Mn+2
∗ (2πr)n. (2.9)

Let us now repeat the same matching procedure for the gauge couplings. Assume that the
gauge fields live in the extra dimensions, and use a normalization where the gauge fields
are not canonically normalized:

S(4+n) = −
∫

d4+nx
1

4g2
∗
FMNF MN

√

g(4+n). (2.10)

M, N denote indices that range from 1 to 4 + n, and g∗ denotes the higher dimensional
(“fundamental”) gauge coupling. Clearly, the four dimensional part of the field strength
Fµν is included in the full higher dimensional FMN . Again performing the integral over the
extra dimension we find:

S(4) = −
∫

d4x
V(n)

4g2
∗
FµνF

µν
√

g(4). (2.11)

Thus the matching of the gauge couplings is given by

1

g2
eff

=
V(n)

g2
∗

. (2.12)

Note, that it is clear from this equation, that the coupling constant of a higher dimensional
gauge theory is not dimensionless, but rather it has dimension [g∗] = −n/2. As a conse-
quence it is not a renormalizable theory, but can be thought of as the low-energy effective
theory of some more fundamental theory at even higher energies.

Now let us try to understand the consequences of (2.9) and (2.12). Since the gauge cou-
pling is dimensionful in extra dimensions, one needs to ask what should be its natural size.
The simplest assumption is that the same physics that sets the strength of gravitational
couplings would also set the gauge coupling, and thus

g∗ ∼
1

M
n
2
∗

. (2.13)
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Fluctuations in 5D

 5D gauge invariance

bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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possibility of lowering the fundamental Planck scale has been mentioned see [11,12]. Let us
check, how large a radius one would need, if in fact M∗ was of the order of a TeV. Reversing
the expression M2

P l ∼ Mn+2
∗ rn we would now get

1

r
= M∗

(

M∗

MP l

)
2
n

= (1TeV)10−
32
n , (2.17)

where we have used M∗ ∼ 103 GeV and MP l ∼ 1019 GeV. To convert into conventional
length scales one should keep the conversion factor

1GeV−1 = 2 · 10−14cm (2.18)

in mind. Using this we finally get

r ∼ 2 · 10−1710
32
n cm. (2.19)

For n = 1 this would give the absurdly large value of r = 2 · 1015 cm, which is grater than
the astronomical unit of 1.5× 1013 cm. This is clearly not possible: there can’t be one flat
large extra dimension if one would like to lower M∗ all the way to the TeV scale. However,
already for two extra dimensions one would get a much smaller number r ∼ 2 mm. This is
just borderline excluded by the latest gravitational experiments performed in Seattle [18].
Conversely, one can set a bound on the size of two large extra dimensions from the Seattle
experiments, which gave r ≤ 0.2 mm= 1012 1/GeV. This results in M∗ ≥ 3 TeV. We will
see that for two extra dimensions there are in fact more stringent bounds than the direct
bound from gravitational measurements.

For n > 2 the size of the extra dimensions is less than 10−6 cm, which is unlikely to
be tested directly via gravitational measurements any time soon. Thus for n > 2 M∗ ∼ 1
TeV is indeed a possibility that one has to carefully investigate. If M∗ was really of order
the TeV scale, there would no longer be a large hierarchy between the fundamental Planck
scale M∗ and the scale of weak interactions Mw, thus this would resolve the hierarchy
problem. In this case gravity would appear weaker than the other forces at long distances
because it would get diluted by the large volume of the extra dimensions. However, this
would only be an apparent hierarchy between the strength of the forces, as soon as one got
below scales of order r one would start seeing the fundamental gravitational force, and the
hierarchy would disappear. However, as soon as one postulates the equality of the strength
of the weak and gravitational interactions one needs to ask why this is not the scale that
sets the size of the extra dimensions themselves. Thus by postulating a very large radius
for the extra dimensions one would merely translate the hierarchy problem of the scales of
interactions into the problem of why the size of the extra dimension is so large compared
to its natural value.

2.2 What is a brane and how to write an effective theory for it?

Above we have seen that theories where certain particles (especially the light SM particles)
are localized to four dimensions, while other particles could propagate in more dimensions
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Compact Extra Dimensions : A primer

field original (−) gauge (−) eqs. motion propagating
d.o.f fixing d.o.f.

(J = 2) hµν 10 0 −5 5
(J = 1) hµi 4n −4 −(n − 1) 3(n − 1)

(J = 0) hij
n(n+1)

2 −n 0 n(n−1)
2

Table 1: Number of degrees of freedom (d.o.f.) off-shell and on-shell for each field component

are described by an ordinary quantum field theory up to energy scales larger that the Grand
Unification scale 1016 GeV. Above this scale quantum gravity effects or string theory imply
a radical revision of fundamental physics. According to the ADD proposal, instead, this
radical revision is needed right above the weak scale! The proposal is specified by three
main features

• There exists a number of n new spacial compact dimensions. For instance a simple
manifold could be just M4 × T n.

• The fundamental Planck scale of the theory is very low MD ∼ TeV.

• The SM degrees of freedom are localized on a 3D-brane stretching along the 3 non-
compact space dimensions.

As we will now explain, these three requirement allow for a drastically different viewpoint
on the hierarchy problem, without leading to any stark disagreement with experimental
observations. Let us focus on gravity first. As we have already seen in the simple case of
Kaluza-Klein’s theory, the macroscopic Planck mass M2

4 of the effective 4D theory is related
to the microscopic MD via

M2
4 = M2+n

D Vn (58)

where Vn is the compactification volume. For a torus we have Vn = (2πR)n and the above
result follows from a simple generalization of the analysis we previously did on S1. We can
also obtain this relation by considering directly the effective action for a purely zero mode
gµν(xµ, xi) ≡ ḡµν(xµ) fluctuation of the metric along M4

2M2+n
D

∫

d4xµdnxi√gRD(g) ↔ 2MDVn

∫

d4xµ√ḡR4(ḡ) (59)

where we have explicitly indicated the dimensionality of the Ricci tensor. The main remark
of ADD is based on eq. (58). Provided the volume of compactification is large enough,
even a low gravity scale MD can reproduce the physical value M4 = 2 × 1018 GeV. Before

25

fields. According to this expansion the 5D kinetic action integrated over x5 becomes
∫

Lφdx5 = −1
2

∫

[

(∂µφ)2 − (∂5φ)2
]

=

1
2

∞
∑

−∞

[

−|∂µφn|2 +
n2

R2
|φn|2

]

. (32)

The original 5D massless field has been decomposed in a tower of Kaluza-Klein scalars φn

with mass
mn = n/R. (33)

If we work at energy E, only a limited number n ∼ ER of KK can be produced. In particular,
for E < 1/R only the zero mode φ0 is available. At such low energies the model looks 4-
dimensional. The KK particles appear only virtually, and their effect is reproduced by a
suitable set of local operators involving only the massless 4D fields. In the specific example
we are considering, the full space-time symmetry is just the 4-dimensional Poincaré group
times translations along the fifth direction: P4 × U(1). The KK particle states represent
just the irreducible representations of this group. In particular the index n represents the
charge under the U(1) group of 5D translations: 5D translational invariance shows up in 4D
as the conservation of the KK indices ni summed over the incoming and outgoing particles
in a collision.

Along similar lines one can study the KK decomposition of a gauge vector field AM . But
rather than discussing it in detail we go directly to the case of the graviton: the technical
issues, associated to gauge invariance, are analogous for both vector and tensor field. So let
us consider the original theory of Kaluza and Klein [13]: 5D Einstein gravity compactified
on M4 × S1 with the action

2M3
5

∫

M4×S1

√
gR(g) (34)

We can write the full metric tensor in block form

gMN(x, x5) =
(

gµν gµ5

g5µ g55

)

=
(

ηµν + hµν hµ5

hµ5 1 + h55

)

. (35)

To work out the spectrum we must compute the quadratic action in the linearized field
hMN and then use the gauge freedom provided by the linearized 5D diffeomorphisms, xM →
xM + ϵM(x, x5)

hMN → hMN + δhMN = hMN + ∂N ϵM + ∂MϵN . (36)

to eliminate the redundant degrees of freedom. Here and in what follows, working at linear
order, indices are raised and lowered using the Lorentz metric ηMN . We stress that the
compactification of the fifth dimension implies that all our fields, including ϵM are periodic

19

Figure 6: Cylindrical structure of 5-dimensional space-time compactified on M4 × S1.

1.5 Kaluza-Klein decomposition

So far we have been general: our discussion applies equally well to compact and to infinite
extra dimensions. However, since it is empirically very clear that we live in three macroscopic
spatial dimensions, for phenomenological applications we must focus on the case in which
the extra-dimensions are compactified at some small enough radius R. The dynamics at
distances much bigger than R will not be able to notice the presence of the extra compact
directions. To illustrate this fact let us consider the simplest situation of a 5D scalar field φ
with the 5th dimension compactified on a circle (see Fig. (6)) of radius R. Compactification
is formally expressed by the periodicity requirement

φ(x, x5) = φ(x, x5 + 2πR) (30)

Processes taking place on time scales T ≪ R, by causality and by locality, cannot notice
that the 5th dimension is compact. On the other hand to study processes happening on a
time scale T >∼ R, and in particular at energies E <∼ 1/R, the 5D local description is not the
most adequate. In this case it is convenient to expand the field φ in its Fourier components
with respect to the periodic coordinate x5.

φ(x, x5) =
n=∞
∑

n=−∞

φn(x)ei
nx5
R . (31)

where the reality of φ implies φ−n(x) = φn(x)∗. Notice that each different coefficient φn in
this expansion corresponds to a different 4D field. The φn are called Kaluza-Klein (KK)
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2

∞
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R2
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]
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xM + ϵM(x, x5)

hMN → hMN + δhMN = hMN + ∂N ϵM + ∂MϵN . (36)

to eliminate the redundant degrees of freedom. Here and in what follows, working at linear
order, indices are raised and lowered using the Lorentz metric ηMN . We stress that the
compactification of the fifth dimension implies that all our fields, including ϵM are periodic
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dimensions of the various quantities that will appear. The infinitesimal distance is related
to the coordinates and the metric tensor by

ds2 = gMNdxMdxN (2.1)

We will always be using the (+,−,−, . . . ,−) sign convention for the metric. Assuming
that the coordinates carry proper dimensions (that is they are NOT angular variables) the
metric tensor is dimensionless, [g] = 0. Since we can calculate the Christoffel symbols as

ΓA
MN ∼ gAB∂MgNB (2.2)

we get that the Christoffel symbols carry dimension one, [Γ] = 1. Since RMN ∼ Γ2,
the Ricci tensor will carry dimension two, [RMN ] = 2, and similarly the curvature scalar
[R] = 2. The main point is that all of this is independent of the total number of dimensions,
since these were based on local equations. In order to generalize the Einstein-Hilbert action
to more than four dimensions, we simply assume that the action will take the same form
as in four dimensions:

S4+n ∼
∫

d4+nx
√

g(4+n)R(4+n). (2.3)

In order to make the action dimensionless, we need to multiply by the appropriate power
of the fundamental Planck scale M∗. Since d4+nx carries dimension −n − 4, and R(4+n)

carries dimension 2, this has to be the power n + 2, thus we take

S4+n = −Mn+2
∗

∫

d4+nx
√

g(4+n)R(4+n). (2.4)

What we need to find out is how the usual four dimensional action

S4 = −M2
P l

∫

d4x
√

g(4)R(4). (2.5)

is contained in this higher dimensional expression. Here MP l is the observed 4D Planck
scale ∼ 1018 GeV. For this we need to make some assumption about the geometry of the
space-time. We will for now assume, that spacetime is flat, and that the n extra dimensions
are compact. So the metric is given by

ds2 = (ηµν + hµν)dxµdxν − r2dΩ2
(n), (2.6)

where xµ is a four dimensional coordinate, dΩ2
(n) corresponds to the line element of the flat

extra dimensional space in some parametrization, ηµν is the flat (Minkowski) 4D metric,
and hµν is the 4D fluctuation of the metric around its minimum. The reason why we
have only put in 4D fluctuations is that our goal is to find out how the usual 4D action
is contained in the higher dimensional one. For this the first thing to find out is how the
4D graviton is contained in the higher dimensional metric, this is precisely what is given in
(2.6). This does not mean that there wouldn’t be additional terms (and in fact there will

4

be as we will see very soon). From this we can now calculate the expressions that appear
in (2.4):

√

g(4+n) = rn
√

g(4), R(4+n) = R(4), (2.7)

where these latter quantities are to be calculated from h. Therefore we get

S4+n = −Mn+2
∗

∫

d4+nx
√

g(4+n)R(4+n) = −Mn+2
∗

∫

dΩ(n)r
n

∫

d4x
√

g(4)R(4). (2.8)

The factor
∫

dΩ(n)rn is nothing but the volume of the extra dimensional space which we
denote by V(n). For toroidal compactification it would simply be given by V(n) = (2πr)n.
Comparing (2.8) with (2.5) we find the matching relation for the gravitational couplings
that we have looked for:

M2
P l = Mn+2

∗ V(n) = Mn+2
∗ (2πr)n. (2.9)

Let us now repeat the same matching procedure for the gauge couplings. Assume that the
gauge fields live in the extra dimensions, and use a normalization where the gauge fields
are not canonically normalized:

S(4+n) = −
∫

d4+nx
1

4g2
∗
FMNF MN

√

g(4+n). (2.10)

M, N denote indices that range from 1 to 4 + n, and g∗ denotes the higher dimensional
(“fundamental”) gauge coupling. Clearly, the four dimensional part of the field strength
Fµν is included in the full higher dimensional FMN . Again performing the integral over the
extra dimension we find:

S(4) = −
∫

d4x
V(n)

4g2
∗
FµνF

µν
√

g(4). (2.11)

Thus the matching of the gauge couplings is given by

1

g2
eff

=
V(n)

g2
∗

. (2.12)

Note, that it is clear from this equation, that the coupling constant of a higher dimensional
gauge theory is not dimensionless, but rather it has dimension [g∗] = −n/2. As a conse-
quence it is not a renormalizable theory, but can be thought of as the low-energy effective
theory of some more fundamental theory at even higher energies.

Now let us try to understand the consequences of (2.9) and (2.12). Since the gauge cou-
pling is dimensionful in extra dimensions, one needs to ask what should be its natural size.
The simplest assumption is that the same physics that sets the strength of gravitational
couplings would also set the gauge coupling, and thus

g∗ ∼
1

M
n
2
∗

. (2.13)

5

Fluctuations in 5D

 5D gauge invariance

bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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possibility of lowering the fundamental Planck scale has been mentioned see [11,12]. Let us
check, how large a radius one would need, if in fact M∗ was of the order of a TeV. Reversing
the expression M2

P l ∼ Mn+2
∗ rn we would now get

1

r
= M∗

(

M∗

MP l

)
2
n

= (1TeV)10−
32
n , (2.17)

where we have used M∗ ∼ 103 GeV and MP l ∼ 1019 GeV. To convert into conventional
length scales one should keep the conversion factor

1GeV−1 = 2 · 10−14cm (2.18)

in mind. Using this we finally get

r ∼ 2 · 10−1710
32
n cm. (2.19)

For n = 1 this would give the absurdly large value of r = 2 · 1015 cm, which is grater than
the astronomical unit of 1.5× 1013 cm. This is clearly not possible: there can’t be one flat
large extra dimension if one would like to lower M∗ all the way to the TeV scale. However,
already for two extra dimensions one would get a much smaller number r ∼ 2 mm. This is
just borderline excluded by the latest gravitational experiments performed in Seattle [18].
Conversely, one can set a bound on the size of two large extra dimensions from the Seattle
experiments, which gave r ≤ 0.2 mm= 1012 1/GeV. This results in M∗ ≥ 3 TeV. We will
see that for two extra dimensions there are in fact more stringent bounds than the direct
bound from gravitational measurements.

For n > 2 the size of the extra dimensions is less than 10−6 cm, which is unlikely to
be tested directly via gravitational measurements any time soon. Thus for n > 2 M∗ ∼ 1
TeV is indeed a possibility that one has to carefully investigate. If M∗ was really of order
the TeV scale, there would no longer be a large hierarchy between the fundamental Planck
scale M∗ and the scale of weak interactions Mw, thus this would resolve the hierarchy
problem. In this case gravity would appear weaker than the other forces at long distances
because it would get diluted by the large volume of the extra dimensions. However, this
would only be an apparent hierarchy between the strength of the forces, as soon as one got
below scales of order r one would start seeing the fundamental gravitational force, and the
hierarchy would disappear. However, as soon as one postulates the equality of the strength
of the weak and gravitational interactions one needs to ask why this is not the scale that
sets the size of the extra dimensions themselves. Thus by postulating a very large radius
for the extra dimensions one would merely translate the hierarchy problem of the scales of
interactions into the problem of why the size of the extra dimension is so large compared
to its natural value.

2.2 What is a brane and how to write an effective theory for it?

Above we have seen that theories where certain particles (especially the light SM particles)
are localized to four dimensions, while other particles could propagate in more dimensions
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Compact Extra Dimensions : Randall-Sundrum Models
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Figure 4: The generation of an exponential hierarchy.

This term corresponds to the 4D action, so that we can read o↵ the value
of the e↵ective 4D Planck mass:

M
2
Pl

= (1� e
�2kL)M3

/k.

We see that it weakly depends on the size of the extra dimension L, provided
kL is moderately large.

Putting our two last results together, we see that the weak scale is ex-
ponentially suppressed along the extra dimension, while the gravity scale is
mostly independent of it (see fig.4).

In conclusion, in a theory where the values of all the bare parameters
(M,⇤,�1, v) are determined by the Planck scale, an exponential hierarchy
can be naturally generated between the weak and the gravity scales. Thus
the Randall-Sundrum model provides an original solution to the Hierarchy
Problem.

Remarkably, the e↵ective Planck mass remains finite even if we take the
decompactification limit L!1. This case where there is only one brane is
known as the Randall-Sundrum II model (RS2). The fact that there could
be an infinite extra dimension and still a 4D gravity as we experience it
results from the localization of gravity around the brane at y = 0, which we
now turn our attention to.
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Compact Extra Dimensions : Randall-Sundrum Models

bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:

S =

Z
d
4
x


dy L5D

�
⌘

Z
d
4
x L

(e↵)
4D (9)

i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals

⌘
(RS)
MN

⌘

✓
e
�2k|y|

⌘µ⌫ 0
0 �1

◆
(10)

for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.

In conformal co-ordinates (xµ
, z) , the RS metric, a

patch of ADS5 can be written as,

ds
2 =

L
2

z2
(⌘µ⌫dx

µ
dx

⌫
� dz

2) (11)

The conformal transformations z ! �z, x
µ
! �x

µ, leave
the metric invariant. After orbifold projection the above
metric can be written as,

ds
2 =

1

(1 + kz)2
(⌘µ⌫dx

µ
dx

⌫
� dz

2)

= A
2(z)(⌘µ⌫dx

µ
dx

⌫
� dz

2) (12)

where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
MN

, we choose to utilize the Ein-
stein frame parameterization, defined by

w(x, y) = e
�2(k|y|+û)

v(x, y) = 1 + 2û (14)

where

û(x, y) ⌘
 r̂

2
p
6
e
+k(2|y|�⇡rc) (15)

The Einstein frame parameterization is advantageous
because it directly yields a canonical 4D e↵ective La-
grangian. At the level of the metric, this parameteriza-
tion equals

G
(RS)
MN

=

✓
e
�2(k|y|+û)(⌘µ⌫ + ĥµ⌫) 0

0 �(1 + 2û)2

◆
(16)

The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and

1
Consider the metric perturbation over the background ⌘MN in

conformal coordinates in RS, GMN = A2
(z)(⌘MN + hMN ). An

expansion of the determinant and the Ricci scalar yields kinetic

and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated

by a field redefinition. While for a simple torus compactification

a linear shift, hµ⌫ ! hµ⌫ +
1p
6
r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a

two derivative shift over the radion fields.
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Figure 4: The generation of an exponential hierarchy.

This term corresponds to the 4D action, so that we can read o↵ the value
of the e↵ective 4D Planck mass:

M
2
Pl

= (1� e
�2kL)M3

/k.

We see that it weakly depends on the size of the extra dimension L, provided
kL is moderately large.

Putting our two last results together, we see that the weak scale is ex-
ponentially suppressed along the extra dimension, while the gravity scale is
mostly independent of it (see fig.4).

In conclusion, in a theory where the values of all the bare parameters
(M,⇤,�1, v) are determined by the Planck scale, an exponential hierarchy
can be naturally generated between the weak and the gravity scales. Thus
the Randall-Sundrum model provides an original solution to the Hierarchy
Problem.

Remarkably, the e↵ective Planck mass remains finite even if we take the
decompactification limit L!1. This case where there is only one brane is
known as the Randall-Sundrum II model (RS2). The fact that there could
be an infinite extra dimension and still a 4D gravity as we experience it
results from the localization of gravity around the brane at y = 0, which we
now turn our attention to.

10

3

LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:

S =

Z
d
4
x


dy L5D

�
⌘

Z
d
4
x L

(e↵)
4D (9)

i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals
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for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.
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patch of ADS5 can be written as,
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where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
MN

, we choose to utilize the Ein-
stein frame parameterization, defined by
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�2(k|y|+û)

v(x, y) = 1 + 2û (14)

where
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and
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(z)(⌘MN + hMN ). An

expansion of the determinant and the Ricci scalar yields kinetic

and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated

by a field redefinition. While for a simple torus compactification

a linear shift, hµ⌫ ! hµ⌫ +
1p
6
r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a

two derivative shift over the radion fields.

s5 s4 s3 s2

Mcontact −κ2r7c [7+c2θ]s
2
θ

3072n8π
κ2r5c [63−196c2θ+5c4θ]

9216n6π
κ2r3c [−185+692c2θ+5c4θ]

4608n4π
−κ2rc[5+47c2θ]

72n2π

M2n
κ2r7c [7+c2θ]s

2
θ

9216n8π

κ2r5c [−13+c2θ]s
2
θ

1152n6π

κ2r3c [97+3c2θ]s
2
θ

1152n4π
κ2rc[−179+116c2θ−c4θ]

1152n2π

M0
κ2r7c [7+c2θ]s

2
θ

4608n8π
κ2r5c [−9+140c2θ−3c4θ]

9216n6π
κ2r3c [15−270c2θ−c4θ]

2304n4π
κ2rc[175+624c2θ+c4θ]

1152n2π

Mradion 0 0 −κ2r3cs
2
θ

64n4π
κ2rc[7+c2θ]

96n2π

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) → (n, n) 5DOT amplitude, where θ is the center-of-mass

scattering angle and (cnθ, snθ) = (cosnθ, sinnθ).

Bulk and brane cosmological constants are added to the action to ensure the effective 4D

background remains flat.5 The following RS1 metric generalizes the earlier 5DOT metric

(which is recovered by taking krc → 0 with finite rc) [30]

GMN =

%

&'
e−2(k|y|+û)

(
ηµν + κĥµν

)
0

0 −(1 + 2û)2

*

+,

û ≡ κr̂

2
√
6
e+k(2|y|−πrc) . (7)

and is similarly canonical by construction. The new parameter k has dimensions of mass

and determines the curvature of the internal AdS5 space.

In the ‘large krc limit’ (krc ≳ 5), the KKmode masses equalmn = kxne
−krcπ, where xn are

zeroes of the Bessel function of the first kind. The location of the IR (TeV) brane determines

an emergent scale Λπ ≡ MPle
−krcπ that controls the radion and KK mode coupling strengths.

Λπ is exponentially suppressed relative to the 4D Planck scale that determines graviton

couplings (M2
Pl = M3

5/k at large krc). As we will show directly massive spin-2 scattering

amplitudes in RS1 are suppressed by Λπ.

Computing massive spin-2 scattering amplitudes in RS1 proceeds much like in the 5DOT,

but with fewer conveniences (e.g., see [31]). Since the internal space is curved, the harmonic

functions are related to Bessel functions, but the resulting spectrum is similar to that of the

5DOT: a massless radion and graviton, and a tower of massive spin-2 KK states labeled by

the number of nodes across the internal space. However, in RS1 there is no analog of KK

momentum conservation, and so there are nonzero 3- and 4-point interactions between almost

5 Here we address 5D gravity and ignore matter.
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bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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LCC generates two types of terms. There are terms pro-
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0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:
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i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals
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for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.

In conformal co-ordinates (xµ
, z) , the RS metric, a

patch of ADS5 can be written as,
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where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
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, we choose to utilize the Ein-
stein frame parameterization, defined by
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and
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radion. However it turns out that there are non-trivial mixing
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feature of the expansion, and the mixing needs to be eliminated

by a field redefinition. While for a simple torus compactification
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r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a

two derivative shift over the radion fields.
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Figure 4: The generation of an exponential hierarchy.

This term corresponds to the 4D action, so that we can read o↵ the value
of the e↵ective 4D Planck mass:

M
2
Pl

= (1� e
�2kL)M3

/k.

We see that it weakly depends on the size of the extra dimension L, provided
kL is moderately large.

Putting our two last results together, we see that the weak scale is ex-
ponentially suppressed along the extra dimension, while the gravity scale is
mostly independent of it (see fig.4).

In conclusion, in a theory where the values of all the bare parameters
(M,⇤,�1, v) are determined by the Planck scale, an exponential hierarchy
can be naturally generated between the weak and the gravity scales. Thus
the Randall-Sundrum model provides an original solution to the Hierarchy
Problem.

Remarkably, the e↵ective Planck mass remains finite even if we take the
decompactification limit L!1. This case where there is only one brane is
known as the Randall-Sundrum II model (RS2). The fact that there could
be an infinite extra dimension and still a 4D gravity as we experience it
results from the localization of gravity around the brane at y = 0, which we
now turn our attention to.

10

3

LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:

S =

Z
d
4
x


dy L5D

�
⌘

Z
d
4
x L

(e↵)
4D (9)

i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals

⌘
(RS)
MN

⌘

✓
e
�2k|y|

⌘µ⌫ 0
0 �1

◆
(10)

for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.

In conformal co-ordinates (xµ
, z) , the RS metric, a

patch of ADS5 can be written as,

ds
2 =

L
2

z2
(⌘µ⌫dx

µ
dx

⌫
� dz

2) (11)

The conformal transformations z ! �z, x
µ
! �x

µ, leave
the metric invariant. After orbifold projection the above
metric can be written as,

ds
2 =

1

(1 + kz)2
(⌘µ⌫dx

µ
dx

⌫
� dz

2)

= A
2(z)(⌘µ⌫dx

µ
dx

⌫
� dz

2) (12)

where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
MN

, we choose to utilize the Ein-
stein frame parameterization, defined by

w(x, y) = e
�2(k|y|+û)

v(x, y) = 1 + 2û (14)

where

û(x, y) ⌘
 r̂

2
p
6
e
+k(2|y|�⇡rc) (15)

The Einstein frame parameterization is advantageous
because it directly yields a canonical 4D e↵ective La-
grangian. At the level of the metric, this parameteriza-
tion equals

G
(RS)
MN

=

✓
e
�2(k|y|+û)(⌘µ⌫ + ĥµ⌫) 0

0 �(1 + 2û)2

◆
(16)

The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and

1
Consider the metric perturbation over the background ⌘MN in

conformal coordinates in RS, GMN = A2
(z)(⌘MN + hMN ). An

expansion of the determinant and the Ricci scalar yields kinetic

and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated

by a field redefinition. While for a simple torus compactification

a linear shift, hµ⌫ ! hµ⌫ +
1p
6
r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a

two derivative shift over the radion fields.

s5 s4 s3 s2

Mcontact −κ2r7c [7+c2θ]s
2
θ

3072n8π
κ2r5c [63−196c2θ+5c4θ]

9216n6π
κ2r3c [−185+692c2θ+5c4θ]

4608n4π
−κ2rc[5+47c2θ]

72n2π

M2n
κ2r7c [7+c2θ]s

2
θ

9216n8π

κ2r5c [−13+c2θ]s
2
θ

1152n6π

κ2r3c [97+3c2θ]s
2
θ

1152n4π
κ2rc[−179+116c2θ−c4θ]

1152n2π

M0
κ2r7c [7+c2θ]s

2
θ

4608n8π
κ2r5c [−9+140c2θ−3c4θ]

9216n6π
κ2r3c [15−270c2θ−c4θ]

2304n4π
κ2rc[175+624c2θ+c4θ]

1152n2π

Mradion 0 0 −κ2r3cs
2
θ

64n4π
κ2rc[7+c2θ]

96n2π

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) → (n, n) 5DOT amplitude, where θ is the center-of-mass

scattering angle and (cnθ, snθ) = (cosnθ, sinnθ).

Bulk and brane cosmological constants are added to the action to ensure the effective 4D

background remains flat.5 The following RS1 metric generalizes the earlier 5DOT metric

(which is recovered by taking krc → 0 with finite rc) [30]

GMN =

%

&'
e−2(k|y|+û)

(
ηµν + κĥµν

)
0

0 −(1 + 2û)2

*

+,

û ≡ κr̂

2
√
6
e+k(2|y|−πrc) . (7)

and is similarly canonical by construction. The new parameter k has dimensions of mass

and determines the curvature of the internal AdS5 space.

In the ‘large krc limit’ (krc ≳ 5), the KKmode masses equalmn = kxne
−krcπ, where xn are

zeroes of the Bessel function of the first kind. The location of the IR (TeV) brane determines

an emergent scale Λπ ≡ MPle
−krcπ that controls the radion and KK mode coupling strengths.

Λπ is exponentially suppressed relative to the 4D Planck scale that determines graviton

couplings (M2
Pl = M3

5/k at large krc). As we will show directly massive spin-2 scattering

amplitudes in RS1 are suppressed by Λπ.

Computing massive spin-2 scattering amplitudes in RS1 proceeds much like in the 5DOT,

but with fewer conveniences (e.g., see [31]). Since the internal space is curved, the harmonic

functions are related to Bessel functions, but the resulting spectrum is similar to that of the

5DOT: a massless radion and graviton, and a tower of massive spin-2 KK states labeled by

the number of nodes across the internal space. However, in RS1 there is no analog of KK

momentum conservation, and so there are nonzero 3- and 4-point interactions between almost

5 Here we address 5D gravity and ignore matter.
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TeV scale masses for krc =11-12

bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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Normalize according to

1
fi

⁄ +fi

≠fi

dÏ ⁄A(0) ÂmÂn = ”m,n

The resulting set {Ân}...
• is orthonormal+complete with discrete spectrum µn

• is entirely determined by the value of krc

• takes 5D graviton æ 4D graviton + massive spin-2 tower

Meanwhile, the radion becomes a single (massless) 4D field:

r̂(x)
¸˚˙˝

5D field

= 1
Ô

firc

r̂
(0)(x)

¸ ˚˙ ˝
4D fields

Â0¸˚˙˝
wfxn

Radion KK
Decomposition
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This gravitational Lagrangian will be expanded in the
weak field approximation as a perturbation series in fields
in order to obtain particle interactions and calculate matrix
elements. Upon expanding Eq. (19), each term will contain
either two spatial derivatives ∂μ or two extra-dimensional
derivatives ∂y. However, certain terms in the expansion of
Eq. (19) will contain instances of ∂2

y which obscure the
coupling structure of the 4D theory. We can ensure no two
extra-dimensional derivatives ever act on the same field in
the expansion by adding a total derivative to Eq. (19).
Specifically, we can eliminate all instances of ∂2

y in the
expanded Lagrangian without changing the physics by
adding the total derivative13

ΔL ¼ 2

κ2
∂y

!
w2

ffiffiffi
v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p #
⟦g̃g0⟧þ

ð∂ywÞ
w

$%
; ð21Þ

where a prime indicates differentiation with respect to y and
twice-squared bracket notation indicates a cyclic contrac-
tion of Lorentz indices, e.g., ⟦ĥ0ĥ0⟧ ≡ ð∂yhμνÞð∂yhνμÞ.
Therefore, in practice we use

L5D ¼ LEH þ LCC þ ΔL: ð22Þ

Of course, in order to weak field expand this Lagrangian,
we must first establish the relevant fields.

B. The weak field expansion

Now that we have a generic path from the 5D metricG to
the 4D effective Lagrangian LðeffÞ

4D , we may discuss the field
content of the RS1 theory. The gravitational particle content
is obtained by perturbing the vacuum with field-dependent
functions. To ensure correct units and assist theLagrangian’s
eventual weak field expansion, we will introduce the fields
alongside an explicit factor of κ. We choose to utilize the
Einstein frame parameterization [16,50–52], which elimi-
nates mixing between the scalar and tensor modes—and
ultimately yields a canonically normalized 4D effective
Lagrangian. In this parameterization, w and v in Eq. (11)
may be written, respectively, as

wðx; yÞ ¼ e−2ðkjyjþûÞ; vðx; yÞ ¼ 1þ 2û; ð23Þ

where ûðx; yÞ, as wewill soon see, is related to the 5D radion
field. Furthermore, we identify gμν asweakly perturbed from
the flat value ημν, e.g.,

ημν ↦ gμν ≡ ημν þ κĥμν; ð24Þ

where the symmetric tensor field ĥμνðx; yÞ contains the
spin-2 modes. The metric is then

GðRSÞ
MN ¼

#
e−2ðkjyjþûÞðημν þ κĥμνÞ 0

0 −ð1þ 2ûÞ2

$
: ð25Þ

The 5D radion r̂ðx; yÞ is related to ûðx; yÞ via

ûðx; yÞ ≡ κr̂ðx; yÞ
2

ffiffiffi
6

p eþkð2jyj−πrcÞ: ð26Þ

Unlike ĥμν, the 5D radion field can bemade y independent via
a gauge transformation [53], and sowe choose r̂ðx;yÞ¼ r̂ðxÞ.
In some 5D models, the off-diagonal elements GðRSÞ

5μ and
GðRSÞ

μ5 give rise to an orbifold-odd graviphoton excitation
which can also be made y independent via gauge sym-
metries [53]; however, the RS1 scenario possesses an
orbifold symmetry which removes this degree of freedom
and ensures GðRSÞ

μ5 ¼ GðRSÞ
5μ ¼ 0. Meanwhile, the graviton

and radion fields must be even functions of y to ensure the
interval ds2 described by GðRSÞ

MN is invariant under the
orbifold transformation. Both of these 5D fields have units
of ðEnergyÞþ3=2.
As outlined in the previous subsection, the metric GðRSÞ

MN

determines a Lagrangian LðRSÞ
5D ≡ LðRSÞ

EH þ LðRSÞ
CC þ ΔLðRSÞ.

We calculate LðRSÞ
5D as a perturbation series in κ and thereby

obtain its weak field expansion (WFE). In particular,
because we are ultimately concerned with 2-to-2 tree-level
scattering of massive spin-2 states, we require several of the
three- and four-particle interactions present in the Oðκ2Þ
WFE LðRSÞ

5D . The details of this procedure and its results are
summarized in Appendix A.

III. THE 4D EFFECTIVE THEORY

In this section, we carry out the KK mode expansion,
thereby obtaining the 4D particle content of the model, and
discuss the form of the interactions among the 4D fields. A
general analysis of the properties of the extra-dimensional
wave functions is given in Appendix B, and the more
detailed description of the 4D interactions is given in
Appendix C.

A. 4D particle content

The 4D particle content is determined by employing the
KK decomposition ansatz [1,2,54]:

ĥμνðx; yÞ ¼
1
ffiffiffiffiffiffiffi
πrc

p
Xþ∞

n¼0

ĥðnÞμν ðxÞψnðφÞ;

r̂ðxÞ ¼ 1
ffiffiffiffiffiffiffi
πrc

p r̂ð0ÞðxÞψ0; ð27Þ

13The orbifold boundary conditions we employ will require all
normal derivatives of the metric to vanish on the branes, and
hence this term is purely for convenience and does not change the
physics.
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bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:

S =

Z
d
4
x


dy L5D

�
⌘

Z
d
4
x L

(e↵)
4D (9)

i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals

⌘
(RS)
MN

⌘

✓
e
�2k|y|

⌘µ⌫ 0
0 �1

◆
(10)

for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.

In conformal co-ordinates (xµ
, z) , the RS metric, a

patch of ADS5 can be written as,

ds
2 =

L
2

z2
(⌘µ⌫dx

µ
dx

⌫
� dz

2) (11)

The conformal transformations z ! �z, x
µ
! �x

µ, leave
the metric invariant. After orbifold projection the above
metric can be written as,

ds
2 =

1

(1 + kz)2
(⌘µ⌫dx

µ
dx

⌫
� dz

2)

= A
2(z)(⌘µ⌫dx

µ
dx

⌫
� dz

2) (12)

where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
MN

, we choose to utilize the Ein-
stein frame parameterization, defined by

w(x, y) = e
�2(k|y|+û)

v(x, y) = 1 + 2û (14)

where

û(x, y) ⌘
 r̂

2
p
6
e
+k(2|y|�⇡rc) (15)

The Einstein frame parameterization is advantageous
because it directly yields a canonical 4D e↵ective La-
grangian. At the level of the metric, this parameteriza-
tion equals

G
(RS)
MN

=

✓
e
�2(k|y|+û)(⌘µ⌫ + ĥµ⌫) 0

0 �(1 + 2û)2

◆
(16)

The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and

1
Consider the metric perturbation over the background ⌘MN in

conformal coordinates in RS, GMN = A2
(z)(⌘MN + hMN ). An

expansion of the determinant and the Ricci scalar yields kinetic

and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated

by a field redefinition. While for a simple torus compactification

a linear shift, hµ⌫ ! hµ⌫ +
1p
6
r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a

two derivative shift over the radion fields.
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Figure 4: The generation of an exponential hierarchy.

This term corresponds to the 4D action, so that we can read o↵ the value
of the e↵ective 4D Planck mass:

M
2
Pl

= (1� e
�2kL)M3

/k.

We see that it weakly depends on the size of the extra dimension L, provided
kL is moderately large.

Putting our two last results together, we see that the weak scale is ex-
ponentially suppressed along the extra dimension, while the gravity scale is
mostly independent of it (see fig.4).

In conclusion, in a theory where the values of all the bare parameters
(M,⇤,�1, v) are determined by the Planck scale, an exponential hierarchy
can be naturally generated between the weak and the gravity scales. Thus
the Randall-Sundrum model provides an original solution to the Hierarchy
Problem.

Remarkably, the e↵ective Planck mass remains finite even if we take the
decompactification limit L!1. This case where there is only one brane is
known as the Randall-Sundrum II model (RS2). The fact that there could
be an infinite extra dimension and still a 4D gravity as we experience it
results from the localization of gravity around the brane at y = 0, which we
now turn our attention to.
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terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,
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graviton field. If Eq. (13) is the only appearance of
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cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
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s5 s4 s3 s2

Mcontact −κ2r7c [7+c2θ]s
2
θ

3072n8π
κ2r5c [63−196c2θ+5c4θ]

9216n6π
κ2r3c [−185+692c2θ+5c4θ]

4608n4π
−κ2rc[5+47c2θ]

72n2π

M2n
κ2r7c [7+c2θ]s

2
θ

9216n8π

κ2r5c [−13+c2θ]s
2
θ

1152n6π

κ2r3c [97+3c2θ]s
2
θ

1152n4π
κ2rc[−179+116c2θ−c4θ]

1152n2π

M0
κ2r7c [7+c2θ]s

2
θ

4608n8π
κ2r5c [−9+140c2θ−3c4θ]

9216n6π
κ2r3c [15−270c2θ−c4θ]

2304n4π
κ2rc[175+624c2θ+c4θ]

1152n2π

Mradion 0 0 −κ2r3cs
2
θ

64n4π
κ2rc[7+c2θ]

96n2π

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) → (n, n) 5DOT amplitude, where θ is the center-of-mass

scattering angle and (cnθ, snθ) = (cosnθ, sinnθ).

Bulk and brane cosmological constants are added to the action to ensure the effective 4D

background remains flat.5 The following RS1 metric generalizes the earlier 5DOT metric

(which is recovered by taking krc → 0 with finite rc) [30]

GMN =

%

&'
e−2(k|y|+û)

(
ηµν + κĥµν

)
0

0 −(1 + 2û)2

*

+,

û ≡ κr̂

2
√
6
e+k(2|y|−πrc) . (7)

and is similarly canonical by construction. The new parameter k has dimensions of mass

and determines the curvature of the internal AdS5 space.

In the ‘large krc limit’ (krc ≳ 5), the KKmode masses equalmn = kxne
−krcπ, where xn are

zeroes of the Bessel function of the first kind. The location of the IR (TeV) brane determines

an emergent scale Λπ ≡ MPle
−krcπ that controls the radion and KK mode coupling strengths.

Λπ is exponentially suppressed relative to the 4D Planck scale that determines graviton

couplings (M2
Pl = M3

5/k at large krc). As we will show directly massive spin-2 scattering

amplitudes in RS1 are suppressed by Λπ.

Computing massive spin-2 scattering amplitudes in RS1 proceeds much like in the 5DOT,

but with fewer conveniences (e.g., see [31]). Since the internal space is curved, the harmonic

functions are related to Bessel functions, but the resulting spectrum is similar to that of the

5DOT: a massless radion and graviton, and a tower of massive spin-2 KK states labeled by

the number of nodes across the internal space. However, in RS1 there is no analog of KK

momentum conservation, and so there are nonzero 3- and 4-point interactions between almost

5 Here we address 5D gravity and ignore matter.
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TeV scale masses for krc =11-12

bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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5D to 4D: Kaluza-Klein & Sturm-Liouville II

Normalize according to

1
fi

⁄ +fi

≠fi

dÏ ⁄A(0) ÂmÂn = ”m,n

The resulting set {Ân}...
• is orthonormal+complete with discrete spectrum µn

• is entirely determined by the value of krc

• takes 5D graviton æ 4D graviton + massive spin-2 tower

Meanwhile, the radion becomes a single (massless) 4D field:

r̂(x)
¸˚˙˝

5D field

= 1
Ô

firc

r̂
(0)(x)

¸ ˚˙ ˝
4D fields

Â0¸˚˙˝
wfxn

Radion KK
Decomposition

D. Foren 5 / 14

This gravitational Lagrangian will be expanded in the
weak field approximation as a perturbation series in fields
in order to obtain particle interactions and calculate matrix
elements. Upon expanding Eq. (19), each term will contain
either two spatial derivatives ∂μ or two extra-dimensional
derivatives ∂y. However, certain terms in the expansion of
Eq. (19) will contain instances of ∂2

y which obscure the
coupling structure of the 4D theory. We can ensure no two
extra-dimensional derivatives ever act on the same field in
the expansion by adding a total derivative to Eq. (19).
Specifically, we can eliminate all instances of ∂2

y in the
expanded Lagrangian without changing the physics by
adding the total derivative13

ΔL ¼ 2

κ2
∂y

!
w2

ffiffiffi
v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p #
⟦g̃g0⟧þ

ð∂ywÞ
w

$%
; ð21Þ

where a prime indicates differentiation with respect to y and
twice-squared bracket notation indicates a cyclic contrac-
tion of Lorentz indices, e.g., ⟦ĥ0ĥ0⟧ ≡ ð∂yhμνÞð∂yhνμÞ.
Therefore, in practice we use

L5D ¼ LEH þ LCC þ ΔL: ð22Þ

Of course, in order to weak field expand this Lagrangian,
we must first establish the relevant fields.

B. The weak field expansion

Now that we have a generic path from the 5D metricG to
the 4D effective Lagrangian LðeffÞ

4D , we may discuss the field
content of the RS1 theory. The gravitational particle content
is obtained by perturbing the vacuum with field-dependent
functions. To ensure correct units and assist theLagrangian’s
eventual weak field expansion, we will introduce the fields
alongside an explicit factor of κ. We choose to utilize the
Einstein frame parameterization [16,50–52], which elimi-
nates mixing between the scalar and tensor modes—and
ultimately yields a canonically normalized 4D effective
Lagrangian. In this parameterization, w and v in Eq. (11)
may be written, respectively, as

wðx; yÞ ¼ e−2ðkjyjþûÞ; vðx; yÞ ¼ 1þ 2û; ð23Þ

where ûðx; yÞ, as wewill soon see, is related to the 5D radion
field. Furthermore, we identify gμν asweakly perturbed from
the flat value ημν, e.g.,

ημν ↦ gμν ≡ ημν þ κĥμν; ð24Þ

where the symmetric tensor field ĥμνðx; yÞ contains the
spin-2 modes. The metric is then

GðRSÞ
MN ¼

#
e−2ðkjyjþûÞðημν þ κĥμνÞ 0

0 −ð1þ 2ûÞ2

$
: ð25Þ

The 5D radion r̂ðx; yÞ is related to ûðx; yÞ via

ûðx; yÞ ≡ κr̂ðx; yÞ
2

ffiffiffi
6

p eþkð2jyj−πrcÞ: ð26Þ

Unlike ĥμν, the 5D radion field can bemade y independent via
a gauge transformation [53], and sowe choose r̂ðx;yÞ¼ r̂ðxÞ.
In some 5D models, the off-diagonal elements GðRSÞ

5μ and
GðRSÞ

μ5 give rise to an orbifold-odd graviphoton excitation
which can also be made y independent via gauge sym-
metries [53]; however, the RS1 scenario possesses an
orbifold symmetry which removes this degree of freedom
and ensures GðRSÞ

μ5 ¼ GðRSÞ
5μ ¼ 0. Meanwhile, the graviton

and radion fields must be even functions of y to ensure the
interval ds2 described by GðRSÞ

MN is invariant under the
orbifold transformation. Both of these 5D fields have units
of ðEnergyÞþ3=2.
As outlined in the previous subsection, the metric GðRSÞ

MN

determines a Lagrangian LðRSÞ
5D ≡ LðRSÞ

EH þ LðRSÞ
CC þ ΔLðRSÞ.

We calculate LðRSÞ
5D as a perturbation series in κ and thereby

obtain its weak field expansion (WFE). In particular,
because we are ultimately concerned with 2-to-2 tree-level
scattering of massive spin-2 states, we require several of the
three- and four-particle interactions present in the Oðκ2Þ
WFE LðRSÞ

5D . The details of this procedure and its results are
summarized in Appendix A.

III. THE 4D EFFECTIVE THEORY

In this section, we carry out the KK mode expansion,
thereby obtaining the 4D particle content of the model, and
discuss the form of the interactions among the 4D fields. A
general analysis of the properties of the extra-dimensional
wave functions is given in Appendix B, and the more
detailed description of the 4D interactions is given in
Appendix C.

A. 4D particle content

The 4D particle content is determined by employing the
KK decomposition ansatz [1,2,54]:

ĥμνðx; yÞ ¼
1
ffiffiffiffiffiffiffi
πrc

p
Xþ∞

n¼0

ĥðnÞμν ðxÞψnðφÞ;

r̂ðxÞ ¼ 1
ffiffiffiffiffiffiffi
πrc

p r̂ð0ÞðxÞψ0; ð27Þ

13The orbifold boundary conditions we employ will require all
normal derivatives of the metric to vanish on the branes, and
hence this term is purely for convenience and does not change the
physics.
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5D to 4D: Kaluza-Klein & Sturm-Liouville II

Normalize according to

1
fi

⁄ +fi

≠fi

dÏ ⁄A(0) ÂmÂn = ”m,n

The resulting set {Ân}...
• is orthonormal+complete with discrete spectrum µn

• is entirely determined by the value of krc

• takes 5D graviton æ 4D graviton + massive spin-2 tower

Meanwhile, the radion becomes a single (massless) 4D field:

r̂(x)
¸˚˙˝

5D field

= 1
Ô

firc

r̂
(0)(x)

¸ ˚˙ ˝
4D fields

Â0¸˚˙˝
wfxn

Radion KK
Decomposition
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bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:

S =

Z
d
4
x


dy L5D

�
⌘

Z
d
4
x L

(e↵)
4D (9)

i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals

⌘
(RS)
MN

⌘

✓
e
�2k|y|

⌘µ⌫ 0
0 �1

◆
(10)

for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.

In conformal co-ordinates (xµ
, z) , the RS metric, a

patch of ADS5 can be written as,

ds
2 =

L
2

z2
(⌘µ⌫dx

µ
dx

⌫
� dz

2) (11)

The conformal transformations z ! �z, x
µ
! �x

µ, leave
the metric invariant. After orbifold projection the above
metric can be written as,

ds
2 =

1

(1 + kz)2
(⌘µ⌫dx

µ
dx

⌫
� dz

2)

= A
2(z)(⌘µ⌫dx

µ
dx

⌫
� dz

2) (12)

where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
MN

, we choose to utilize the Ein-
stein frame parameterization, defined by

w(x, y) = e
�2(k|y|+û)

v(x, y) = 1 + 2û (14)

where

û(x, y) ⌘
 r̂

2
p
6
e
+k(2|y|�⇡rc) (15)

The Einstein frame parameterization is advantageous
because it directly yields a canonical 4D e↵ective La-
grangian. At the level of the metric, this parameteriza-
tion equals

G
(RS)
MN

=

✓
e
�2(k|y|+û)(⌘µ⌫ + ĥµ⌫) 0

0 �(1 + 2û)2

◆
(16)

The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and

1
Consider the metric perturbation over the background ⌘MN in

conformal coordinates in RS, GMN = A2
(z)(⌘MN + hMN ). An

expansion of the determinant and the Ricci scalar yields kinetic

and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated

by a field redefinition. While for a simple torus compactification

a linear shift, hµ⌫ ! hµ⌫ +
1p
6
r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a

two derivative shift over the radion fields.

Einstein Frame

y
0 L

TeV

Planck

hierarchyv
eff

 = exp(-ky) v

M ~ M
Pl

hidden

Figure 4: The generation of an exponential hierarchy.

This term corresponds to the 4D action, so that we can read o↵ the value
of the e↵ective 4D Planck mass:

M
2
Pl

= (1� e
�2kL)M3

/k.

We see that it weakly depends on the size of the extra dimension L, provided
kL is moderately large.

Putting our two last results together, we see that the weak scale is ex-
ponentially suppressed along the extra dimension, while the gravity scale is
mostly independent of it (see fig.4).

In conclusion, in a theory where the values of all the bare parameters
(M,⇤,�1, v) are determined by the Planck scale, an exponential hierarchy
can be naturally generated between the weak and the gravity scales. Thus
the Randall-Sundrum model provides an original solution to the Hierarchy
Problem.

Remarkably, the e↵ective Planck mass remains finite even if we take the
decompactification limit L!1. This case where there is only one brane is
known as the Randall-Sundrum II model (RS2). The fact that there could
be an infinite extra dimension and still a 4D gravity as we experience it
results from the localization of gravity around the brane at y = 0, which we
now turn our attention to.
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LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:

S =

Z
d
4
x


dy L5D

�
⌘

Z
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4
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(e↵)
4D (9)

i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals

⌘
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MN

⌘
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⌘µ⌫ 0
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(10)

for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.

In conformal co-ordinates (xµ
, z) , the RS metric, a

patch of ADS5 can be written as,

ds
2 =

L
2

z2
(⌘µ⌫dx

µ
dx

⌫
� dz

2) (11)

The conformal transformations z ! �z, x
µ
! �x

µ, leave
the metric invariant. After orbifold projection the above
metric can be written as,

ds
2 =

1

(1 + kz)2
(⌘µ⌫dx

µ
dx

⌫
� dz

2)

= A
2(z)(⌘µ⌫dx
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where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
MN

, we choose to utilize the Ein-
stein frame parameterization, defined by

w(x, y) = e
�2(k|y|+û)

v(x, y) = 1 + 2û (14)

where

û(x, y) ⌘
 r̂

2
p
6
e
+k(2|y|�⇡rc) (15)

The Einstein frame parameterization is advantageous
because it directly yields a canonical 4D e↵ective La-
grangian. At the level of the metric, this parameteriza-
tion equals

G
(RS)
MN

=

✓
e
�2(k|y|+û)(⌘µ⌫ + ĥµ⌫) 0

0 �(1 + 2û)2

◆
(16)

The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and

1
Consider the metric perturbation over the background ⌘MN in

conformal coordinates in RS, GMN = A2
(z)(⌘MN + hMN ). An

expansion of the determinant and the Ricci scalar yields kinetic

and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated

by a field redefinition. While for a simple torus compactification

a linear shift, hµ⌫ ! hµ⌫ +
1p
6
r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a

two derivative shift over the radion fields.

s5 s4 s3 s2

Mcontact −κ2r7c [7+c2θ]s
2
θ

3072n8π
κ2r5c [63−196c2θ+5c4θ]

9216n6π
κ2r3c [−185+692c2θ+5c4θ]

4608n4π
−κ2rc[5+47c2θ]

72n2π

M2n
κ2r7c [7+c2θ]s

2
θ

9216n8π

κ2r5c [−13+c2θ]s
2
θ

1152n6π

κ2r3c [97+3c2θ]s
2
θ

1152n4π
κ2rc[−179+116c2θ−c4θ]

1152n2π

M0
κ2r7c [7+c2θ]s

2
θ

4608n8π
κ2r5c [−9+140c2θ−3c4θ]

9216n6π
κ2r3c [15−270c2θ−c4θ]

2304n4π
κ2rc[175+624c2θ+c4θ]

1152n2π

Mradion 0 0 −κ2r3cs
2
θ

64n4π
κ2rc[7+c2θ]

96n2π

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) → (n, n) 5DOT amplitude, where θ is the center-of-mass

scattering angle and (cnθ, snθ) = (cosnθ, sinnθ).

Bulk and brane cosmological constants are added to the action to ensure the effective 4D

background remains flat.5 The following RS1 metric generalizes the earlier 5DOT metric

(which is recovered by taking krc → 0 with finite rc) [30]

GMN =

%

&'
e−2(k|y|+û)

(
ηµν + κĥµν

)
0

0 −(1 + 2û)2

*

+,

û ≡ κr̂

2
√
6
e+k(2|y|−πrc) . (7)

and is similarly canonical by construction. The new parameter k has dimensions of mass

and determines the curvature of the internal AdS5 space.

In the ‘large krc limit’ (krc ≳ 5), the KKmode masses equalmn = kxne
−krcπ, where xn are

zeroes of the Bessel function of the first kind. The location of the IR (TeV) brane determines

an emergent scale Λπ ≡ MPle
−krcπ that controls the radion and KK mode coupling strengths.

Λπ is exponentially suppressed relative to the 4D Planck scale that determines graviton

couplings (M2
Pl = M3

5/k at large krc). As we will show directly massive spin-2 scattering

amplitudes in RS1 are suppressed by Λπ.

Computing massive spin-2 scattering amplitudes in RS1 proceeds much like in the 5DOT,

but with fewer conveniences (e.g., see [31]). Since the internal space is curved, the harmonic

functions are related to Bessel functions, but the resulting spectrum is similar to that of the

5DOT: a massless radion and graviton, and a tower of massive spin-2 KK states labeled by

the number of nodes across the internal space. However, in RS1 there is no analog of KK

momentum conservation, and so there are nonzero 3- and 4-point interactions between almost

5 Here we address 5D gravity and ignore matter.
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bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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This gravitational Lagrangian will be expanded in the
weak field approximation as a perturbation series in fields
in order to obtain particle interactions and calculate matrix
elements. Upon expanding Eq. (19), each term will contain
either two spatial derivatives ∂μ or two extra-dimensional
derivatives ∂y. However, certain terms in the expansion of
Eq. (19) will contain instances of ∂2

y which obscure the
coupling structure of the 4D theory. We can ensure no two
extra-dimensional derivatives ever act on the same field in
the expansion by adding a total derivative to Eq. (19).
Specifically, we can eliminate all instances of ∂2

y in the
expanded Lagrangian without changing the physics by
adding the total derivative13

ΔL ¼ 2

κ2
∂y

!
w2

ffiffiffi
v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p #
⟦g̃g0⟧þ

ð∂ywÞ
w

$%
; ð21Þ

where a prime indicates differentiation with respect to y and
twice-squared bracket notation indicates a cyclic contrac-
tion of Lorentz indices, e.g., ⟦ĥ0ĥ0⟧ ≡ ð∂yhμνÞð∂yhνμÞ.
Therefore, in practice we use

L5D ¼ LEH þ LCC þ ΔL: ð22Þ

Of course, in order to weak field expand this Lagrangian,
we must first establish the relevant fields.

B. The weak field expansion

Now that we have a generic path from the 5D metricG to
the 4D effective Lagrangian LðeffÞ

4D , we may discuss the field
content of the RS1 theory. The gravitational particle content
is obtained by perturbing the vacuum with field-dependent
functions. To ensure correct units and assist theLagrangian’s
eventual weak field expansion, we will introduce the fields
alongside an explicit factor of κ. We choose to utilize the
Einstein frame parameterization [16,50–52], which elimi-
nates mixing between the scalar and tensor modes—and
ultimately yields a canonically normalized 4D effective
Lagrangian. In this parameterization, w and v in Eq. (11)
may be written, respectively, as

wðx; yÞ ¼ e−2ðkjyjþûÞ; vðx; yÞ ¼ 1þ 2û; ð23Þ

where ûðx; yÞ, as wewill soon see, is related to the 5D radion
field. Furthermore, we identify gμν asweakly perturbed from
the flat value ημν, e.g.,

ημν ↦ gμν ≡ ημν þ κĥμν; ð24Þ

where the symmetric tensor field ĥμνðx; yÞ contains the
spin-2 modes. The metric is then

GðRSÞ
MN ¼

#
e−2ðkjyjþûÞðημν þ κĥμνÞ 0

0 −ð1þ 2ûÞ2

$
: ð25Þ

The 5D radion r̂ðx; yÞ is related to ûðx; yÞ via

ûðx; yÞ ≡ κr̂ðx; yÞ
2

ffiffiffi
6

p eþkð2jyj−πrcÞ: ð26Þ

Unlike ĥμν, the 5D radion field can bemade y independent via
a gauge transformation [53], and sowe choose r̂ðx;yÞ¼ r̂ðxÞ.
In some 5D models, the off-diagonal elements GðRSÞ

5μ and
GðRSÞ

μ5 give rise to an orbifold-odd graviphoton excitation
which can also be made y independent via gauge sym-
metries [53]; however, the RS1 scenario possesses an
orbifold symmetry which removes this degree of freedom
and ensures GðRSÞ

μ5 ¼ GðRSÞ
5μ ¼ 0. Meanwhile, the graviton

and radion fields must be even functions of y to ensure the
interval ds2 described by GðRSÞ

MN is invariant under the
orbifold transformation. Both of these 5D fields have units
of ðEnergyÞþ3=2.
As outlined in the previous subsection, the metric GðRSÞ

MN

determines a Lagrangian LðRSÞ
5D ≡ LðRSÞ

EH þ LðRSÞ
CC þ ΔLðRSÞ.

We calculate LðRSÞ
5D as a perturbation series in κ and thereby

obtain its weak field expansion (WFE). In particular,
because we are ultimately concerned with 2-to-2 tree-level
scattering of massive spin-2 states, we require several of the
three- and four-particle interactions present in the Oðκ2Þ
WFE LðRSÞ

5D . The details of this procedure and its results are
summarized in Appendix A.

III. THE 4D EFFECTIVE THEORY

In this section, we carry out the KK mode expansion,
thereby obtaining the 4D particle content of the model, and
discuss the form of the interactions among the 4D fields. A
general analysis of the properties of the extra-dimensional
wave functions is given in Appendix B, and the more
detailed description of the 4D interactions is given in
Appendix C.

A. 4D particle content

The 4D particle content is determined by employing the
KK decomposition ansatz [1,2,54]:

ĥμνðx; yÞ ¼
1
ffiffiffiffiffiffiffi
πrc

p
Xþ∞

n¼0

ĥðnÞμν ðxÞψnðφÞ;

r̂ðxÞ ¼ 1
ffiffiffiffiffiffiffi
πrc

p r̂ð0ÞðxÞψ0; ð27Þ

13The orbifold boundary conditions we employ will require all
normal derivatives of the metric to vanish on the branes, and
hence this term is purely for convenience and does not change the
physics.
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scattering amplitudes. We demonstrate that the relation-
ships needed to ensure the elastic scattering amplitudes
grow no faster than Oðs3Þ arise from the Sturm-Liouville
form of the KK mode expansion in the internal space and
therefore will naturally generalize to KK theories with
internal dimensions with arbitrary internal structure.
Interestingly, these relations are closely related to coupling
relationships which arise in compactified gauge theories
[18].1 Separately, we show that there are additional sum
rules which ensure cancellation atOðs3Þ andOðs2Þ in AdS5
for arbitrary internal curvature (including the toroidal case,
in which the internal curvature vanishes). These final two
sum rules illustrate the essential role of the radion mode of
the extradimensional metric, which is the field related to the
size of the internal space.2

In the rest of this paper, we walk through the derivation
of the relevant coupling relations in a compactified AdS5
space of arbitrary curvature. We lay out the key steps and
intermediate milestones of the calculation, as well as
displaying the final results; the full details of lengthy
expressions in the derivations are reserved to a subsequent
publication. We conclude with a discussion of the proper-
ties of an effective theory in which the tower of KK modes
is truncated and discuss questions for future investigation.

II. METRIC AND STURM-LIOUVILLE PROBLEM

The starting point of this paper is to analyze the
boundary value problem for the gravitational KK modes
in the RS1 model. The geometry of RS1 [17] is that of a
truncated and orbifolded AdS5 space bounded on either end
by UV (Planck) and IR (TeV) branes. Bulk and brane
cosmological constant terms are added to the action to
ensure that the effective 4D background remains flat. The
interactions (here we consider only the gravitational fields
and do not include matter) come from the 5D Einstein-
Hilbert action (plus cosmological constant terms, SCC)

S ¼ 2

κ2

Z
d4xdy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGMN

p
Rþ SCC; ð1Þ

where xμ are the coordinates of the four noncompact
dimensions; y ∈ ½−πrc;þπrc& is the coordinate on the
compact internal space, GMN and R are the five-
dimensional metric and Ricci scalar, respectively; and
the dimensionful coupling κ ¼ 2=M−3=2

5 is the weak-field
expansion parameter fixed by the 5D Planck scaleM5. The

size of the internal space, rc, is arbitrary—leading to a
massless radion scalar mode as discussed below.
Imposing the orbifold symmetry (identifying points in

the internal space under y → −y), the 5D RS1 metric in the
Einstein frame can be written as [21,22]

GMN ¼
"
e−2ðkjyjþûÞðημν þ κĥμνÞ 0

0 −ð1þ 2ûÞ2

#

û≡ κr̂

2
ffiffiffi
6

p eþkð2jyj−πrcÞ; ð2Þ

where k (which has dimensions of mass) is the curvature of
the internal AdS5 space.

3 Here the 5D fields ĥμνðx; yÞ and
r̂ðx; yÞ are even functions of y, and ημν is the usual (mostly
minus in our convention) Lorentz metric. The limit k → 0
corresponds to a flat internal space and hence to a
compactification on an orbifolded torus. As noted above,
our results will be true for arbitrary k, though physically we
require k < M5 in order for the 5D theory to remain a valid
effective field theory.
As usual, we will decompose the 5D fields ĥμν and r̂ via

a Kaluza-Klein decomposition, where each is replaced by a
sum of harmonic functions (specified below) in the internal
space weighted by 4D KK states. The 5D ĥμν field yields a
tower of spin-2 4D states which can be labeled by a “KK”
number n equal to the number of nodes of its associated
wave function on the interval y ∈ ½0; πrc&. The spin-2 tower
begins includes a massless mode with n ¼ 0, which is
associated with the 4D graviton, as well as an infinite tower
of massive spin-2 states with n > 0—in what follows, “KK
mode” will refer specifically to these massive spin-2 states.
Using a suitable gauge [23], the 5D field r̂ can be made
independent of the internal coordinate y—and hence gives
rise to a single 4D (massless) scalar field, the radion. Using
this form of GMN, and the harmonic expansion defined
below, the quadratic terms in the action are diagonal.
We expand the action in terms of the metric in Eq. (2)

and the 5D field ĥμνðx; yÞ in the mode expansion

ĥμνðx; yÞ ¼
1
ffiffiffiffiffiffiffi
πrc

p
X∞

n¼0

hðnÞμν ðxÞψnðyÞ; ð3Þ

where the fields hðnÞμν ðxÞ are the spin-2 massless graviton
(n ¼ 0) and massive KK modes (n > 0). Diagonalizing the
quadratic terms, one finds the internal wave functions
ψnðyÞ must satisfy [17]

−
d
dy

$
e−4kjyj

dψn

dy

%
¼ m2

ne−2kjyjψn; ð4Þ

1Conceivably, this may be due to a relationship between five-
dimensional gauge- and gravity-theories [19].

2As this work was being submitted, we learned that Bonifacio
and Hinterbichler [20] had, in parallel and by different methods,
derived sum rules for KK scattering for a theory with a Ricci-flat
internal space. In contrast, our work focuses on the phenom-
enologically relevant case of an internal space with constant
negative curvature.

3The four-dimensional Planck scale is given by M2
Pl ¼

ð1 − e−2krcπÞM3
5=k.
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subject to the boundary conditions ∂yψnðy ¼ 0Þ ¼
∂yψyðy ¼ πrcÞ≡ 0. The solutions are of the form [24]

ψnðyÞ¼
eþ2kjyj

Nn

!
J2

"
mn

k
eþkjyj

#
þbn2Y2

"
mn

k
eþkjyj

#$
; ð5Þ

where the mn are determined by roots of the equation

0 ¼
"
2J2jy¼πrc þ

mn

k
eþkrcπJ02jy¼πrc

#

×
"
2Y2jy¼0 þ

mn

k
Y 0
2jy¼0

#

−
"
2Y2jy¼πrc þ

mn

k
eþkrcπY 0

2jy¼πrc

#

×
"
2J2jy¼0 þ

mn

k
J02jy¼0

#
; ð6Þ

where primes denote the derivative of the corresponding
functions. Equation (4) (with the boundary conditions) is of
Sturm-Liouville form with weight function e−2kjyj and has
no degenerate eigenvalues m2

n. Therefore, for appropriate
normalization constants Nn, the solutions are orthonormal
and complete

1

πrc

Z
þπre

−πre
dye−2kjyjψmðyÞψnðyÞ ¼ δmn; ð7Þ

1

πrc
e−2kjyj

X

j

ψ jðyÞψ jðy0Þ ¼ δðy − y0Þ: ð8Þ

Finally, the orthogonality relation [Eq. (7)], along with the
equation [Eq. (4)] and the boundary conditions imply that

1

πrc

Z
þπre

−πre
dye−4kjyjð∂yψmÞð∂yψnÞ ¼ m2

nδmn; ð9Þ

ensuring that the graviton and KK modes have canonical
kinetic energy terms.
Similarly, for the 5D radion field, which in a suitable

gauge [23] has no y dependence, we have the expansion

r̂ðx; yÞ ¼ 1
ffiffiffiffiffiffiffi
πrc

p rðxÞψ0; ð10Þ

where rðxÞ is the 4D scalar radion field, and ψ0 is the
normalized zero-mode internal wave function

ψ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

krcπ
1 − e−2krcπ

r
: ð11Þ

III. COUPLING DEFINITIONS

Expanding the action to higher order in 5D fields and
subsequently in terms of the 4D modes, we obtain

interactions between the massless graviton, the KK modes,
and the radion. The Lorentz form of interactions is thereby
completely determined, but the resulting expressions are
lengthy and will be given explicitly in a subsequent
publication, as mentioned above. The coupling strengths
of the interactions of the 4D fields are given by overlap
integrals of the internal space wave functions. There are
two classes of these couplings [25], those which depend on
derivatives of the internal wave functions (i.e., involving
∂yψn, which we denote4 as b-type), and those that do not
(which we denote as a-type). In general, the three- and
four-point massive spin-2 KK modes have both a-type and
b-type self-couplings, while couplings of these modes with
radions are purely b-type.
We will be computing the elastic scattering amplitude

nn → nn, where the incoming and outgoing states are both
of KK level n. At tree-level, this process occurs via a
contact interaction, or the exchange of a radion or arbitrary
intermediate KK state j (summed over j in the complete
amplitude). These amplitudes are defined in terms of the
following KK-mode couplings:

annj ¼
1

πrc

Z
πrc

−πrc
dye−2kjyjψnðyÞψnðyÞψ jðyÞ; ð12Þ

annnn ¼
1

πrc

Z
πrc

−πrc
dye−2kjyjψnðyÞψnðyÞψnðyÞψnðyÞ; ð13Þ

bnnj ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψnðyÞÞψ jðyÞ; ð14Þ

bnjn ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψ jðyÞÞψnðyÞ; ð15Þ

bnnnn ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψnðyÞÞψnðyÞψnðyÞ

ð16Þ

and the coupling of a radion to two KK-modes

bnnr ¼
rc
π
e−πkrc

Z
πrc

−πrc
dye−2kjyjð∂yψnðyÞ∂yψnðyÞÞψ0: ð17Þ

As suggested by the notation and as shown in Fig. 1, the
couplings annj and bnnj mediate tree-level s-, t-, and
u-channel diagrams with intermediate states of level j,
while bnnr does the same for radion intermediate states, and
annnn and bnnnn represent four-point “contact” interactions
between four KK-modes of level n.

4These b-type couplings result, after integrating over the
internal space, in nonderivative polynomial interactions of the
4D KK mode fields.
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subject to the boundary conditions ∂yψnðy ¼ 0Þ ¼
∂yψyðy ¼ πrcÞ≡ 0. The solutions are of the form [24]

ψnðyÞ¼
eþ2kjyj

Nn

!
J2

"
mn

k
eþkjyj

#
þbn2Y2

"
mn

k
eþkjyj

#$
; ð5Þ

where the mn are determined by roots of the equation

0 ¼
"
2J2jy¼πrc þ

mn

k
eþkrcπJ02jy¼πrc

#

×
"
2Y2jy¼0 þ

mn

k
Y 0
2jy¼0

#

−
"
2Y2jy¼πrc þ

mn

k
eþkrcπY 0

2jy¼πrc

#

×
"
2J2jy¼0 þ

mn

k
J02jy¼0

#
; ð6Þ

where primes denote the derivative of the corresponding
functions. Equation (4) (with the boundary conditions) is of
Sturm-Liouville form with weight function e−2kjyj and has
no degenerate eigenvalues m2

n. Therefore, for appropriate
normalization constants Nn, the solutions are orthonormal
and complete

1

πrc

Z
þπre

−πre
dye−2kjyjψmðyÞψnðyÞ ¼ δmn; ð7Þ

1

πrc
e−2kjyj

X

j

ψ jðyÞψ jðy0Þ ¼ δðy − y0Þ: ð8Þ

Finally, the orthogonality relation [Eq. (7)], along with the
equation [Eq. (4)] and the boundary conditions imply that

1

πrc

Z
þπre

−πre
dye−4kjyjð∂yψmÞð∂yψnÞ ¼ m2

nδmn; ð9Þ

ensuring that the graviton and KK modes have canonical
kinetic energy terms.
Similarly, for the 5D radion field, which in a suitable

gauge [23] has no y dependence, we have the expansion

r̂ðx; yÞ ¼ 1
ffiffiffiffiffiffiffi
πrc

p rðxÞψ0; ð10Þ

where rðxÞ is the 4D scalar radion field, and ψ0 is the
normalized zero-mode internal wave function

ψ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

krcπ
1 − e−2krcπ

r
: ð11Þ

III. COUPLING DEFINITIONS

Expanding the action to higher order in 5D fields and
subsequently in terms of the 4D modes, we obtain

interactions between the massless graviton, the KK modes,
and the radion. The Lorentz form of interactions is thereby
completely determined, but the resulting expressions are
lengthy and will be given explicitly in a subsequent
publication, as mentioned above. The coupling strengths
of the interactions of the 4D fields are given by overlap
integrals of the internal space wave functions. There are
two classes of these couplings [25], those which depend on
derivatives of the internal wave functions (i.e., involving
∂yψn, which we denote4 as b-type), and those that do not
(which we denote as a-type). In general, the three- and
four-point massive spin-2 KK modes have both a-type and
b-type self-couplings, while couplings of these modes with
radions are purely b-type.
We will be computing the elastic scattering amplitude

nn → nn, where the incoming and outgoing states are both
of KK level n. At tree-level, this process occurs via a
contact interaction, or the exchange of a radion or arbitrary
intermediate KK state j (summed over j in the complete
amplitude). These amplitudes are defined in terms of the
following KK-mode couplings:

annj ¼
1

πrc

Z
πrc

−πrc
dye−2kjyjψnðyÞψnðyÞψ jðyÞ; ð12Þ

annnn ¼
1

πrc

Z
πrc

−πrc
dye−2kjyjψnðyÞψnðyÞψnðyÞψnðyÞ; ð13Þ

bnnj ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψnðyÞÞψ jðyÞ; ð14Þ

bnjn ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψ jðyÞÞψnðyÞ; ð15Þ

bnnnn ¼
rc
π

Z
πrc

−πrc
dye−4kjyjð∂yψnðyÞ∂yψnðyÞÞψnðyÞψnðyÞ

ð16Þ

and the coupling of a radion to two KK-modes

bnnr ¼
rc
π
e−πkrc

Z
πrc

−πrc
dye−2kjyjð∂yψnðyÞ∂yψnðyÞÞψ0: ð17Þ

As suggested by the notation and as shown in Fig. 1, the
couplings annj and bnnj mediate tree-level s-, t-, and
u-channel diagrams with intermediate states of level j,
while bnnr does the same for radion intermediate states, and
annnn and bnnnn represent four-point “contact” interactions
between four KK-modes of level n.

4These b-type couplings result, after integrating over the
internal space, in nonderivative polynomial interactions of the
4D KK mode fields.
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From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:

bnnj ¼
!
m2

n −
1

2
m2

j

"
r2cannj; ð18Þ

bnjn ¼
1

2
m2

jr
2
cannj; ð19Þ

bnnnn ¼
1

3
m2

nr2cannnn: ð20Þ

IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,

Mðs; cos θÞ≡
X

k≤5
MðkÞðcos θÞ · sk: ð21Þ

In the following, we examine the conditions on the cou-
plings which ensure thatMðkÞ vanishes for k ∈ f2; 3; 4; 5g.
At Oðs5Þ, applying Eqs. (18) and (19), we find

Mð5ÞðcosθÞ¼− κ2

πrc

ð7þ cos2θÞsin2 θ
2304m8

n
·
!
annnn−

X

j

a2nnj

"
:

ð22Þ

Using completeness, Eq. (8), we find that

annnn ¼
X

j

a2nnj; ð23Þ

and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find

Mð4Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2

27648m8
n

·
!
4m2

nannnn − 3
X

j

m2
ja

2
nnj

"
: ð24Þ

Using the Sturm-Liouville equation, integrating by parts
twice, and using the boundary conditions, we find

m2
jannj ¼ −

2

r2c
bnnj þ 2m2

nannj: ð25Þ

Hence,

X

j

m2
ja

2
nnj ¼

X

j

annj

!
−

2

r2c
bnnj þ 2m2

nannj

"
ð26Þ

¼ −
2

r2c
bnnnn þ 2m2

nannnn ð27Þ

¼ 4

3
m2

nannnn: ð28Þ

Here the second line follows from completeness and the last
line from Eq. (20). Consequently, we find a second sum
rule

m2
nannnn ¼

3

4

X

j

m2
ja

2
nnj; ð29Þ

that ensures that Mð4Þ also vanishes identically.
The sum rules above [Eqs. (23) and (29)] follow directly

from the Sturm-Liouville structure of the harmonic expan-
sion for the spin-2 KK fields. Therefore, these rules will
apply to internal spaces of arbitrary warping and size. It is
also notable that having applied Eqs. (18)–(20) (that is,
expressing the sum rules purely in terms of a-type cou-
plings), these relations are “identical” to coupling relation-
ships which arise in compactified gauge theories [18].
The situation changes at Oðs3Þ, however, where we find

Mð3Þðcos θÞ ¼ κ2

πrc

sin2 θ
3456m8

n
·
!
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b2nnr
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þ 12m4
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"
: ð30Þ

We find explicitly that the radion begins to contribute at this
order, as expected from [7]. The vanishing of this con-
tribution enforces the sum rule
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FIG. 1. Feynman diagrams contributing to nn → nn level spin-2 KK boson scattering, including s-, t-, and u-channel exchange of KK
modes of arbitrary level j or the radion r and four-point contact interactions.
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bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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Amplitudes and Coupling Structures on a Torus/ADSwhere n⃗ ¼ ðn1…nHÞ are the KK numbers of the relevant
spin-2 fields.14 These integrals are unitless and entirely
determined by the value of krc. Note that an⃗ is fully
symmetric in all KK numbers, whereas bn⃗ is symmetric in
the first pair and remaining KK numbers separately.
Pictorially, we indicate the vertices associated with these
couplings as small filled circles attached to the appropriate
number of particle lines:

ð46Þ

ð47Þ

where overlapping straight and wavy lines indicate a spin-2
particle and P indicates that all permutations of its argu-
ments should be considered. If we set n3 ¼ 0 in the triple
spin-2 coupling, the corresponding wave function ψ0 is flat;
either ψ0 is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

an1n20 ¼ ψ0δn1;n2 ; bn1n20 ¼ μ2n1ψ0δn1;n2 ; b0n1n2 ¼ 0:

ð48Þ

The Sturm-Liouville problem that defines the wave func-
tions fψng also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.
When calculating matrix elements of massive KK mode

scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

bn1n2r ≡
ψ0

π
e−krcπ

Z
þπ

−π
dφε−2ð∂φψn1Þð∂φψn2Þ: ð49Þ

This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the brn1n2 coupling vanishes for the same
reason that the b0n1n2 coupling vanished. Note that the
exponential factor in the integrand of bn1n2r prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.
Pictorially,

ð50Þ

where unadorned straight lines indicate a radion.
Appendix C describes how the detailed vertices between

4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section IVA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes ðn1; n2Þ → ðn3; n4Þ with helicities
ðλ1; λ2Þ → ðλ3; λ4Þ, we choose coordinates such that the
initial particle pair have 4-momenta satisfying

pμ
1 ¼ ðE1;þjp⃗ijẑÞ; p2

1 ¼ m2
n1 ; ð51Þ

pμ
2 ¼ ðE2;−jp⃗ijẑÞ; p2

2 ¼ m2
n2 ; ð52Þ

and the final particle pair have 4-momenta satisfying

14Every term in LðRSÞ
5D contains exactly two derivatives.

Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.
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From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:

bnnj ¼
!
m2

n −
1

2
m2

j

"
r2cannj; ð18Þ

bnjn ¼
1

2
m2

jr
2
cannj; ð19Þ

bnnnn ¼
1

3
m2

nr2cannnn: ð20Þ

IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,

Mðs; cos θÞ≡
X

k≤5
MðkÞðcos θÞ · sk: ð21Þ

In the following, we examine the conditions on the cou-
plings which ensure thatMðkÞ vanishes for k ∈ f2; 3; 4; 5g.
At Oðs5Þ, applying Eqs. (18) and (19), we find

Mð5ÞðcosθÞ¼− κ2

πrc

ð7þ cos2θÞsin2 θ
2304m8

n
·
!
annnn−

X

j

a2nnj

"
:

ð22Þ

Using completeness, Eq. (8), we find that

annnn ¼
X

j

a2nnj; ð23Þ

and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find

Mð4Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2

27648m8
n

·
!
4m2

nannnn − 3
X

j

m2
ja

2
nnj

"
: ð24Þ

Using the Sturm-Liouville equation, integrating by parts
twice, and using the boundary conditions, we find

m2
jannj ¼ −

2

r2c
bnnj þ 2m2

nannj: ð25Þ

Hence,

X

j

m2
ja

2
nnj ¼

X

j

annj

!
−

2

r2c
bnnj þ 2m2

nannj

"
ð26Þ

¼ −
2

r2c
bnnnn þ 2m2

nannnn ð27Þ

¼ 4

3
m2

nannnn: ð28Þ

Here the second line follows from completeness and the last
line from Eq. (20). Consequently, we find a second sum
rule

m2
nannnn ¼

3

4

X

j

m2
ja

2
nnj; ð29Þ

that ensures that Mð4Þ also vanishes identically.
The sum rules above [Eqs. (23) and (29)] follow directly

from the Sturm-Liouville structure of the harmonic expan-
sion for the spin-2 KK fields. Therefore, these rules will
apply to internal spaces of arbitrary warping and size. It is
also notable that having applied Eqs. (18)–(20) (that is,
expressing the sum rules purely in terms of a-type cou-
plings), these relations are “identical” to coupling relation-
ships which arise in compactified gauge theories [18].
The situation changes at Oðs3Þ, however, where we find

Mð3Þðcos θÞ ¼ κ2

πrc

sin2 θ
3456m8

n
·
!
−108

b2nnr
r4c

þ 12m4
na2nn0

− 16m4
nannnn þ 15

X

j

m4
ja

2
nnj

"
: ð30Þ

We find explicitly that the radion begins to contribute at this
order, as expected from [7]. The vanishing of this con-
tribution enforces the sum rule

b2nnr
r4c

¼ 1

9
m4

na2nn0 −
4

27
m4

nannnn þ
5

36

X

j

m4
ja

2
nnj; ð31Þ

FIG. 1. Feynman diagrams contributing to nn → nn level spin-2 KK boson scattering, including s-, t-, and u-channel exchange of KK
modes of arbitrary level j or the radion r and four-point contact interactions.
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where n⃗ ¼ ðn1…nHÞ are the KK numbers of the relevant
spin-2 fields.14 These integrals are unitless and entirely
determined by the value of krc. Note that an⃗ is fully
symmetric in all KK numbers, whereas bn⃗ is symmetric in
the first pair and remaining KK numbers separately.
Pictorially, we indicate the vertices associated with these
couplings as small filled circles attached to the appropriate
number of particle lines:

ð46Þ

ð47Þ

where overlapping straight and wavy lines indicate a spin-2
particle and P indicates that all permutations of its argu-
ments should be considered. If we set n3 ¼ 0 in the triple
spin-2 coupling, the corresponding wave function ψ0 is flat;
either ψ0 is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

an1n20 ¼ ψ0δn1;n2 ; bn1n20 ¼ μ2n1ψ0δn1;n2 ; b0n1n2 ¼ 0:

ð48Þ

The Sturm-Liouville problem that defines the wave func-
tions fψng also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.
When calculating matrix elements of massive KK mode

scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

bn1n2r ≡
ψ0

π
e−krcπ

Z
þπ

−π
dφε−2ð∂φψn1Þð∂φψn2Þ: ð49Þ

This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the brn1n2 coupling vanishes for the same
reason that the b0n1n2 coupling vanished. Note that the
exponential factor in the integrand of bn1n2r prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.
Pictorially,

ð50Þ

where unadorned straight lines indicate a radion.
Appendix C describes how the detailed vertices between

4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section IVA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes ðn1; n2Þ → ðn3; n4Þ with helicities
ðλ1; λ2Þ → ðλ3; λ4Þ, we choose coordinates such that the
initial particle pair have 4-momenta satisfying

pμ
1 ¼ ðE1;þjp⃗ijẑÞ; p2

1 ¼ m2
n1 ; ð51Þ

pμ
2 ¼ ðE2;−jp⃗ijẑÞ; p2

2 ¼ m2
n2 ; ð52Þ

and the final particle pair have 4-momenta satisfying

14Every term in LðRSÞ
5D contains exactly two derivatives.

Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.
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where n⃗ ¼ ðn1…nHÞ are the KK numbers of the relevant
spin-2 fields.14 These integrals are unitless and entirely
determined by the value of krc. Note that an⃗ is fully
symmetric in all KK numbers, whereas bn⃗ is symmetric in
the first pair and remaining KK numbers separately.
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spin-2 coupling, the corresponding wave function ψ0 is flat;
either ψ0 is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

an1n20 ¼ ψ0δn1;n2 ; bn1n20 ¼ μ2n1ψ0δn1;n2 ; b0n1n2 ¼ 0:
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The Sturm-Liouville problem that defines the wave func-
tions fψng also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.
When calculating matrix elements of massive KK mode

scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

bn1n2r ≡
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This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the brn1n2 coupling vanishes for the same
reason that the b0n1n2 coupling vanished. Note that the
exponential factor in the integrand of bn1n2r prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.
Pictorially,
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where unadorned straight lines indicate a radion.
Appendix C describes how the detailed vertices between

4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section IVA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes ðn1; n2Þ → ðn3; n4Þ with helicities
ðλ1; λ2Þ → ðλ3; λ4Þ, we choose coordinates such that the
initial particle pair have 4-momenta satisfying

pμ
1 ¼ ðE1;þjp⃗ijẑÞ; p2

1 ¼ m2
n1 ; ð51Þ

pμ
2 ¼ ðE2;−jp⃗ijẑÞ; p2

2 ¼ m2
n2 ; ð52Þ

and the final particle pair have 4-momenta satisfying

14Every term in LðRSÞ
5D contains exactly two derivatives.

Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.
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bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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Amplitudes and Coupling Structures on a Torus/ADSwhere n⃗ ¼ ðn1…nHÞ are the KK numbers of the relevant
spin-2 fields.14 These integrals are unitless and entirely
determined by the value of krc. Note that an⃗ is fully
symmetric in all KK numbers, whereas bn⃗ is symmetric in
the first pair and remaining KK numbers separately.
Pictorially, we indicate the vertices associated with these
couplings as small filled circles attached to the appropriate
number of particle lines:

ð46Þ

ð47Þ

where overlapping straight and wavy lines indicate a spin-2
particle and P indicates that all permutations of its argu-
ments should be considered. If we set n3 ¼ 0 in the triple
spin-2 coupling, the corresponding wave function ψ0 is flat;
either ψ0 is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

an1n20 ¼ ψ0δn1;n2 ; bn1n20 ¼ μ2n1ψ0δn1;n2 ; b0n1n2 ¼ 0:

ð48Þ

The Sturm-Liouville problem that defines the wave func-
tions fψng also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.
When calculating matrix elements of massive KK mode

scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

bn1n2r ≡
ψ0

π
e−krcπ

Z
þπ

−π
dφε−2ð∂φψn1Þð∂φψn2Þ: ð49Þ

This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the brn1n2 coupling vanishes for the same
reason that the b0n1n2 coupling vanished. Note that the
exponential factor in the integrand of bn1n2r prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.
Pictorially,

ð50Þ

where unadorned straight lines indicate a radion.
Appendix C describes how the detailed vertices between

4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section IVA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes ðn1; n2Þ → ðn3; n4Þ with helicities
ðλ1; λ2Þ → ðλ3; λ4Þ, we choose coordinates such that the
initial particle pair have 4-momenta satisfying

pμ
1 ¼ ðE1;þjp⃗ijẑÞ; p2

1 ¼ m2
n1 ; ð51Þ

pμ
2 ¼ ðE2;−jp⃗ijẑÞ; p2

2 ¼ m2
n2 ; ð52Þ

and the final particle pair have 4-momenta satisfying

14Every term in LðRSÞ
5D contains exactly two derivatives.

Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.
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From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:

bnnj ¼
!
m2

n −
1

2
m2

j

"
r2cannj; ð18Þ

bnjn ¼
1

2
m2

jr
2
cannj; ð19Þ

bnnnn ¼
1

3
m2

nr2cannnn: ð20Þ

IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,

Mðs; cos θÞ≡
X

k≤5
MðkÞðcos θÞ · sk: ð21Þ

In the following, we examine the conditions on the cou-
plings which ensure thatMðkÞ vanishes for k ∈ f2; 3; 4; 5g.
At Oðs5Þ, applying Eqs. (18) and (19), we find

Mð5ÞðcosθÞ¼− κ2

πrc

ð7þ cos2θÞsin2 θ
2304m8

n
·
!
annnn−

X

j

a2nnj

"
:

ð22Þ

Using completeness, Eq. (8), we find that

annnn ¼
X

j

a2nnj; ð23Þ

and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find

Mð4Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2

27648m8
n

·
!
4m2

nannnn − 3
X

j

m2
ja

2
nnj

"
: ð24Þ

Using the Sturm-Liouville equation, integrating by parts
twice, and using the boundary conditions, we find

m2
jannj ¼ −

2

r2c
bnnj þ 2m2

nannj: ð25Þ

Hence,

X

j

m2
ja

2
nnj ¼

X

j

annj

!
−

2

r2c
bnnj þ 2m2

nannj

"
ð26Þ

¼ −
2

r2c
bnnnn þ 2m2

nannnn ð27Þ

¼ 4

3
m2

nannnn: ð28Þ

Here the second line follows from completeness and the last
line from Eq. (20). Consequently, we find a second sum
rule

m2
nannnn ¼

3

4

X

j

m2
ja

2
nnj; ð29Þ

that ensures that Mð4Þ also vanishes identically.
The sum rules above [Eqs. (23) and (29)] follow directly

from the Sturm-Liouville structure of the harmonic expan-
sion for the spin-2 KK fields. Therefore, these rules will
apply to internal spaces of arbitrary warping and size. It is
also notable that having applied Eqs. (18)–(20) (that is,
expressing the sum rules purely in terms of a-type cou-
plings), these relations are “identical” to coupling relation-
ships which arise in compactified gauge theories [18].
The situation changes at Oðs3Þ, however, where we find

Mð3Þðcos θÞ ¼ κ2

πrc

sin2 θ
3456m8

n
·
!
−108

b2nnr
r4c

þ 12m4
na2nn0

− 16m4
nannnn þ 15

X

j

m4
ja

2
nnj

"
: ð30Þ

We find explicitly that the radion begins to contribute at this
order, as expected from [7]. The vanishing of this con-
tribution enforces the sum rule

b2nnr
r4c

¼ 1

9
m4

na2nn0 −
4

27
m4

nannnn þ
5

36

X

j

m4
ja

2
nnj; ð31Þ

FIG. 1. Feynman diagrams contributing to nn → nn level spin-2 KK boson scattering, including s-, t-, and u-channel exchange of KK
modes of arbitrary level j or the radion r and four-point contact interactions.
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where n⃗ ¼ ðn1…nHÞ are the KK numbers of the relevant
spin-2 fields.14 These integrals are unitless and entirely
determined by the value of krc. Note that an⃗ is fully
symmetric in all KK numbers, whereas bn⃗ is symmetric in
the first pair and remaining KK numbers separately.
Pictorially, we indicate the vertices associated with these
couplings as small filled circles attached to the appropriate
number of particle lines:

ð46Þ

ð47Þ

where overlapping straight and wavy lines indicate a spin-2
particle and P indicates that all permutations of its argu-
ments should be considered. If we set n3 ¼ 0 in the triple
spin-2 coupling, the corresponding wave function ψ0 is flat;
either ψ0 is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

an1n20 ¼ ψ0δn1;n2 ; bn1n20 ¼ μ2n1ψ0δn1;n2 ; b0n1n2 ¼ 0:

ð48Þ

The Sturm-Liouville problem that defines the wave func-
tions fψng also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.
When calculating matrix elements of massive KK mode

scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

bn1n2r ≡
ψ0

π
e−krcπ

Z
þπ

−π
dφε−2ð∂φψn1Þð∂φψn2Þ: ð49Þ

This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the brn1n2 coupling vanishes for the same
reason that the b0n1n2 coupling vanished. Note that the
exponential factor in the integrand of bn1n2r prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.
Pictorially,

ð50Þ

where unadorned straight lines indicate a radion.
Appendix C describes how the detailed vertices between

4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section IVA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes ðn1; n2Þ → ðn3; n4Þ with helicities
ðλ1; λ2Þ → ðλ3; λ4Þ, we choose coordinates such that the
initial particle pair have 4-momenta satisfying

pμ
1 ¼ ðE1;þjp⃗ijẑÞ; p2

1 ¼ m2
n1 ; ð51Þ

pμ
2 ¼ ðE2;−jp⃗ijẑÞ; p2

2 ¼ m2
n2 ; ð52Þ

and the final particle pair have 4-momenta satisfying

14Every term in LðRSÞ
5D contains exactly two derivatives.

Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.
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symmetric in all KK numbers, whereas bn⃗ is symmetric in
the first pair and remaining KK numbers separately.
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particle and P indicates that all permutations of its argu-
ments should be considered. If we set n3 ¼ 0 in the triple
spin-2 coupling, the corresponding wave function ψ0 is flat;
either ψ0 is differentiated (in which case the integral
vanishes) or it can be factored out of the y integral thereby
allowing us to invoke the wave function orthogonality
relations on the remaining wave function pair. In this way,
the triple spin-2 couplings imply that the massless 4D
graviton couples diagonally to the other spin-2 states, as
required by 4D general covariance:

an1n20 ¼ ψ0δn1;n2 ; bn1n20 ¼ μ2n1ψ0δn1;n2 ; b0n1n2 ¼ 0:
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The Sturm-Liouville problem that defines the wave func-
tions fψng also relates various A-type and B-type cou-
plings to each other; we will explore this further in Sec. V.
When calculating matrix elements of massive KK mode

scattering, we must also consider radion-mediated dia-
grams. These involve coupling a radion to a pair of spin-2
states, which requires the integral

bn1n2r ≡
ψ0

π
e−krcπ

Z
þπ

−π
dφε−2ð∂φψn1Þð∂φψn2Þ: ð49Þ

This is defined analogously to the pure spin-2 couplings
in the sense that we indicate the role of the radion
wave function within the coupling (e.g., differentiated vs

undifferentiated) through the placement of a pseudo-KK
index “r.” The RS1 model lacks an analogous A-type radion
coupling and the brn1n2 coupling vanishes for the same
reason that the b0n1n2 coupling vanished. Note that the
exponential factor in the integrand of bn1n2r prevents use
of the orthonormality relations; therefore, the radion
typically couples nondiagonally to massive spin-2 modes.
Pictorially,
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where unadorned straight lines indicate a radion.
Appendix C describes how the detailed vertices between

4D particles are derived from the 5D theory and summa-
rizes the relevant interactions. These interactions form the
building blocks of our matrix elements, which we turn
to next.

IV. ELASTIC SCATTERING IN THE
5D ORBIFOLDED TORUS MODEL

In this section, we begin our analysis of the scattering
amplitudes of the massive spin-2 KK modes. Section IVA
gives details of our kinematic and helicity conventions. As
described above, the full tree-level scattering amplitudes
will (in general) require summing over the exchange of all
intermediate states, and we will find that the cancellations
needed to reduce the growth of scattering amplitudes from
Oðs5Þ toOðsÞwill only completely occur once all states are
included. In this section we therefore introduce two
“partial” forms of the scattering amplitudes which will
facilitate our discussion of the cancellations: (a) truncated
matrix elements, which include only exchange of KK
modes below some mode number, and (b) the expansion
of the matrix elements in powers of energy. In Sec. IV B we
analyze the case of KKmode scattering in the case in which
the curvature of the internal manifold vanishes: the 5D
orbifolded torus model.

A. Preliminaries

The preceding sections (and related appendixes)
described how to determine the vertices relevant to tree-
level 2-to-2 scattering of massive spin-2 helicity eigenstates
in the center-of-momentum frame. This section calculates
and analyzes those matrix elements. For scattering of
nonzero KK modes ðn1; n2Þ → ðn3; n4Þ with helicities
ðλ1; λ2Þ → ðλ3; λ4Þ, we choose coordinates such that the
initial particle pair have 4-momenta satisfying

pμ
1 ¼ ðE1;þjp⃗ijẑÞ; p2

1 ¼ m2
n1 ; ð51Þ

pμ
2 ¼ ðE2;−jp⃗ijẑÞ; p2

2 ¼ m2
n2 ; ð52Þ

and the final particle pair have 4-momenta satisfying

14Every term in LðRSÞ
5D contains exactly two derivatives.

Because even-spin fields carry an even number of Lorentz
indices and the Lagrangian is a Lorentz scalar, those two
derivatives must either both be 4D derivatives or both be
extra-dimensional derivatives, no matter how many spin-2 or
spin-0 fields are present. Therefore, A-type and B-type couplings
exhaust the possible wave function integrals encountered in the
RS1 model.
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An Elastic scattering process in compactified theories

bulk that is bounded by two four-dimensional (4D) branes
at y ¼ 0 and y ¼ πrc. The length rc is known as the
compactification radius of the extra dimension. This 5D
spacetime is parameterized by coordinates xM ≡ ðxμ; yÞ,
where the xμ act like our usual 4D spacetime coordinates
and y is an extra-dimensional spatial coordinate. By using
an orbifold symmetry that associates every 5D point ðx; yÞ
with a point ðx;−yÞ and restricting the field content to
include only fields even under orbifold parity, the coor-
dinate y can be extended to cover the interval ½−πrc;þπrc&
and thereby parameterizes a circle of radius rc. In this
orbifolded setup, the branes are located at the orbifold fixed
points of the extended spacetime. Oftentimes we will use
factors of rc to replace the dimensionful variables with
dimensionless equivalents, such as replacing y with φ ≡
y=rc ∈ ½−π; π& when it is convenient to do so.
In general, we will denote a 4D Lorentz index with a

lowercase Greek letter such as μ ¼ 0, 1, 2, 3, whereas
a 5D index will be denoted by an uppercase Latin letter
such as M ¼ 0, 1, 2, 3, 5. The 4D flat metric ημν ¼
Diagðþ1;−1;−1;−1Þ is used to raise or lower 4D indices,
e.g., xμ ≡ ημνxν.
The 5D RS1 metric is of the following form:

GMN ¼
!wðx; yÞgμν 0

0 −vðx; yÞ2

"
: ð11Þ

This is expressed in coordinates xM ≡ ðxμ; yÞ such that the
corresponding invariant interval ds2 equals

ds2 ¼ ðGMNÞdxMdxN ¼ ðwgμνÞdxμdxν − ðv2Þdy2; ð12Þ

allowing for warping of the transverse four-dimensional
space. Meanwhile, the inverse metric equals

G̃MN ¼
!
g̃μν=wðx; yÞ 0

0 −1=vðx; yÞ2

"
; ð13Þ

where we denote the inverse with a tilde (e.g., G̃ ≡ G−1 and
g̃ ≡ g−1). Several quantities related to the spacetime
geometry are directly calculable from GMN . For instance,
the Christoffel symbols, Ricci curvature, and scalar curva-
ture equal

ΓP
MN ¼ 1

2
G̃PQð∂MGNQ þ ∂NGMQ − ∂QGMNÞ;

RMN ¼ ∂NΓP
MP − ∂PΓP

MN þ ΓP
NQΓ

Q
MP − ΓP

PQΓ
Q
MN;

R5D ¼ G̃MNRMN; ð14Þ

respectively. When going from the metric to the scalar
curvature, exactly two derivatives are applied in every term,
a fact that proves important when we organize the eventual
4D effective theory.

Integrals over the 5D spacetime are weighted by the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy, which factors into

a 4D piece and an extra-dimensional piece:

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
d4xdy ¼ ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4x& · ðvdyÞ: ð15Þ

The quantity in square brackets is the 4D projection of the
5D invariant volume element and thereby acts as an
effective 4D volume element on a 4D sheet at constant y.
The pure gravity RS1 Lagrangian consists of two pieces.

The first piece is the Einstein-Hilbert Lagrangian LEH,
which is defined as

LEH ≡ 2

κ2
ffiffiffiffiffiffiffiffiffiffiffi
detG

p
R5D ¼ 2

κ2
w2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
R5D; ð16Þ

where κ has units of ðEnergyÞ−3=2. This implies that the 5D
Planck massMPl;5D and 5D quantity κ are related according
to κ2M3

Pl;5D ¼ 4. The second piece is the cosmological
constant Lagrangian LCC, which can be written as

LCC ≡ 12

κ2
krc

n
2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
ð∂φjφjÞ2 − w2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ð∂2

φjφjÞ
o
:

ð17Þ

LCC generates two types of terms: terms proportional to
ð∂φjφjÞ2 provide a 5D cosmological constant in the bulk
whereas terms proportional to ð∂2

φjφjÞ generate tension on
the branes (a prime indicates differentiation with respect to
y, e.g., f0 ¼ ∂yf). The coefficients of these terms are
chosen so as to guarantee a solution of Einstein’s equations
that is 4D Poincaré invariant; namely, the vacuum solution
they imply equals

ηðRSÞMN ≡
!
e−2kjyjημν 0

0 −1

"
ð18Þ

as expressed in coordinates xM ¼ ðxμ; yÞ, where k is the non-
negative warping parameter and has units of ðEnergyÞþ1.
Combining LEH and LCC yields L5D, the Lagrangian of

the matter-free 5D theory:

L5D ¼ LEH þ LCC: ð19Þ

The 4D effective theory is then defined from the action

S ¼
Z

d4x½dyL5D& ≡
Z

d4xLðeffÞ
4D ; ð20Þ

i.e., the Lagrangian LðeffÞ
4D is obtained by integrating L5D

across the extra dimension. The form of LCC specifically
prevents a nonzero 4D cosmological constant in the
effective theory described by LðeffÞ

4D .
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Matrix Elements: Relevant Diagrams
Consider elastic KK mode scattering: h

(n)
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(n)
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(n)
h

(n)

Each h
(n) has 5 helicity eigenvalues: ⁄i œ {≠2, ≠1, 0, +1, +2}.

M⁄1⁄2æ⁄3⁄4 =
ÿ

kÆ5
M

(k)
⁄1⁄2æ⁄3⁄4(◊, „) s

k

Recall: first 2 KK #’s in b-type =∆ (ˆÏÂ)
and Â0 is independent of Ï, so (ˆÏÂ0) = 0

M = +
ÿ
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S

U + +
ÿ

j>0

T

V
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pμ
3 ¼ ðE3;þp⃗fÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−p⃗fÞ; p2

4 ¼ m2
n4 ; ð54Þ

where p⃗f ≡ jp⃗fjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν%2 ¼ ϵμ%1ϵ
ν
%1; ð55Þ

ϵμν%1 ¼
1ffiffiffi
2

p ½ϵμ%1ϵ
ν
0 þ ϵμ0ϵ

ν
%1'; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0'; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ%1 ¼ % e%iϕ
ffiffiffi
2

p ð0;−cθcϕ % isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

#
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ';

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1

2 ∂ν⟦ĥ
ð0Þ⟧Þ2.

The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡
X

σ∈1
2Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,
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ð0Þ⟧Þ2.

The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡
X

σ∈1
2Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 101, 075013 (2020)

075013-10

O(s5) & O(s4) Sum Rules

From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:

bnnj ¼
!
m2

n −
1

2
m2

j

"
r2cannj; ð18Þ

bnjn ¼
1

2
m2

jr
2
cannj; ð19Þ

bnnnn ¼
1

3
m2

nr2cannnn: ð20Þ

IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,

Mðs; cos θÞ≡
X

k≤5
MðkÞðcos θÞ · sk: ð21Þ

In the following, we examine the conditions on the cou-
plings which ensure thatMðkÞ vanishes for k ∈ f2; 3; 4; 5g.
At Oðs5Þ, applying Eqs. (18) and (19), we find

Mð5ÞðcosθÞ¼− κ2

πrc

ð7þ cos2θÞsin2 θ
2304m8

n
·
!
annnn−

X

j

a2nnj

"
:

ð22Þ

Using completeness, Eq. (8), we find that

annnn ¼
X

j

a2nnj; ð23Þ

and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find

Mð4Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2

27648m8
n

·
!
4m2

nannnn − 3
X

j

m2
ja

2
nnj

"
: ð24Þ

Using the Sturm-Liouville equation, integrating by parts
twice, and using the boundary conditions, we find

m2
jannj ¼ −

2

r2c
bnnj þ 2m2

nannj: ð25Þ

Hence,

X
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2
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¼ 4

3
m2
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Here the second line follows from completeness and the last
line from Eq. (20). Consequently, we find a second sum
rule

m2
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that ensures that Mð4Þ also vanishes identically.
The sum rules above [Eqs. (23) and (29)] follow directly

from the Sturm-Liouville structure of the harmonic expan-
sion for the spin-2 KK fields. Therefore, these rules will
apply to internal spaces of arbitrary warping and size. It is
also notable that having applied Eqs. (18)–(20) (that is,
expressing the sum rules purely in terms of a-type cou-
plings), these relations are “identical” to coupling relation-
ships which arise in compactified gauge theories [18].
The situation changes at Oðs3Þ, however, where we find
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We find explicitly that the radion begins to contribute at this
order, as expected from [7]. The vanishing of this con-
tribution enforces the sum rule
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modes of arbitrary level j or the radion r and four-point contact interactions.
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From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:
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IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,
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and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find

Mð4Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2

27648m8
n

·
!
4m2

nannnn − 3
X

j

m2
ja

2
nnj

"
: ð24Þ
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Here the second line follows from completeness and the last
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that ensures that Mð4Þ also vanishes identically.
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Matrix Elements: Relevant Diagrams
Consider elastic KK mode scattering: h

(n)
h

(n)
æ h

(n)
h

(n)

Each h
(n) has 5 helicity eigenvalues: ⁄i œ {≠2, ≠1, 0, +1, +2}.

M⁄1⁄2æ⁄3⁄4 =
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kÆ5
M
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⁄1⁄2æ⁄3⁄4(◊, „) s

k

Recall: first 2 KK #’s in b-type =∆ (ˆÏÂ)
and Â0 is independent of Ï, so (ˆÏÂ0) = 0
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pμ
3 ¼ ðE3;þp⃗fÞ; p2

3 ¼ m2
n3 ; ð53Þ

pμ
4 ¼ ðE4;−p⃗fÞ; p2

4 ¼ m2
n4 ; ð54Þ

where p⃗f ≡ jp⃗fjðsin θ cosϕ; sin θ sinϕ; cos θÞ. That is, the
initial pair approach along the z axis and the final pair
separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to

ϵμν%2 ¼ ϵμ%1ϵ
ν
%1; ð55Þ

ϵμν%1 ¼
1ffiffiffi
2

p ½ϵμ%1ϵ
ν
0 þ ϵμ0ϵ

ν
%1'; ð56Þ

ϵμν0 ¼ 1ffiffiffi
6

p ½ϵμþ1ϵ
ν
−1 þ ϵμ−1ϵ

ν
þ1 þ 2ϵμ0ϵ

ν
0'; ð57Þ

where ϵμs are the (particle-direction dependent) spin-1
polarization vectors

ϵμ%1 ¼ % e%iϕ
ffiffiffi
2

p ð0;−cθcϕ % isϕ;−cθsϕ ∓ icϕ; sθÞ; ð58Þ

ϵμ0 ¼
E
m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; p̂

#
; ð59Þ

ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,

ð60Þ

ð61Þ

where we use the spin-2 propagator convention [55]

Bμν;ρσ ≡ 1

2
½B̄μρB̄νσ þ B̄νρB̄μσ −

1

3
ð2þ δ0;MÞB̄μνB̄ρσ';

B̄αβjM¼0 ¼ ηαβ; B̄αβjM≠0 ≡ ηαβ −
PαPβ

M2
; ð62Þ

and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1

2 ∂ν⟦ĥ
ð0Þ⟧Þ2.

The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡
X

σ∈1
2Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,
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and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
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O(s5) & O(s4) Sum Rules

From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:

bnnj ¼
!
m2

n −
1

2
m2

j

"
r2cannj; ð18Þ

bnjn ¼
1

2
m2

jr
2
cannj; ð19Þ

bnnnn ¼
1

3
m2

nr2cannnn: ð20Þ

IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,

Mðs; cos θÞ≡
X

k≤5
MðkÞðcos θÞ · sk: ð21Þ

In the following, we examine the conditions on the cou-
plings which ensure thatMðkÞ vanishes for k ∈ f2; 3; 4; 5g.
At Oðs5Þ, applying Eqs. (18) and (19), we find

Mð5ÞðcosθÞ¼− κ2

πrc

ð7þ cos2θÞsin2 θ
2304m8

n
·
!
annnn−

X

j

a2nnj

"
:

ð22Þ

Using completeness, Eq. (8), we find that

annnn ¼
X

j

a2nnj; ð23Þ

and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find

Mð4Þðcos θÞ ¼ κ2

πrc

ð7þ cos 2θÞ2

27648m8
n

·
!
4m2

nannnn − 3
X

j

m2
ja

2
nnj

"
: ð24Þ

Using the Sturm-Liouville equation, integrating by parts
twice, and using the boundary conditions, we find

m2
jannj ¼ −

2

r2c
bnnj þ 2m2

nannj: ð25Þ

Hence,

X

j

m2
ja

2
nnj ¼

X

j

annj

!
−

2

r2c
bnnj þ 2m2

nannj

"
ð26Þ

¼ −
2

r2c
bnnnn þ 2m2

nannnn ð27Þ

¼ 4

3
m2

nannnn: ð28Þ

Here the second line follows from completeness and the last
line from Eq. (20). Consequently, we find a second sum
rule

m2
nannnn ¼

3

4

X

j

m2
ja

2
nnj; ð29Þ

that ensures that Mð4Þ also vanishes identically.
The sum rules above [Eqs. (23) and (29)] follow directly

from the Sturm-Liouville structure of the harmonic expan-
sion for the spin-2 KK fields. Therefore, these rules will
apply to internal spaces of arbitrary warping and size. It is
also notable that having applied Eqs. (18)–(20) (that is,
expressing the sum rules purely in terms of a-type cou-
plings), these relations are “identical” to coupling relation-
ships which arise in compactified gauge theories [18].
The situation changes at Oðs3Þ, however, where we find
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We find explicitly that the radion begins to contribute at this
order, as expected from [7]. The vanishing of this con-
tribution enforces the sum rule

b2nnr
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5

36
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j
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FIG. 1. Feynman diagrams contributing to nn → nn level spin-2 KK boson scattering, including s-, t-, and u-channel exchange of KK
modes of arbitrary level j or the radion r and four-point contact interactions.
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O(s3): Radion Coupling



Matrix Elements: Relevant Diagrams
Consider elastic KK mode scattering: h
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separate along the line described by the angles ðθ;ϕÞ. The
helicity-λ spin-2 polarization tensor ϵμνλ ðpÞ for a particle
with 4-momentum p is defined according to
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where ϵμs are the (particle-direction dependent) spin-1
polarization vectors
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ðcx; sxÞ ≡ ðcos x; sin xÞ, and p̂ is a unit vector in the
direction of the momentum [55]. We use the Jacob-Wick
second particle convention, which adds a phase ð−1Þλ to ϵμνλ
when the polarization tensor describes hðn2Þ or hðn4Þ [56].
Due to rotational invariance, we may set the azimuthal
angle ϕ to 0 without loss of generality. Meanwhile, the
propagators for virtual spin-0 and spin-2 particles of mass
M and 4-momentum P are, respectively,
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where we use the spin-2 propagator convention [55]
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and ημν ¼ Diagðþ1;−1;−1;−1Þ is the flat 4D metric. The
massless spin-2 propagator is derived in the de Donder
gauge, via a gauge-fixing term −ð∂μĥð0Þμν − 1

2 ∂ν⟦ĥ
ð0Þ⟧Þ2.

The Mandelstam variable s ≡ ðp1 þ p2Þ2 ¼ ðE1 þ E2Þ2

provides a convenient frame-invariant measure of collision
energy. The minimum value of s that is kinematically
allowed equals smin≡max½ðmn1þmn2Þ

2;ðmn3þmn4Þ
2'.

When dealing with explicit full matrix elements, we will
replace s ∈ ½smin;þ∞Þ with the unitless s ∈ ½0;þ∞Þ,
which is defined according to s ≡ sminð1þ sÞ.
As discussed in Sec. I B, any tree-level massive spin-2

scattering amplitude can be written as

M ≡ Mc þMr þ
Xþ∞

j¼0

Mj; ð63Þ

where we separate the contributions arising from contact
interactions, radion exchange, and a sum over the
exchanged intermediate KK states j (and where “0” labels
the massless graviton). In practice, this sum cannot be
completed in entirety and must instead be truncated.
Therefore, we also define the truncated matrix element

M½N' ≡ Mc þMr þ
XN

j¼0

Mj; ð64Þ

which includes the contact diagram, the radion-mediated
diagrams, and all KK mode-mediated diagrams with
intermediate KK number less than or equal to N.
We are concerned with the high-energy behavior of these

matrix elements and will therefore examine the high-energy
behavior of each of the contributions discussed. Because
the polarization tensors ϵμν%1 introduce odd powers of
energy,

ffiffiffi
s

p
is a more appropriate expansion parameter

for generic helicity combinations. Thus, we series expand
the diagrams and total matrix element in

ffiffiffi
s

p
and label the

coefficients like so:

Mðs; θÞ ≡
X

σ∈1
2Z

MðσÞðθÞ · sσ ð65Þ

and define MðσÞ ≡ MðσÞ · sσ . In what follows, we dem-
onstrate thatMðσÞ vanishes for σ > 1 regardless of helicity
combination and we present the residual linear term in s for
helicity-zero elastic scattering. However, before we tackle
the generic RS1 theory, let us start by analyzing a simpler
case: LðRSÞ

5D in the limit of no warping.

B. The 5D orbifolded torus

Before investigating scattering amplitudes in the general
RS1 model, we consider a special case in which the internal
space is flat. Taking the limit of the RS1 metric (25) as krc
vanishes, while simultaneously maintaining a nonzero
finite first mass m1 (or, equivalently, a nonzero finite
rc), yields the 5D orbifolded torus (5DOT) model. The
5DOT metric lacks explicit dependence on y,
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O(s5) & O(s4) Sum Rules

From the definitions of the coupling constants, and using
Eq. (4) and the boundary conditions, integration-by-parts
yields the following relations:
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IV. SCATTERING AMPLITUDES AND SUMRULES

Using these couplings and the interactions derived from
the action, we compute the Feynman amplitude of the
longitudinal (helicity-0) states for nn → nn KK-mode
scattering and then perform a Laurent expansion to isolate
the contributions with differing rates of growth for a center-
of-mass energy-squared s and scattering angle θ,
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X
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MðkÞðcos θÞ · sk: ð21Þ

In the following, we examine the conditions on the cou-
plings which ensure thatMðkÞ vanishes for k ∈ f2; 3; 4; 5g.
At Oðs5Þ, applying Eqs. (18) and (19), we find
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Using completeness, Eq. (8), we find that
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and hence Mð5Þ vanishes identically.
We next look at the Oðs4Þ piece, where we find
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Using the Sturm-Liouville equation, integrating by parts
twice, and using the boundary conditions, we find
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Here the second line follows from completeness and the last
line from Eq. (20). Consequently, we find a second sum
rule
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that ensures that Mð4Þ also vanishes identically.
The sum rules above [Eqs. (23) and (29)] follow directly

from the Sturm-Liouville structure of the harmonic expan-
sion for the spin-2 KK fields. Therefore, these rules will
apply to internal spaces of arbitrary warping and size. It is
also notable that having applied Eqs. (18)–(20) (that is,
expressing the sum rules purely in terms of a-type cou-
plings), these relations are “identical” to coupling relation-
ships which arise in compactified gauge theories [18].
The situation changes at Oðs3Þ, however, where we find
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We find explicitly that the radion begins to contribute at this
order, as expected from [7]. The vanishing of this con-
tribution enforces the sum rule
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FIG. 1. Feynman diagrams contributing to nn → nn level spin-2 KK boson scattering, including s-, t-, and u-channel exchange of KK
modes of arbitrary level j or the radion r and four-point contact interactions.
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O(s3): Radion Coupling

O(s2)
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Goldstone Boson Equivalence theorems for compact extra dimensions

2

I. INTRODUCTION

In the recent years, driven by phenomenological studies of massive spin-2 particles, whether in simplified models or in
theories of extra dimensions, the question of unitarity and the behaviour of scattering amplitudes of massive spin-2 par-
ticles has been of primary importance. These calculations have ranged from cosmological considerations like dark mat-
ter relic density and direct detection [1–3], to simply phenomenological models of massive spin-2 resonances at high en-
ergy colliders. A key issue here is to understand the high energy behaviour of scattering amplitudes with massive spin-2
particles in the external states. In theories of massive gravity like Fierz-Pauli [4] and its extensions like dRGT gravity
[5] with a massive spin-2 particle, there is a low energy strong coupling scale parametrically lower than the Planck mass
(MPl). This follows from the fact that scattering amplitudes of massive gravitons in the external states, with a massive
spin-2 particle in the propagator scale proportional to s5/(M2

Pl
m8

G
), signifying a discontinuity as mG ! 0 [6–8]. Known

as the van Dam-Veltman-Zakharov (vDVZ) discontinuity [9, 10], this is a distinctive feature of theories of massive
gravity and emerges from the fact that the longitudinal polarization couples to the trace of the stress-energy tensor.

At the same time, in compact extra dimensions, massive spin-2 excitations, known as Kaluza-Klein (KK)
states[11, 12], arise from geometry. In this case, a Higgs mechanism that follows from higher dimensional dif-
feomorphism invariance ensures that there is no low energy cut-o↵ when calculating scattering amplitudes. This
has been demonstrated explicitly in both flat and warped compact extra dimensions in the unitary gauge, where
large cancellations enforced by a set of sum-rules ensures that scattering amplitudes grow no faster than O(s)[13–15]
regardless of whether the geometry was flat or warped. These results were later extended to models of stabilized
extra dimensions within Randall-Sundrum (RS) set-ups[16, 17]. However these large cancellations are an artifact of
the unitary gauge, where the external longitudinal polarizations of the massive spin-2 states grow with Energy (E) as
E2/m2

KK
, which when multiplied with the massive spin-2 internal propagator leads to the apparent anomalous growth

of the amplitude. One can however choose to work in the R⇠/‘t-Hooft Feynman gauge, and invoke the Goldstone
boson equvalence theorem, which states that high energy scattering of longitudinal polarizations is equivalent to the
scattering of Goldstone bosons of the theory.

For the case of extra dimensions, the Goldstone bosons of KK states are the vector and the scalar states for n � 1,
where n denotes the KK level. These Goldstones get ‘eaten’ to render the three longitudinal polarizations of the
massive spin-2 KK graviton per level. Along with the massive KK states, there are two massless states, the zero mode
spin-2 KK graviton which carries the usual Einstein’s General Relativity in 4D, as well as a massless scalar mode,
the radion, that encodes the metric fluctuation in the extra spatial direction.

In a 5D Yang-Mills theory it was established that the Equivalence theorem operates in a way to render the high
energy growth KK gauge bosons regular, i.e, the scattering amplitudes grew no faster that E0. It was also shown
that the 5D gauge symmetry results in BRST identities ensure that there are cancellations that ensure that the naive
E4 growth cancels down to E0. In [? ], the authors used this procedure to show that there is a ‘geometric’ Higgs
mechanism due to higher dimensional di↵eomorphism invariance, which ensured that the scattering amplitudes grow
no faster than O(s). This leads to the KK ‘Gravitational Equivalence Theorem’ (GRET), which takes the usual form
of scattering of longitudinal polarizations of the KK gravitons being equal to the KK scalar and vector Goldstones
of the theory. In this paper, we extend these ideas to show that the results can be extended to arbitrary background
geometries, as a consequence of a set of Ward Identities in the KK graviton sector. On general grounds, we show that
in the ‘t-Hooft Feynman Gauge, scattering amplitudes involving massive spin-2 particles are well behaved without the
requirement of any large cancellations. Finally, we argue that the doubly copy formalism which relates gauge theory
amplitudes to gravity as the color-kinematic duality holds in compact extra dimensions.

DS: Expand on how we are extending Hong-Jian’s paper, what new

II. WARD IDENTITIES FOR KK GRAVITONS

The metric for the RS model in conformal co-ordinates (xµ, z) can be written as,
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where the background 4D Minkowski metric ⌘µ⌫ ⌘ diag(+1,�1,�1,�1) is used to raise and lower indices. The line
element is then written as,

ds2 = e2A(z)(⌘µ⌫dx
µdx⌫

� dz2). (2)

Here we have followed the notation in Ref. [18].
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such that the KK gravitons hn

µ⌫
and their corresponding Goldstone bosons An

µ
and 'n have the same mass mn.

From the gauge fixing condition, one can derive the Ward identities [19]

hTFµ(x)�i = hTF5(x)�i = 0, (15)

where � denotes any other on-shell physical fields after the Lehmann-Symanzik-Zimmermann (LSZ) amputation.
Plugging in the gauge fixing condidtion in Eqs. (13) and (14), we have the following identities for the time-ordered
Green’s functions
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Because of the mass degeneracy of hn
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and 'n, we can amputate all of them at the same time by multiplying
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). Now consider the scatterings as shown in Fig. 1, whose scattering amplitudes can be written, respectively,

3

The metric fluctuations hµ⌫(x, z) define the spin-2 fluctations in 4D, while Âµ and '̂ the spin-1 and spin-0 fluctu-
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I. INTRODUCTION

In the recent years, driven by phenomenological studies of massive spin-2 particles, whether in simplified models or in
theories of extra dimensions, the question of unitarity and the behaviour of scattering amplitudes of massive spin-2 par-
ticles has been of primary importance. These calculations have ranged from cosmological considerations like dark mat-
ter relic density and direct detection [1–3], to simply phenomenological models of massive spin-2 resonances at high en-
ergy colliders. A key issue here is to understand the high energy behaviour of scattering amplitudes with massive spin-2
particles in the external states. In theories of massive gravity like Fierz-Pauli [4] and its extensions like dRGT gravity
[5] with a massive spin-2 particle, there is a low energy strong coupling scale parametrically lower than the Planck mass
(MPl). This follows from the fact that scattering amplitudes of massive gravitons in the external states, with a massive
spin-2 particle in the propagator scale proportional to s5/(M2

Pl
m8

G
), signifying a discontinuity as mG ! 0 [6–8]. Known

as the van Dam-Veltman-Zakharov (vDVZ) discontinuity [9, 10], this is a distinctive feature of theories of massive
gravity and emerges from the fact that the longitudinal polarization couples to the trace of the stress-energy tensor.

At the same time, in compact extra dimensions, massive spin-2 excitations, known as Kaluza-Klein (KK)
states[11, 12], arise from geometry. In this case, a Higgs mechanism that follows from higher dimensional dif-
feomorphism invariance ensures that there is no low energy cut-o↵ when calculating scattering amplitudes. This
has been demonstrated explicitly in both flat and warped compact extra dimensions in the unitary gauge, where
large cancellations enforced by a set of sum-rules ensures that scattering amplitudes grow no faster than O(s)[13–15]
regardless of whether the geometry was flat or warped. These results were later extended to models of stabilized
extra dimensions within Randall-Sundrum (RS) set-ups[16, 17]. However these large cancellations are an artifact of
the unitary gauge, where the external longitudinal polarizations of the massive spin-2 states grow with Energy (E) as
E2/m2

KK
, which when multiplied with the massive spin-2 internal propagator leads to the apparent anomalous growth

of the amplitude. One can however choose to work in the R⇠/‘t-Hooft Feynman gauge, and invoke the Goldstone
boson equvalence theorem, which states that high energy scattering of longitudinal polarizations is equivalent to the
scattering of Goldstone bosons of the theory.

For the case of extra dimensions, the Goldstone bosons of KK states are the vector and the scalar states for n � 1,
where n denotes the KK level. These Goldstones get ‘eaten’ to render the three longitudinal polarizations of the
massive spin-2 KK graviton per level. Along with the massive KK states, there are two massless states, the zero mode
spin-2 KK graviton which carries the usual Einstein’s General Relativity in 4D, as well as a massless scalar mode,
the radion, that encodes the metric fluctuation in the extra spatial direction.

In a 5D Yang-Mills theory it was established that the Equivalence theorem operates in a way to render the high
energy growth KK gauge bosons regular, i.e, the scattering amplitudes grew no faster that E0. It was also shown
that the 5D gauge symmetry results in BRST identities ensure that there are cancellations that ensure that the naive
E4 growth cancels down to E0. In [? ], the authors used this procedure to show that there is a ‘geometric’ Higgs
mechanism due to higher dimensional di↵eomorphism invariance, which ensured that the scattering amplitudes grow
no faster than O(s). This leads to the KK ‘Gravitational Equivalence Theorem’ (GRET), which takes the usual form
of scattering of longitudinal polarizations of the KK gravitons being equal to the KK scalar and vector Goldstones
of the theory. In this paper, we extend these ideas to show that the results can be extended to arbitrary background
geometries, as a consequence of a set of Ward Identities in the KK graviton sector. On general grounds, we show that
in the ‘t-Hooft Feynman Gauge, scattering amplitudes involving massive spin-2 particles are well behaved without the
requirement of any large cancellations. Finally, we argue that the doubly copy formalism which relates gauge theory
amplitudes to gravity as the color-kinematic duality holds in compact extra dimensions.

DS: Expand on how we are extending Hong-Jian’s paper, what new
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element is then written as,
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� dz2). (2)

Here we have followed the notation in Ref. [18].
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The metric fluctuations hµ⌫(x, z) define the spin-2 fluctations in 4D, while Âµ and '̂ the spin-1 and spin-0 fluctu-
ations respectively. The warp factor A(z) is given by,
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is the Lagrangian of the matter fields.
After the KK decomposition of the 5D Lagrangian,

hµ⌫(x
↵, z) =

1X

n=0

h(n)
µ⌫

(x↵)f (n)(z), (5)

Aµ(x↵, z) =
1X

n=1

A(n)
µ

(x↵)g(n)(z), (6)

'(x↵, z) =
1X

n=0

'(n)(x)k(n)(z) , (7)

the quadratic terms of the graviton sector are given by,

L2 =
1

2
hn

µ⌫
D

µ⌫⇢�

h
hn

⇢�
+

1

2
An

µ
D

µ⌫

A
An

⌫
+

1

2
'D''. (8)

where the inverse propagators are given by

D
µ⌫⇢�

h
=

1

2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢ � ⌘µ⌫⌘⇢�) (�⇤ � m2

n
), (9)

D
µ⌫

A
= �⌘µ⌫(�⇤ � m2

n
), (10)

D' = �⇤ � m2
n
. (11)

We have adopted the ’t Hooft-Feynman gauge,

LGF = FµFµ � F5F5, (12)

Fn

µ
= �

✓
@⌫hn

µ⌫
�

1

2
@µh

n +
1

p
2
mnA

n

µ

◆
, (13)

Fn

5 = �

 
1

2
mnh

n
�

1
p

2
@µAn

µ
+

r
3

2
mn'

n

!
. (14)

such that the KK gravitons hn

µ⌫
and their corresponding Goldstone bosons An

µ
and 'n have the same mass mn.

From the gauge fixing condition, one can derive the Ward identities [19]

hTFµ(x)�i = hTF5(x)�i = 0, (15)

where � denotes any other on-shell physical fields after the Lehmann-Symanzik-Zimmermann (LSZ) amputation.
Plugging in the gauge fixing condidtion in Eqs. (13) and (14), we have the following identities for the time-ordered
Green’s functions
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has been demonstrated explicitly in both flat and warped compact extra dimensions in the unitary gauge, where
large cancellations enforced by a set of sum-rules ensures that scattering amplitudes grow no faster than O(s)[13–15]
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of the amplitude. One can however choose to work in the R⇠/‘t-Hooft Feynman gauge, and invoke the Goldstone
boson equvalence theorem, which states that high energy scattering of longitudinal polarizations is equivalent to the
scattering of Goldstone bosons of the theory.
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spin-2 KK graviton which carries the usual Einstein’s General Relativity in 4D, as well as a massless scalar mode,
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In a 5D Yang-Mills theory it was established that the Equivalence theorem operates in a way to render the high
energy growth KK gauge bosons regular, i.e, the scattering amplitudes grew no faster that E0. It was also shown
that the 5D gauge symmetry results in BRST identities ensure that there are cancellations that ensure that the naive
E4 growth cancels down to E0. In [? ], the authors used this procedure to show that there is a ‘geometric’ Higgs
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no faster than O(s). This leads to the KK ‘Gravitational Equivalence Theorem’ (GRET), which takes the usual form
of scattering of longitudinal polarizations of the KK gravitons being equal to the KK scalar and vector Goldstones
of the theory. In this paper, we extend these ideas to show that the results can be extended to arbitrary background
geometries, as a consequence of a set of Ward Identities in the KK graviton sector. On general grounds, we show that
in the ‘t-Hooft Feynman Gauge, scattering amplitudes involving massive spin-2 particles are well behaved without the
requirement of any large cancellations. Finally, we argue that the doubly copy formalism which relates gauge theory
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The metric fluctuations hµ⌫(x, z) define the spin-2 fluctations in 4D, while Âµ and '̂ the spin-1 and spin-0 fluctu-
ations respectively. The warp factor A(z) is given by,

A(z) = � ln(kz) , (3)

The 5D Lagrangian of the RS1 model is given by

L = LEH + LCC + �L + LGF + Lm (4)

where LEH and LCC are the usual Einstein-Hilbert and cosmological constant terms respectively. The �L term is a
total derivative term required for a well defined variational principle for the action. LGF is gauge fixing term and Lm

is the Lagrangian of the matter fields.
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We have adopted the ’t Hooft-Feynman gauge,

LGF = FµFµ � F5F5, (12)

Fn

µ
= �

✓
@⌫hn

µ⌫
�

1

2
@µh

n +
1

p
2
mnA

n

µ

◆
, (13)

Fn

5 = �

 
1

2
mnh

n
�

1
p

2
@µAn

µ
+

r
3

2
mn'

n

!
. (14)

such that the KK gravitons hn

µ⌫
and their corresponding Goldstone bosons An

µ
and 'n have the same mass mn.

From the gauge fixing condition, one can derive the Ward identities [19]

hTFµ(x)�i = hTF5(x)�i = 0, (15)

where � denotes any other on-shell physical fields after the Lehmann-Symanzik-Zimmermann (LSZ) amputation.
Plugging in the gauge fixing condidtion in Eqs. (13) and (14), we have the following identities for the time-ordered
Green’s functions
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Because of the mass degeneracy of hn
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and 'n, we can amputate all of them at the same time by multiplying
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). Now consider the scatterings as shown in Fig. 1, whose scattering amplitudes can be written, respectively,
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ations respectively. The warp factor A(z) is given by,

A(z) = � ln(kz) , (3)

The 5D Lagrangian of the RS1 model is given by

L = LEH + LCC + �L + LGF + Lm (4)

where LEH and LCC are the usual Einstein-Hilbert and cosmological constant terms respectively. The �L term is a
total derivative term required for a well defined variational principle for the action. LGF is gauge fixing term and Lm

is the Lagrangian of the matter fields.
After the KK decomposition of the 5D Lagrangian,

hµ⌫(x
↵, z) =

1X

n=0

h(n)
µ⌫

(x↵)f (n)(z), (5)

Aµ(x↵, z) =
1X

n=1

A(n)
µ

(x↵)g(n)(z), (6)

'(x↵, z) =
1X

n=0

'(n)(x)k(n)(z) , (7)

the quadratic terms of the graviton sector are given by,

L2 =
1

2
hn

µ⌫
D

µ⌫⇢�

h
hn

⇢�
+

1

2
An

µ
D

µ⌫

A
An

⌫
+

1

2
'D''. (8)

where the inverse propagators are given by

D
µ⌫⇢�

h
=

1

2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢ � ⌘µ⌫⌘⇢�) (�⇤ � m2

n
), (9)

D
µ⌫

A
= �⌘µ⌫(�⇤ � m2

n
), (10)

D' = �⇤ � m2
n
. (11)

We have adopted the ’t Hooft-Feynman gauge,

LGF = FµFµ � F5F5, (12)

Fn

µ
= �

✓
@⌫hn

µ⌫
�

1

2
@µh

n +
1

p
2
mnA

n

µ

◆
, (13)

Fn

5 = �

 
1

2
mnh

n
�

1
p

2
@µAn

µ
+

r
3

2
mn'

n

!
. (14)

such that the KK gravitons hn

µ⌫
and their corresponding Goldstone bosons An

µ
and 'n have the same mass mn.

From the gauge fixing condition, one can derive the Ward identities [19]

hTFµ(x)�i = hTF5(x)�i = 0, (15)

where � denotes any other on-shell physical fields after the Lehmann-Symanzik-Zimmermann (LSZ) amputation.
Plugging in the gauge fixing condidtion in Eqs. (13) and (14), we have the following identities for the time-ordered
Green’s functions

hT

✓
@⌫(hn

µ⌫
�

1

2
⌘µ⌫h

n) +
1

p
2
mnA

n

µ

◆
�i = 0, (16)

hT

 
1

2
mnh

n
�

1
p

2
@µAn

µ
+

r
3

2
mn'

n

!
�i = 0. (17)

Because of the mass degeneracy of hn

µ⌫
, An

µ
and 'n, we can amputate all of them at the same time by multiplying

(�⇤�m2
n
). Now consider the scatterings as shown in Fig. 1, whose scattering amplitudes can be written, respectively,

3

The metric fluctuations hµ⌫(x, z) define the spin-2 fluctations in 4D, while Âµ and '̂ the spin-1 and spin-0 fluctu-
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FIG. 1. Schematic Feynman diagrams involving one external KK graviton, one KK vector Goldstone boson, or one KK scalar
Goldstone boson.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
longitudinal KK graviton scattering [20], that the scattering amplitude of the longitudinally polarized KK gravitons
equals that of the scalar KK Goldstone boson in the high energy limit,
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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multiple external KK gravitons. We will discuss this further in the following sections.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
longitudinal KK graviton scattering [20], that the scattering amplitude of the longitudinally polarized KK gravitons
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
longitudinal KK graviton scattering [20], that the scattering amplitude of the longitudinally polarized KK gravitons
equals that of the scalar KK Goldstone boson in the high energy limit,
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
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equals that of the scalar KK Goldstone boson in the high energy limit,
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,

Th
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✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
longitudinal KK graviton scattering [20], that the scattering amplitude of the longitudinally polarized KK gravitons
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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Note that there is no bad high energy behavior coming from the external polarization tensor/vector on the right hand
side of Eq. (34). The second and third terms on the right hand side of Eq. (34) are relatively suppressed due to the
fact that ✏̃µ0 ⇠ O(m/E) and ✏̃µ⌫0 ⇠ O(m2/E2). Therefore, it leads to the Goldstone boson Equivalence theroem for
longitudinal KK graviton scattering [20], that the scattering amplitude of the longitudinally polarized KK gravitons
equals that of the scalar KK Goldstone boson in the high energy limit,
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Therefore, the Goldstone boson equivalence theorem for the helicity ±1 states is, that the scattering amplitude of the
KK gravitons with helicities ±1 equals that of the vector KK Goldstone boson in the high energy limit up to a overall
phase,
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µ
✏µ± + O(s0). (38)

While we have derived the above identities for one external KK graviton, one can easily generalize it to the case of
multiple external KK gravitons. We will discuss this further in the following sections.
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FIG. 3. The Feynman diagrams for S(n1)S(n2) ! '(n3)'(n4), where we use the double line to indicate all three possible
intermediate states h(i), A(i), and '(i).

A. Scattering of two KK bulk scalar into two KK gravitons

For the first example, we consider the scattering of two KK bulk scalar into two longitudinal KK gravitons,

S(n1)S(n2) ! h(n3)
L

h(n4)
L

. (46)

According to the Goldstone boson equivalence theorem, one should expect

M

h
S(n1)S(n2) ! h(n3)

L
h(n4)
L

i
= M

h
S(n1)S(n2) ! '(n3)'(n4)

i
+ O(s0). (47)

The corresponding matter Lagrangians for a real bulk scalar S with a mass MS is given by,

Lm =
p

G

✓
1

2
GMN@MS@NS �

1

2
M2

S
S2

◆
, (48)

subject to the boundary conditions,

@z(S, , V̄ ) = 0 at z = z1,2. (49)

Following the notation in Ref. [? ], we decompose the bulk scalar field into KK modes,

S(x↵, z) =
1X

n=0

S(n)(x↵)f (n)
S

(z), (50)

where f (n)
S

are the eigen-functions of the eigen-equation

(�@z � 3A0) @z + M2
S
e2AS = m2

S,n
S. (51)

While the Feynman diagrams for S(n1)S(n2) ! '(n3)'(n4) are depicted in Fig. 3, where we use the double line
to indicate all three possible intermediate states h(i), A(i), and '(i), not all of them contribute at O(s) in the high
energy limit. To calculate the scattering amplitudes of scalar Goldstone bosons in the high energy limit, we only need
to expand the Feynman rules to the leading order in momenta. Since each interaction terms in the Lagrangian can
contain at most two 4-derevatives @µ, the relevant non-vanishing Feynman rules at order O(E2) are given by,
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(pi)

0
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, (52)
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⌫

3
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�
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�⇤
+ O

�
(pi)

0
� , (53)
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where the vertices and terms below O(E2) have been neglected.
Using the above Feynman rules, one can compute the scattering amplitude at the leading order O(s),

M

h
S(n1)S(n2) ! '(n3)'(n4)

i
= �

2s

96
(3 cos 2✓ + 5)
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i + O(s0)
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(1 � cos 2✓) hk(n)k(n)f (n)

S
f (n)
S

i + O(s0).

(57)

This result agrees with the unitary gauge calculation given in Ref. [? ], and verifies the Goldstone boson equivalence
theorem. Note that the final amplitude at order O(s) can be written as proportional to the overlap integral of the

product of the external state wavefunctions hk(n)k(n)f (n)
S

f (n)
S

i. This is because, at the leading order O(s), each
interaction vertices must contain two 4-derivatives @µ and have no KK mass dependence. Since the masses in the
propagators can also be neglectted in the high energy limit, one can always use the completeness relation to combine
the two three-point overlap integrals into a four-point overlap integral. Since the amplitdue does not have apparent
vDVZ discontinuity, one can safely take the mn ! 0 limit, which corresponds to the decoupling of the longitudinal
mode.

B. Scattering of two KK gravitons into two KK gravitons

For the next example, we consider the scattering of two longitudinal KK gravitons,
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The Goldstone boson equivalence theorem gives
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+ O(s0). (59)

The Feynman diagrams for '(n1)'(n2) ! '(n3)'(n4) are shown in Fig. 4, where we use the double line to indicate all
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Agrees with Unitary gauge calculation
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FIG. 4. The Feynman diagrams for '(n1)'(n2) ! '(n3)'(n4), where we use the double line to indicate all three possible
intermediate states h(i), A(i), and '(i).

three possible intermediate states h(i), A(i), and '(i). Based on the Feynman rules given in the previous subsection,
one would find that the only diagrams that contribute at order O(s) are the s-, t- and u-channel diagrams with
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This result agrees with the unitary gauge calculation given in Ref. [15], although one would need to use the SUSY
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to convert the graviton wavefunctions in Ref. [15] into those of the scalar Goldstone bosons. As we explained in the
previous subsection, the final amplitude is proportional to the overlap integral of the product of the external state
wavefunctions hk(n)k(n)k(n)k(n)i, and no vDVZ discontinuity is present.

V. EXACT RESULT WITHOUT CANCELLATION

Exact numerical computation of the scattering amplitude in unitary gauge is usually cumbersome. In practice, the
overlap integrals of the wavefunctions are evaluated with finite precision, and one can only sum over a finte number of
the intermediate KK states. Such limitation would introduce numerical errors, which are amplified at high energies
because they spoil the cancellation of bad high energy behavior in the unitary gauge. Therefore, one has to not only
evaluate all the overlap integrals with great precision and but also sum up a large number of the intermediate KK
modes to ensure that the numerical errors are under control [15].

However, one can avoid all the cancellation with the help of the Ward identities. First, all the internal propagators
in the Feynman gauge are well-behaved as 1/p2. Then one can use the Ward identities to remove all the bad high
energy behavior from the external polarizations. In the absence of the cancellation, the scattering amplitudes are
expected to converge as fast as the overlap integrals.

Applying Eqs. (34) and (36) to multiple external legs, one can derive the following relation for the scattering of two
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where the vertices and terms below O(E2) have been neglected.
Using the above Feynman rules, one can compute the scattering amplitude at the leading order O(s),

M

h
S(n1)S(n2) ! '(n3)'(n4)

i
= �

2s

96
(3 cos 2✓ + 5)

1X

i=0

hk(n)k(n)f (i)
i hf (i)f (n)

S
f (n)
S

i

+
2s

12
hk(n)k(n)f (n)

S
f (n)
S

i + O(s0)

=
2s

32
(1 � cos 2✓) hk(n)k(n)f (n)

S
f (n)
S

i + O(s0).

(57)

This result agrees with the unitary gauge calculation given in Ref. [? ], and verifies the Goldstone boson equivalence
theorem. Note that the final amplitude at order O(s) can be written as proportional to the overlap integral of the

product of the external state wavefunctions hk(n)k(n)f (n)
S

f (n)
S

i. This is because, at the leading order O(s), each
interaction vertices must contain two 4-derivatives @µ and have no KK mass dependence. Since the masses in the
propagators can also be neglectted in the high energy limit, one can always use the completeness relation to combine
the two three-point overlap integrals into a four-point overlap integral. Since the amplitdue does not have apparent
vDVZ discontinuity, one can safely take the mn ! 0 limit, which corresponds to the decoupling of the longitudinal
mode.

B. Scattering of two KK gravitons into two KK gravitons

For the next example, we consider the scattering of two longitudinal KK gravitons,

h(n1)
L

h(n2)
L

! h(n3)
L

h(n4)
L

. (58)

The Goldstone boson equivalence theorem gives
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h(n4)
L

i
= M

h
'(n1)'(n2) ! '(n3)'(n4)

i
+ O(s0). (59)

The Feynman diagrams for '(n1)'(n2) ! '(n3)'(n4) are shown in Fig. 4, where we use the double line to indicate all

Expectation from Goldstone Equivalence Theorem

Agrees with Unitary gauge calculation
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vertex is contracted into physical states that satisfy,

Áµfl = Áflµ , pµÁµfl = 0 , pflÁµfl = 0 , Áµ
µ © ÷µ‹Áµ‹ = 0 , (1.8)

where p is a graviton momentum and Áµ‹ the associated graviton polarization tensor. This
removes all trace and longitudinal terms, reducing the vertex to a simple form,

G3 µfl,‹⁄,‡· (p1, p2, p3) = ≠i
5
(p1 ≠ p2)‡÷µ‹ + cyclic

65
(p1 ≠ p2)· ÷fl⁄ + cyclic

6
, (1.9)

exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.

1.2 Invitation: four-point example
Consider the full four-gluon tree amplitude in YM theory, which can be obtained, for exam-
ple, by following textbook Feynman rules [100]. We write it as a sum over three channels
corresponding to the three diagrams in Fig. 3

iAtree
4 = g2

3
nscs

s
+ ntct

t
+ nucu

u

4
, (1.10)

where the Mandelstam variables are defined in Eq. (1.3). The s-channel color factor, nor-
malized to be compatible with the scattering amplitudes literature [88], is

cs = ≠2fa1a2bf ba3a4 , (1.11)

where the color-group structure constants fabc are the standard textbook ones [100]. With
this normalization, the s-channel kinematic numerator, ns, is

ns = ≠1
2

;5
(Á1 · Á2)pµ

1 + 2(Á1 · p2)Áµ

2 ≠ (1 ¡ 2)
65

(Á3 · Á4)p3µ + 2(Á3 · p4)Á4µ ≠ (3 ¡ 4)
6

+ s
5
(Á1 · Á3)(Á2 · Á4) ≠ (Á1 · Á4)(Á2 · Á3)

6<
, (1.12)

where the momenta and polarization vectors satisfy on-shell conditions p2
i

= Ái · pi = 0.
The other color factors and numerators are obtained by cyclic permutations of the particle
labels (1, 2, 3):

ctnt = csns

---
1æ2æ3æ1

, cunu = csns

---
1æ3æ2æ1

. (1.13)
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1 INTRODUCTION

Feynman rules for gluons contain a four-gluon vertex, as in Fig. 1. Here we have absorbed its
contribution into the three diagrams in Fig. 3 according to the color factors, by multiplying
and dividing by an appropriate propagator. This is the origin of the term on the second line
of Eq. (1.12).

A key property of the gauge-theory scattering amplitude (1.10) is its linearized gauge
invariance. To check this, we need to verify that the amplitude vanishes with the replacement
Á4 æ p4. Upon doing this replacement for the s-channel numerator we get, after some
algebra, the nonzero result

ns

---
Á4æp4

= ≠s

2

5
(Á1 · Á2)

1
(Á3 · p2) ≠ (Á3 · p1)

2
+ cyclic(1, 2, 3)

6
© s –(Á, p) , (1.14)

which is no surprise since individual diagrams are, in general, gauge dependent. The function
–(Á, p) is clearly invariant under cyclic permutations of the labels (1, 2, 3). For the full
amplitude we get therefore

nscs

s
+ ntct

t
+ nucu

u

----
Á4æp4

= (cs + ct + cu) –(Á, p) , (1.15)

where –(Á, p) is the expression in Eq. (1.14). Hence the amplitude is gauge invariant if
cs + ct + cu vanish, i.e.

cs + ct + cu = ≠2(fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4) = 0 . (1.16)

This is the standard Jacobi identity, which indeed is satisfied by the group-theory structure
constants in a gauge theory.

Consider the three-term sum over kinematic numerators in Eqs. (1.12) and (1.13), ns+nt+
nu, analogous to the sum over color factors on the left-hand side of Eq. (1.16). Remarkably,
this combination vanishes when the on-shell conditions are applied,

ns + nt + nu = 0 . (1.17)

We will refer to this relation as a kinematic Jacobi identity. This was originally noticed
some time ago for four-point amplitudes, as a curiosity related to radiation zeros in four-
point amplitudes [101–103]. Generic representations of four-point amplitudes in terms of
diagrams with only cubic vertices obey these identities, but at higher points nontrivial re-
arrangements are needed. The significance of the identity Eq. (1.17) and its generality was
understood later [1, 2]. We refer to kinematic identities that are analogous to generic color-
factor identities as a duality between color and kinematics. It turns out that they constitute
an ubiquitous, yet hidden, structure not only of gauge theories, but also of an ever-increasing
web of theories, as described in Sec. 5.

Exercise 1.1: Use Eqs. (1.12) and (1.13) to verify the numerator Jacobi identity (1.17).
Redefine the numerators by eliminating cu in favor of cs and ct, defining new numerators nÕ

s

and nÕ
t

as the coe�cient of cs/s and ct/t. The numerator nÕ
u

vanishes by construction. Show
that the kinematic Jacobi identity still holds for these redefined numerators.

The fact that the kinematic factors satisfy the same relations as the color factors suggests
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors

9

Gauge Invariance demands that the amplitude must vanish under polarization to momentum replacement

1 INTRODUCTION

Feynman rules for gluons contain a four-gluon vertex, as in Fig. 1. Here we have absorbed its
contribution into the three diagrams in Fig. 3 according to the color factors, by multiplying
and dividing by an appropriate propagator. This is the origin of the term on the second line
of Eq. (1.12).

A key property of the gauge-theory scattering amplitude (1.10) is its linearized gauge
invariance. To check this, we need to verify that the amplitude vanishes with the replacement
Á4 æ p4. Upon doing this replacement for the s-channel numerator we get, after some
algebra, the nonzero result

ns

---
Á4æp4

= ≠s

2

5
(Á1 · Á2)

1
(Á3 · p2) ≠ (Á3 · p1)

2
+ cyclic(1, 2, 3)

6
© s –(Á, p) , (1.14)

which is no surprise since individual diagrams are, in general, gauge dependent. The function
–(Á, p) is clearly invariant under cyclic permutations of the labels (1, 2, 3). For the full
amplitude we get therefore

nscs

s
+ ntct

t
+ nucu

u

----
Á4æp4

= (cs + ct + cu) –(Á, p) , (1.15)

where –(Á, p) is the expression in Eq. (1.14). Hence the amplitude is gauge invariant if
cs + ct + cu vanish, i.e.

cs + ct + cu = ≠2(fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4) = 0 . (1.16)

This is the standard Jacobi identity, which indeed is satisfied by the group-theory structure
constants in a gauge theory.

Consider the three-term sum over kinematic numerators in Eqs. (1.12) and (1.13), ns+nt+
nu, analogous to the sum over color factors on the left-hand side of Eq. (1.16). Remarkably,
this combination vanishes when the on-shell conditions are applied,

ns + nt + nu = 0 . (1.17)

We will refer to this relation as a kinematic Jacobi identity. This was originally noticed
some time ago for four-point amplitudes, as a curiosity related to radiation zeros in four-
point amplitudes [101–103]. Generic representations of four-point amplitudes in terms of
diagrams with only cubic vertices obey these identities, but at higher points nontrivial re-
arrangements are needed. The significance of the identity Eq. (1.17) and its generality was
understood later [1, 2]. We refer to kinematic identities that are analogous to generic color-
factor identities as a duality between color and kinematics. It turns out that they constitute
an ubiquitous, yet hidden, structure not only of gauge theories, but also of an ever-increasing
web of theories, as described in Sec. 5.

Exercise 1.1: Use Eqs. (1.12) and (1.13) to verify the numerator Jacobi identity (1.17).
Redefine the numerators by eliminating cu in favor of cs and ct, defining new numerators nÕ

s

and nÕ
t

as the coe�cient of cs/s and ct/t. The numerator nÕ
u

vanishes by construction. Show
that the kinematic Jacobi identity still holds for these redefined numerators.

The fact that the kinematic factors satisfy the same relations as the color factors suggests
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors

9

1 INTRODUCTION

Feynman rules for gluons contain a four-gluon vertex, as in Fig. 1. Here we have absorbed its
contribution into the three diagrams in Fig. 3 according to the color factors, by multiplying
and dividing by an appropriate propagator. This is the origin of the term on the second line
of Eq. (1.12).

A key property of the gauge-theory scattering amplitude (1.10) is its linearized gauge
invariance. To check this, we need to verify that the amplitude vanishes with the replacement
Á4 æ p4. Upon doing this replacement for the s-channel numerator we get, after some
algebra, the nonzero result

ns

---
Á4æp4

= ≠s

2

5
(Á1 · Á2)

1
(Á3 · p2) ≠ (Á3 · p1)

2
+ cyclic(1, 2, 3)

6
© s –(Á, p) , (1.14)

which is no surprise since individual diagrams are, in general, gauge dependent. The function
–(Á, p) is clearly invariant under cyclic permutations of the labels (1, 2, 3). For the full
amplitude we get therefore

nscs

s
+ ntct

t
+ nucu

u

----
Á4æp4

= (cs + ct + cu) –(Á, p) , (1.15)

where –(Á, p) is the expression in Eq. (1.14). Hence the amplitude is gauge invariant if
cs + ct + cu vanish, i.e.

cs + ct + cu = ≠2(fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4) = 0 . (1.16)

This is the standard Jacobi identity, which indeed is satisfied by the group-theory structure
constants in a gauge theory.

Consider the three-term sum over kinematic numerators in Eqs. (1.12) and (1.13), ns+nt+
nu, analogous to the sum over color factors on the left-hand side of Eq. (1.16). Remarkably,
this combination vanishes when the on-shell conditions are applied,

ns + nt + nu = 0 . (1.17)

We will refer to this relation as a kinematic Jacobi identity. This was originally noticed
some time ago for four-point amplitudes, as a curiosity related to radiation zeros in four-
point amplitudes [101–103]. Generic representations of four-point amplitudes in terms of
diagrams with only cubic vertices obey these identities, but at higher points nontrivial re-
arrangements are needed. The significance of the identity Eq. (1.17) and its generality was
understood later [1, 2]. We refer to kinematic identities that are analogous to generic color-
factor identities as a duality between color and kinematics. It turns out that they constitute
an ubiquitous, yet hidden, structure not only of gauge theories, but also of an ever-increasing
web of theories, as described in Sec. 5.

Exercise 1.1: Use Eqs. (1.12) and (1.13) to verify the numerator Jacobi identity (1.17).
Redefine the numerators by eliminating cu in favor of cs and ct, defining new numerators nÕ

s

and nÕ
t

as the coe�cient of cs/s and ct/t. The numerator nÕ
u

vanishes by construction. Show
that the kinematic Jacobi identity still holds for these redefined numerators.

The fact that the kinematic factors satisfy the same relations as the color factors suggests
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors

9

1 INTRODUCTION

Feynman rules for gluons contain a four-gluon vertex, as in Fig. 1. Here we have absorbed its
contribution into the three diagrams in Fig. 3 according to the color factors, by multiplying
and dividing by an appropriate propagator. This is the origin of the term on the second line
of Eq. (1.12).

A key property of the gauge-theory scattering amplitude (1.10) is its linearized gauge
invariance. To check this, we need to verify that the amplitude vanishes with the replacement
Á4 æ p4. Upon doing this replacement for the s-channel numerator we get, after some
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2
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1
(Á3 · p2) ≠ (Á3 · p1)

2
+ cyclic(1, 2, 3)

6
© s –(Á, p) , (1.14)

which is no surprise since individual diagrams are, in general, gauge dependent. The function
–(Á, p) is clearly invariant under cyclic permutations of the labels (1, 2, 3). For the full
amplitude we get therefore
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s
+ ntct

t
+ nucu

u

----
Á4æp4

= (cs + ct + cu) –(Á, p) , (1.15)
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Exercise 1.1: Use Eqs. (1.12) and (1.13) to verify the numerator Jacobi identity (1.17).
Redefine the numerators by eliminating cu in favor of cs and ct, defining new numerators nÕ

s

and nÕ
t

as the coe�cient of cs/s and ct/t. The numerator nÕ
u

vanishes by construction. Show
that the kinematic Jacobi identity still holds for these redefined numerators.

The fact that the kinematic factors satisfy the same relations as the color factors suggests
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors
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Figure 3: The three Feynman diagrams corresponding to the s, t and u channels.

vertex is contracted into physical states that satisfy,

Áµfl = Áflµ , pµÁµfl = 0 , pflÁµfl = 0 , Áµ
µ © ÷µ‹Áµ‹ = 0 , (1.8)

where p is a graviton momentum and Áµ‹ the associated graviton polarization tensor. This
removes all trace and longitudinal terms, reducing the vertex to a simple form,

G3 µfl,‹⁄,‡· (p1, p2, p3) = ≠i
5
(p1 ≠ p2)‡÷µ‹ + cyclic

65
(p1 ≠ p2)· ÷fl⁄ + cyclic

6
, (1.9)

exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.

1.2 Invitation: four-point example
Consider the full four-gluon tree amplitude in YM theory, which can be obtained, for exam-
ple, by following textbook Feynman rules [100]. We write it as a sum over three channels
corresponding to the three diagrams in Fig. 3

iAtree
4 = g2

3
nscs

s
+ ntct

t
+ nucu

u

4
, (1.10)

where the Mandelstam variables are defined in Eq. (1.3). The s-channel color factor, nor-
malized to be compatible with the scattering amplitudes literature [88], is

cs = ≠2fa1a2bf ba3a4 , (1.11)

where the color-group structure constants fabc are the standard textbook ones [100]. With
this normalization, the s-channel kinematic numerator, ns, is

ns = ≠1
2

;5
(Á1 · Á2)pµ

1 + 2(Á1 · p2)Áµ

2 ≠ (1 ¡ 2)
65

(Á3 · Á4)p3µ + 2(Á3 · p4)Á4µ ≠ (3 ¡ 4)
6

+ s
5
(Á1 · Á3)(Á2 · Á4) ≠ (Á1 · Á4)(Á2 · Á3)

6<
, (1.12)

where the momenta and polarization vectors satisfy on-shell conditions p2
i

= Ái · pi = 0.
The other color factors and numerators are obtained by cyclic permutations of the particle
labels (1, 2, 3):

ctnt = csns

---
1æ2æ3æ1

, cunu = csns

---
1æ3æ2æ1

. (1.13)

8



Amplitudes and Double Copy

Color and Kinematic Factors are mutually Interchangable

1 INTRODUCTION

2

1

3

4

3

2

1

4

1

3

2

4

Figure 3: The three Feynman diagrams corresponding to the s, t and u channels.

vertex is contracted into physical states that satisfy,

Áµfl = Áflµ , pµÁµfl = 0 , pflÁµfl = 0 , Áµ
µ © ÷µ‹Áµ‹ = 0 , (1.8)

where p is a graviton momentum and Áµ‹ the associated graviton polarization tensor. This
removes all trace and longitudinal terms, reducing the vertex to a simple form,

G3 µfl,‹⁄,‡· (p1, p2, p3) = ≠i
5
(p1 ≠ p2)‡÷µ‹ + cyclic

65
(p1 ≠ p2)· ÷fl⁄ + cyclic

6
, (1.9)

exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.

1.2 Invitation: four-point example
Consider the full four-gluon tree amplitude in YM theory, which can be obtained, for exam-
ple, by following textbook Feynman rules [100]. We write it as a sum over three channels
corresponding to the three diagrams in Fig. 3
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where the momenta and polarization vectors satisfy on-shell conditions p2
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The other color factors and numerators are obtained by cyclic permutations of the particle
labels (1, 2, 3):
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exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.
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in the YM four-point amplitude (1.10), which gives a new gauge-invariant object that, as we
will discuss momentarily, is a four-graviton amplitude,

iAtree
4

---- ciæñi

gæŸ/2
© iMtree

4 =
3

Ÿ

2

42
A

n2
s

s
+ n2

t

t
+ n2

u

u

B

. (1.18)

The new amplitude Mtree
4 doubles up the kinematic numerators, and so we refer to it as a

double copy. (The i in front of the Mtree
4 is a phase convention.) The expression in Eq. (1.18)

has the following properties: the external states are captured by symmetric polarization
tensors Áµ‹ = ÁµÁ‹ , the interactions are of the two-derivative type, and the amplitude is
invariant under linearized di�eomorphism transformations. By choosing the polarization
vectors to be null Á2 = 0 (corresponding to circular polarization), implying that Áµ‹ is
traceless, this amplitude should describe the scattering of four gravitons in Einstein’s general
relativity, up to an overall normalization. There are a number of ways to prove that this
is the case, including using on-shell recursion relations [41] and ordinary gravity Feynman
rules [94]; here we will show that Eq. (1.18) reproduces the Kawai-Lewellen-Tye (KLT) form
of gravity amplitudes [86], derived using the low-energy limit of string theory.

The di�eomorphism invariance of the amplitude requires some elaboration. Consider a
linearized di�eomorphism of the asymptotic (weak) graviton field hµ‹ . The di�eomorphism
is parametrized by the function ›µ and take the simple form

”hµ‹ = ˆµ›‹ + ˆ‹›µ . (1.19)

Translating this to momentum space implies that a di�eomorphism-invariant amplitude
should vanish upon replacing a polarization tensor as: Áµ‹ æ pµÁ‹ + p‹Áµ. Applying this to
leg 4 of the amplitude, we find

n2
s

s
+ n2

t

t
+ n2

u

u

----
Á

µ‹
4 æp

µ
4 Á‹

4+p‹
4Á

µ
4

= 2(ns + nt + nu) –(Á, p) = 0 . (1.20)

Thus, we see that the kinematic Jacobi identity needs to be satisfied for the amplitude to be
invariant under linearized di�eomorphism transformations, in complete analogy to the color
Jacobi identity in the gauge-theory amplitude.

Returning to the YM amplitude, we note that the amplitude can be written in a mani-
festly gauge-invariant form if we solve the Jacobi relation by choosing ct = ≠cu ≠ cs,

iAtree
4 = g2

3
nscs

s
+ ntct

t
+ nucu

u

4

= g2
33

ns

s
≠ nt

t

4
cs ≠

3
nt

t
≠ nu

u

4
cu

4

© ig2Atree
4 (1, 2, 3, 4)cs ≠ ig2Atree

4 (1, 3, 2, 4)cu . (1.21)

The partial amplitudes Atree
4 (1, 2, 3, 4) are gauge invariant because the color-dressed ampli-

tude Atree
4 is now decomposed in a basis of independent color factors, with elements cs and

cu, and thus the gauge invariance of Atree
4 implies the gauge invariance of the individual

terms of this decomposition.
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vertex is contracted into physical states that satisfy,

Áµfl = Áflµ , pµÁµfl = 0 , pflÁµfl = 0 , Áµ
µ © ÷µ‹Áµ‹ = 0 , (1.8)

where p is a graviton momentum and Áµ‹ the associated graviton polarization tensor. This
removes all trace and longitudinal terms, reducing the vertex to a simple form,
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6
, (1.9)

exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.

1.2 Invitation: four-point example
Consider the full four-gluon tree amplitude in YM theory, which can be obtained, for exam-
ple, by following textbook Feynman rules [100]. We write it as a sum over three channels
corresponding to the three diagrams in Fig. 3
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4
, (1.10)

where the Mandelstam variables are defined in Eq. (1.3). The s-channel color factor, nor-
malized to be compatible with the scattering amplitudes literature [88], is

cs = ≠2fa1a2bf ba3a4 , (1.11)

where the color-group structure constants fabc are the standard textbook ones [100]. With
this normalization, the s-channel kinematic numerator, ns, is
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(Á1 · Á2)pµ
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where the momenta and polarization vectors satisfy on-shell conditions p2
i

= Ái · pi = 0.
The other color factors and numerators are obtained by cyclic permutations of the particle
labels (1, 2, 3):

ctnt = csns

---
1æ2æ3æ1

, cunu = csns

---
1æ3æ2æ1

. (1.13)
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where p is a graviton momentum and Áµ‹ the associated graviton polarization tensor. This
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exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.
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in the YM four-point amplitude (1.10), which gives a new gauge-invariant object that, as we
will discuss momentarily, is a four-graviton amplitude,
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The new amplitude Mtree
4 doubles up the kinematic numerators, and so we refer to it as a

double copy. (The i in front of the Mtree
4 is a phase convention.) The expression in Eq. (1.18)

has the following properties: the external states are captured by symmetric polarization
tensors Áµ‹ = ÁµÁ‹ , the interactions are of the two-derivative type, and the amplitude is
invariant under linearized di�eomorphism transformations. By choosing the polarization
vectors to be null Á2 = 0 (corresponding to circular polarization), implying that Áµ‹ is
traceless, this amplitude should describe the scattering of four gravitons in Einstein’s general
relativity, up to an overall normalization. There are a number of ways to prove that this
is the case, including using on-shell recursion relations [41] and ordinary gravity Feynman
rules [94]; here we will show that Eq. (1.18) reproduces the Kawai-Lewellen-Tye (KLT) form
of gravity amplitudes [86], derived using the low-energy limit of string theory.

The di�eomorphism invariance of the amplitude requires some elaboration. Consider a
linearized di�eomorphism of the asymptotic (weak) graviton field hµ‹ . The di�eomorphism
is parametrized by the function ›µ and take the simple form

”hµ‹ = ˆµ›‹ + ˆ‹›µ . (1.19)

Translating this to momentum space implies that a di�eomorphism-invariant amplitude
should vanish upon replacing a polarization tensor as: Áµ‹ æ pµÁ‹ + p‹Áµ. Applying this to
leg 4 of the amplitude, we find
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t
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4 Á‹
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µ
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= 2(ns + nt + nu) –(Á, p) = 0 . (1.20)

Thus, we see that the kinematic Jacobi identity needs to be satisfied for the amplitude to be
invariant under linearized di�eomorphism transformations, in complete analogy to the color
Jacobi identity in the gauge-theory amplitude.

Returning to the YM amplitude, we note that the amplitude can be written in a mani-
festly gauge-invariant form if we solve the Jacobi relation by choosing ct = ≠cu ≠ cs,
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The partial amplitudes Atree
4 (1, 2, 3, 4) are gauge invariant because the color-dressed ampli-

tude Atree
4 is now decomposed in a basis of independent color factors, with elements cs and

cu, and thus the gauge invariance of Atree
4 implies the gauge invariance of the individual

terms of this decomposition.
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vertex is contracted into physical states that satisfy,

Áµfl = Áflµ , pµÁµfl = 0 , pflÁµfl = 0 , Áµ
µ © ÷µ‹Áµ‹ = 0 , (1.8)

where p is a graviton momentum and Áµ‹ the associated graviton polarization tensor. This
removes all trace and longitudinal terms, reducing the vertex to a simple form,
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exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.

1.2 Invitation: four-point example
Consider the full four-gluon tree amplitude in YM theory, which can be obtained, for exam-
ple, by following textbook Feynman rules [100]. We write it as a sum over three channels
corresponding to the three diagrams in Fig. 3
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where the Mandelstam variables are defined in Eq. (1.3). The s-channel color factor, nor-
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where the color-group structure constants fabc are the standard textbook ones [100]. With
this normalization, the s-channel kinematic numerator, ns, is

ns = ≠1
2

;5
(Á1 · Á2)pµ

1 + 2(Á1 · p2)Áµ

2 ≠ (1 ¡ 2)
65

(Á3 · Á4)p3µ + 2(Á3 · p4)Á4µ ≠ (3 ¡ 4)
6

+ s
5
(Á1 · Á3)(Á2 · Á4) ≠ (Á1 · Á4)(Á2 · Á3)

6<
, (1.12)

where the momenta and polarization vectors satisfy on-shell conditions p2
i

= Ái · pi = 0.
The other color factors and numerators are obtained by cyclic permutations of the particle
labels (1, 2, 3):

ctnt = csns

---
1æ2æ3æ1

, cunu = csns

---
1æ3æ2æ1

. (1.13)

8

1 INTRODUCTION

2

1

3

4

3

2

1

4

1

3

2

4

Figure 3: The three Feynman diagrams corresponding to the s, t and u channels.
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6
, (1.9)

exposing its simple relation to the three-gluon vertex of gauge theory. This is a hint that
there should be much better ways to organize the perturbative expansion of gravity. We
now turn to four-graviton scattering amplitude, which is a better example as it corresponds
directly to a physical process.

1.2 Invitation: four-point example
Consider the full four-gluon tree amplitude in YM theory, which can be obtained, for exam-
ple, by following textbook Feynman rules [100]. We write it as a sum over three channels
corresponding to the three diagrams in Fig. 3

iAtree
4 = g2

3
nscs

s
+ ntct

t
+ nucu

u

4
, (1.10)

where the Mandelstam variables are defined in Eq. (1.3). The s-channel color factor, nor-
malized to be compatible with the scattering amplitudes literature [88], is

cs = ≠2fa1a2bf ba3a4 , (1.11)

where the color-group structure constants fabc are the standard textbook ones [100]. With
this normalization, the s-channel kinematic numerator, ns, is

ns = ≠1
2

;5
(Á1 · Á2)pµ

1 + 2(Á1 · p2)Áµ

2 ≠ (1 ¡ 2)
65

(Á3 · Á4)p3µ + 2(Á3 · p4)Á4µ ≠ (3 ¡ 4)
6

+ s
5
(Á1 · Á3)(Á2 · Á4) ≠ (Á1 · Á4)(Á2 · Á3)

6<
, (1.12)

where the momenta and polarization vectors satisfy on-shell conditions p2
i

= Ái · pi = 0.
The other color factors and numerators are obtained by cyclic permutations of the particle
labels (1, 2, 3):

ctnt = csns

---
1æ2æ3æ1

, cunu = csns

---
1æ3æ2æ1

. (1.13)

8

Massless Gravity amplitude

1 INTRODUCTION

in the YM four-point amplitude (1.10), which gives a new gauge-invariant object that, as we
will discuss momentarily, is a four-graviton amplitude,

iAtree
4

---- ciæñi

gæŸ/2
© iMtree

4 =
3

Ÿ

2

42
A

n2
s

s
+ n2

t

t
+ n2

u

u

B

. (1.18)

The new amplitude Mtree
4 doubles up the kinematic numerators, and so we refer to it as a

double copy. (The i in front of the Mtree
4 is a phase convention.) The expression in Eq. (1.18)

has the following properties: the external states are captured by symmetric polarization
tensors Áµ‹ = ÁµÁ‹ , the interactions are of the two-derivative type, and the amplitude is
invariant under linearized di�eomorphism transformations. By choosing the polarization
vectors to be null Á2 = 0 (corresponding to circular polarization), implying that Áµ‹ is
traceless, this amplitude should describe the scattering of four gravitons in Einstein’s general
relativity, up to an overall normalization. There are a number of ways to prove that this
is the case, including using on-shell recursion relations [41] and ordinary gravity Feynman
rules [94]; here we will show that Eq. (1.18) reproduces the Kawai-Lewellen-Tye (KLT) form
of gravity amplitudes [86], derived using the low-energy limit of string theory.

The di�eomorphism invariance of the amplitude requires some elaboration. Consider a
linearized di�eomorphism of the asymptotic (weak) graviton field hµ‹ . The di�eomorphism
is parametrized by the function ›µ and take the simple form

”hµ‹ = ˆµ›‹ + ˆ‹›µ . (1.19)

Translating this to momentum space implies that a di�eomorphism-invariant amplitude
should vanish upon replacing a polarization tensor as: Áµ‹ æ pµÁ‹ + p‹Áµ. Applying this to
leg 4 of the amplitude, we find

n2
s

s
+ n2

t

t
+ n2

u

u

----
Á

µ‹
4 æp

µ
4 Á‹

4+p‹
4Á

µ
4

= 2(ns + nt + nu) –(Á, p) = 0 . (1.20)

Thus, we see that the kinematic Jacobi identity needs to be satisfied for the amplitude to be
invariant under linearized di�eomorphism transformations, in complete analogy to the color
Jacobi identity in the gauge-theory amplitude.

Returning to the YM amplitude, we note that the amplitude can be written in a mani-
festly gauge-invariant form if we solve the Jacobi relation by choosing ct = ≠cu ≠ cs,

iAtree
4 = g2

3
nscs

s
+ ntct

t
+ nucu

u

4

= g2
33

ns

s
≠ nt

t

4
cs ≠

3
nt

t
≠ nu

u

4
cu

4

© ig2Atree
4 (1, 2, 3, 4)cs ≠ ig2Atree

4 (1, 3, 2, 4)cu . (1.21)

The partial amplitudes Atree
4 (1, 2, 3, 4) are gauge invariant because the color-dressed ampli-

tude Atree
4 is now decomposed in a basis of independent color factors, with elements cs and

cu, and thus the gauge invariance of Atree
4 implies the gauge invariance of the individual

terms of this decomposition.
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expansion. As we will show in Secs. IV B and VD for the
four longitudinal KK graviton scattering, the residual term
MΔ as a sum of the eΔn-dependent individual amplitudes in
Eq. (3.15) has OðE2Þ by the naive power-counting and will
be further cancelled down toOðE0Þ in comparison with the
leading Goldstone ϕn amplitude of OðE2Þ under the high-
energy expansion.
With the above observations, we can express the GRET

as follows:

M½hLn1ðk1Þ;…; hLnN ðkNÞ;Φ$

¼ M½ϕn1ðk1Þ;…;ϕnN ðkNÞ;Φ$ þOðeΔnÞ; ð3:16Þ

where the residual termMΔ is denoted byOðeΔnÞ summing
up all the remaining amplitudes with at least one external
state being eΔn. We will demonstrate later in Secs. IV B and
VD that the sum of residual terms OðeΔnÞ is indeed
suppressed by Mn=E factors relative to the leading
Goldstone amplitude on the RHS of the GRET (3.16)
for the high-energy scattering processes (with two or more
external longitudinal KK gravitons).
In principle, the GRET identity (3.15a) and the GRET

(3.16) hold for any number of external longitudinal KK
graviton states, although in the above we take the case of
four longitudinal KK graviton scattering (N ¼ 4) at tree
level as an important example for discussing the naive
energy power-counting and energy cancellations. In the
following, we will extend the above naive power-counting
analysis on energy dependence of the longitudinal KK
graviton amplitudes, the KK Goldstone amplitudes and the
residual term amplitudes in the GRET identity (3.15a) to
the general case of N ≥ 4 and up to loop levels.

B. Energy cancellation mechanism for
KK graviton scattering amplitudes

We recall that Weinberg originally derived a power-
counting rule of energy dependence for the ungauged
nonlinear σ model as a description of low-energy QCD
interactions [28]. This power-counting rule has two major
ingredients: (i) The total mass-dimensionDS of a scattering
S-matrix element S is determined by the number of
external states (E) and the spacetime dimension, namely,
DS ¼ 4 − E, for 4d field theories. (ii) Consider that
the typical scattering energy E is much larger than all
the relevant mass poles in the internal propagators of the
scattering amplitude S. Then the total mass-dimension DC
of the E-independent coupling constants contained in the
amplitude S can be directly counted according to the type
of vertices therein. With these, one can deduce the total
energy power dependence DE of the amplitude S as
DE ¼ DS −DC. We note that the point (i) is fully general,
and the point (ii) holds for any field theory in which the
particle masses are much smaller than the scattering energy
E and the nontrivial energy dependence of the polarization

tensors (vectors) for the possible longitudinally polarized
KK gravitons (gauge bosons) can be properly taken
into account. Hence, we can generalize Weinberg’s
power-counting rule to the compactified 5d theories7

including KK graviton (Goldstone) fields and/or KK gauge
(Goldstone) fields, and study the high-energy scattering
amplitudes of KK particles whose masses are much smaller
than the scattering energy E.
Consider a scattering S-matrix element S having E

external states and L loops (L ≥ 0). Thus, the amplitude
S has a mass dimension

DS ¼ 4 − E; ð3:17Þ

where the number of external states E ¼ EB þ EF, with
EBðEFÞ being the number of external bosonic (fermionic)
states. For the fermions, we only consider the SM fermions
whose masses are much smaller than the scattering energy
E. We denote the number of vertices of type-j as Vj. Each
vertex of type-j contains dj derivatives, bj bosonic lines
and fj fermionic lines. Then, the energy-independent
effective coupling constant in the amplitude S is given by

DC ¼
X

j

Vj

!
4 − dj − bj −

3

2
fj

"
: ð3:18Þ

For each Feynman diagram in the scattering amplitude S,
we denote the number of the internal lines as I ¼ IB þ IF
with IB (IF) being the number of the internal bosonic
(fermionic) lines. Thus, we have the following general
relations:

L ¼ 1þ I − V;
X

j

Vjbj ¼ 2IB þ EB;

X

j

Vjfj ¼ 2IF þ EF; ð3:19Þ

where V ¼
P

j Vj is the total number of vertices in a given
Feynman diagram. The amplitude S may include EhL
external longitudinal KK graviton states. Then, using
Eqs. (3.17)–(3.19), we deduce the leading energy power
dependence DE ¼ DS −DC of the high-energy scattering
amplitude S as follows:

DE ¼ 2EhL þ ð2Lþ 2Þ þ
X

j

Vj

!
dj − 2þ 1

2
fj

"
: ð3:20Þ

Then, we consider the pure 5d KK GR theory without
involving any matter fields. Thus, for the pure longitudinal
KK graviton scattering amplitude with N external states
S ¼ M½hLn1 ;…; hLnN $, we have EhL ¼ N and fj ¼ 0. Each

7Weinberg’s power-counting rule was extended previously
[32,39] to the 4d gauge theories including the SM, the SM
effective theory (SMEFT), and the electroweak chiral Lagran-
gian.
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where Φ denotes any other external physical state(s).
The modification factors Cmod; C0

mod ¼ 1þOðloopÞ are
energy-independent constants and do not affect the energy
power-counting, which are generated at loop level [7,32]
and are not needed for the tree-level analysis in the
current study.
Then, we consider the scattering amplitudes of N

longitudinal KK gauge bosons and of the corresponding
N KK Goldstone bosons. Their leading energy powers are
given by Eqs. (3.31) and (3.32). Thus, we deduce the
following difference between their leading energy powers:

DE½NAL
n & −DE½NAn

5& ¼ N þ Vmin
3 ; ð3:34Þ

where Vmin
3 denotes the involved minimal number of

nonderivative cubic vertices in the KK Goldstone ampli-
tude and Vmin

3 ¼ 0ð1Þ for N ¼ even (odd). Next, we make
naive energy-counting on the residual term T v of the
KK GAET (3.33). To extract the leading energy depend-
ence, we start with the pure KK Goldstone amplitude
T ½Aa1n1

5 ;…; AaNnN
5 & and replace one external KK Goldstone

state (say, Aa1n1
5 ) by the KK gauge boson contracted with

the vμ factor (vμAa1n1
μ ¼ va1n1). For the case of N ¼ even,

this means to replace a derivative vertex by a nonderivative
vertex and add the factor vμ, so the leading energy
dependence DE will be reduced by E−2. For the case of
N ¼ odd, this means to replace a nonderivative cubic
vertex by a derivative cubic vertex and add a vμ factor.
So the leading energy dependence DE will not change.
Thus, we conclude that the leading energy dependence of
the residual term (3.33b) is given by

DE½T v& ¼ 2 − N ðfor N ¼ evenÞ; ð3:35aÞ

DE½T v& ¼ 3 − N ðfor N ¼ oddÞ: ð3:35bÞ

Comparing this with the leading energy power-counting
(3.32) of the N KK Goldstone boson amplitudes in the
high-energy scattering, we deduce that for the case of N ¼
even the residual term (3.33b) is suppressed by M2

n=E2

factor relative to the leading KK Goldstone amplitude on
the RHS of the KK GAET (3.33) and thus can be ignored,
while for the case of N ¼ odd the residual term (3.33b) has
the same leading energy dependence as that of the leading
KK Goldstone amplitude. In either case, the KK GAET
(3.33) guarantees that the leading energy dependence E4 of
the pure longitudinal KK gauge boson amplitudes in
Eq. (3.31) has to be cancelled down to the leading energy
dependence of the corresponding KK Goldstone ampli-
tudes in Eq. (3.32). This energy cancellation shows that
even though the N-particle longitudinal KK gauge boson
scattering amplitudes have superficial leading energy
dependence E4 as contributed by individual Feynman
diagrams, these must be cancelled down by an energy
factor EδDE to match the leading energy dependence of the

corresponding KK Goldstone boson amplitudes, where the
energy power factor changes by

δDE ¼ N þ 1 − ð−1ÞN

2
: ð3:36Þ

This energy cancellation of δDE coincides with the above
formula (3.34). For the case of four longitudinal KK gauge
boson scattering amplitudes (N ¼ 4), it was proven [6]
that the leading energy cancellation E4 → E0 is guaranteed
by the KK GAET to match the leading energy dependence
of the corresponding KKGoldstone boson amplitudes. This
fully agrees with the above general analysis for the N-
particle scattering amplitudes. In the following, we will
focus on the four-particle KK amplitudes (N ¼ 4) for the
explicit analysis of the GRET in Sec. IVand for the double-
copy construction in Sec. V. We will pursue the analysis of
the N > 4 case in future works [33].

IV. STRUCTURE OF KK GRAVITON
SCATTERING AMPLITUDES FROM

GRAVITATIONAL EQUIVALENCE THEOREM

The compactified five-dimensional Yang-Mills theory
under orbifold S1=Z2 generates a tower of massive gauge
bosons via KK construction. The KK gauge boson mass
generation can be formulated by the geometric Higgs
mechanism in a generic Rξ gauge [6], where each massive
longitudinal KK gauge boson Aaμ

n acquires its mass by
absorbing the corresponding KK-state Goldstone Aa5

n from
the fifth component of the 5d gauge field. Reference [6]
has established the KK GAET which states that each on-
shell scattering amplitude of the longitudinal KK gauge
bosons (AaL

n ) equals the amplitude of the corresponding
Goldstone bosons (Aa5

n ) down to OðE0Þ under the high-
energy expansion,

T ½AaL
n1 A

bL
n2 →AcL

n3 A
dL
n4 &¼T ½Aa5

n1A
b5
n2 →Ac5

n3A
d5
n4 &þOðM2

ni=E
2Þ:

ð4:1Þ

This formulation was extended to gauge theories in decon-
structed extra dimension [8] and to the realistic compactified
5d standard model [9].
In this section, we will systematically compute the 2 → 2

scattering amplitudes of gravitational KK Goldstone
bosons for the first time. Then, we will explicitly demon-
strate the validity of the GRET by comparing our gravi-
tational KK Goldstone amplitudes with the corresponding
helicity-zero KK graviton amplitudes obtained in [13]. For
the case of 2 → 2 scattering, we first deduce the GRET
identity from Eq. (3.15):

M½hLn1h
L
n2 → hLn3h

L
n4 & ¼ M½Ωn1Ωn2 → Ωn3Ωn4 &; ð4:2Þ

where Ωn ¼ ϕn þ eΔn and eΔn ¼ evn − ehn. Furthermore,
according to Eq. (3.16), we reexpress our four-point
GRET identity (4.2) as
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χ ≡
X

j

χj ≡
X

j

eχj; ð5:24Þ

where the kinematics hold the relations χuðθÞ ¼ −χtðπ − θÞ
and eχuðθÞ ¼ −eχtðπ − θÞ. Then, we define the following
modified subleading numerator factors:

δN 0
j ¼ δN j − χj; δ eN 0

j ¼ δ eN j − eχj; ð5:25Þ

which keep Eq. (5.22) invariant and satisfy the kinematic
Jacobi identities separately:

X

j

ðδN 0
j − δ eN 0

jÞ ¼ 0; ð5:26aÞ

X

j

δN 0
j ¼ 0;

X

j

δ eN 0
j ¼ 0: ð5:26bÞ

Thus, from Eq. (5.14), we define the improved scattering
amplitudes for the KK longitudinal gauge bosons and KK
Goldstone bosons:

T 0½4An
L% ¼ g2

!
CsN 0

s

s0
þ CtN 0

t

t0
þ CuN 0

u

u0

"
; ð5:27aÞ

eT 0½4An
5% ¼ g2

!
Cs eN

0
s

s0
þ Ct eN

0
t

t0
þ Cu eN

0
u

u0

"
: ð5:27bÞ

We note that according to the Jacobi identities (5.15) and
(5.26b), the improved numerators N 0

j ¼ N 0
j þ δN 0

j and
eN 0

j ¼ eN 0
j þ δ eN 0

j obey the kinematic Jacobi identities
separately:

N 0
s þN 0

t þN 0
u ¼ 0; ð5:28aÞ

eN 0
s þ eN 0

t þ eN 0
u ¼ 0: ð5:28bÞ

Thus, the improved KK scattering amplitudes (5.28a) and
(5.28b) exhibit all the nice features required by the conven-
tional double-copy construction of BCJ type [22,23]. We
will present such a double-copy construction for the KK
graviton scattering amplitudes and the GRET in the next
subsection. For the subleading KK YM amplitudes and KK
graviton amplitudes, our focus will be on the residual term
T v in the KK GAET identity and the residual term MΔ in
the GRET identity, which can be expressed respectively as
the difference between the NLO longitudinal KK amplitude
and the corresponding NLO KK Goldstone amplitude:

T v ¼ δT L − δeT 5; ð5:29aÞ

MΔ ¼ δM − δfM; ð5:29bÞ

where we have used the notations δM≡ δM½4hnL% and
δfM≡ δfM½4ϕn%. For deriving the above NLO KK GAET

identity (5.29a) and the NLO GRET identity (5.29b), we
have input the LO KK GAET identity (5.11) and the LO
GRET identity (F7a). The modified NLO numerators in
Eq. (5.25) give the modified NLO amplitudes as follows:

δT 0
L ¼ δT L −

X

j

Cjχj
s0j

; ð5:30aÞ

δeT 0
5 ¼ δeT 5 −

X

j

Cjeχj
s0j

: ð5:30bÞ

With the above, we can reexpress the NLO KK GAET
identity (5.29a) in the following form:

T 0
v ¼ δT 0

L − δeT 0
5; ð5:31Þ

where T 0
v denotes the modified residual term defined by

T 0
v ¼ T v −

P
j Cjðχj − eχjÞ=s0j. We note that even though

in Eq. (5.31) the NLO KK longitudinal and Goldstone
amplitudes ðδT 0

L; δeT
0
5Þ are both modified as in Eq. (5.30),

the residual term is also modified as T 0
v accordingly.

Hence, the NLO KK GAET identity (5.31) is equivalent
to its original form (5.29a), which means that the gauge
symmetry of the KK YM theory is still retained by the
identity (5.31).
With the double-copy construction, we can justify the

size of the GRET residual term MΔ ¼ OðM2
nE0Þ from the

KK GAET residual term T v ¼ OðM2
n=E2Þ, where T v is

well understood. We will demonstrate that the connection
between sizes of the two residual terms T v ¼ OðM2

n=E2Þ
andMΔ ¼ OðM2

nE0Þ is a general prediction of the double-
copy construction and does not depend on details of the
construction.

B. Constructing KK scattering amplitudes
and GRET by double copy

For the compactified 5d YM gauge theory and compac-
tified 5d GR theory, we expect the double-copy correspon-
dence:

Aaμ
n ⊗ Aaν

n → hμνn ; ð5:32aÞ

Aa5
n ⊗ Aa5

n → h55n ; ð5:32bÞ

Aaμ
n ⊗ Aa5

n → hμ5n : ð5:32cÞ

It is instructive to note that the physical spin-2 KK graviton
field hμνn arises from the double-copy of spin-1 KK gauge
fields Aaμ

n ⊗ Aaν
n . On the other hand, the Aa5

n is the would-
be KK Goldstone boson in the compactified 5d YM gauge
theory, and the double-copy counterparts h55n ð¼ ϕnÞ and
hμ5n just correspond to the scalar KK Goldstone boson and
vector KK Goldstone boson in the compactified 5d GR.
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Thus, from Eq. (5.14), we define the improved scattering
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T 0½4An
L% ¼ g2

!
CsN 0

s

s0
þ CtN 0

t

t0
þ CuN 0

u

u0

"
; ð5:27aÞ
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0
s
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t

t0
þ Cu eN

0
u

u0

"
: ð5:27bÞ

We note that according to the Jacobi identities (5.15) and
(5.26b), the improved numerators N 0

j ¼ N 0
j þ δN 0

j and
eN 0

j ¼ eN 0
j þ δ eN 0

j obey the kinematic Jacobi identities
separately:

N 0
s þN 0

t þN 0
u ¼ 0; ð5:28aÞ

eN 0
s þ eN 0

t þ eN 0
u ¼ 0: ð5:28bÞ

Thus, the improved KK scattering amplitudes (5.28a) and
(5.28b) exhibit all the nice features required by the conven-
tional double-copy construction of BCJ type [22,23]. We
will present such a double-copy construction for the KK
graviton scattering amplitudes and the GRET in the next
subsection. For the subleading KK YM amplitudes and KK
graviton amplitudes, our focus will be on the residual term
T v in the KK GAET identity and the residual term MΔ in
the GRET identity, which can be expressed respectively as
the difference between the NLO longitudinal KK amplitude
and the corresponding NLO KK Goldstone amplitude:

T v ¼ δT L − δeT 5; ð5:29aÞ

MΔ ¼ δM − δfM; ð5:29bÞ

where we have used the notations δM≡ δM½4hnL% and
δfM≡ δfM½4ϕn%. For deriving the above NLO KK GAET

identity (5.29a) and the NLO GRET identity (5.29b), we
have input the LO KK GAET identity (5.11) and the LO
GRET identity (F7a). The modified NLO numerators in
Eq. (5.25) give the modified NLO amplitudes as follows:

δT 0
L ¼ δT L −

X

j

Cjχj
s0j

; ð5:30aÞ

δeT 0
5 ¼ δeT 5 −

X

j

Cjeχj
s0j

: ð5:30bÞ

With the above, we can reexpress the NLO KK GAET
identity (5.29a) in the following form:

T 0
v ¼ δT 0

L − δeT 0
5; ð5:31Þ

where T 0
v denotes the modified residual term defined by

T 0
v ¼ T v −

P
j Cjðχj − eχjÞ=s0j. We note that even though

in Eq. (5.31) the NLO KK longitudinal and Goldstone
amplitudes ðδT 0

L; δeT
0
5Þ are both modified as in Eq. (5.30),

the residual term is also modified as T 0
v accordingly.

Hence, the NLO KK GAET identity (5.31) is equivalent
to its original form (5.29a), which means that the gauge
symmetry of the KK YM theory is still retained by the
identity (5.31).
With the double-copy construction, we can justify the

size of the GRET residual term MΔ ¼ OðM2
nE0Þ from the

KK GAET residual term T v ¼ OðM2
n=E2Þ, where T v is

well understood. We will demonstrate that the connection
between sizes of the two residual terms T v ¼ OðM2

n=E2Þ
andMΔ ¼ OðM2

nE0Þ is a general prediction of the double-
copy construction and does not depend on details of the
construction.

B. Constructing KK scattering amplitudes
and GRET by double copy

For the compactified 5d YM gauge theory and compac-
tified 5d GR theory, we expect the double-copy correspon-
dence:

Aaμ
n ⊗ Aaν

n → hμνn ; ð5:32aÞ

Aa5
n ⊗ Aa5

n → h55n ; ð5:32bÞ

Aaμ
n ⊗ Aa5

n → hμ5n : ð5:32cÞ

It is instructive to note that the physical spin-2 KK graviton
field hμνn arises from the double-copy of spin-1 KK gauge
fields Aaμ

n ⊗ Aaν
n . On the other hand, the Aa5

n is the would-
be KK Goldstone boson in the compactified 5d YM gauge
theory, and the double-copy counterparts h55n ð¼ ϕnÞ and
hμ5n just correspond to the scalar KK Goldstone boson and
vector KK Goldstone boson in the compactified 5d GR.
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expansion. As we will show in Secs. IV B and VD for the
four longitudinal KK graviton scattering, the residual term
MΔ as a sum of the eΔn-dependent individual amplitudes in
Eq. (3.15) has OðE2Þ by the naive power-counting and will
be further cancelled down toOðE0Þ in comparison with the
leading Goldstone ϕn amplitude of OðE2Þ under the high-
energy expansion.
With the above observations, we can express the GRET

as follows:

M½hLn1ðk1Þ;…; hLnN ðkNÞ;Φ$

¼ M½ϕn1ðk1Þ;…;ϕnN ðkNÞ;Φ$ þOðeΔnÞ; ð3:16Þ

where the residual termMΔ is denoted byOðeΔnÞ summing
up all the remaining amplitudes with at least one external
state being eΔn. We will demonstrate later in Secs. IV B and
VD that the sum of residual terms OðeΔnÞ is indeed
suppressed by Mn=E factors relative to the leading
Goldstone amplitude on the RHS of the GRET (3.16)
for the high-energy scattering processes (with two or more
external longitudinal KK gravitons).
In principle, the GRET identity (3.15a) and the GRET

(3.16) hold for any number of external longitudinal KK
graviton states, although in the above we take the case of
four longitudinal KK graviton scattering (N ¼ 4) at tree
level as an important example for discussing the naive
energy power-counting and energy cancellations. In the
following, we will extend the above naive power-counting
analysis on energy dependence of the longitudinal KK
graviton amplitudes, the KK Goldstone amplitudes and the
residual term amplitudes in the GRET identity (3.15a) to
the general case of N ≥ 4 and up to loop levels.

B. Energy cancellation mechanism for
KK graviton scattering amplitudes

We recall that Weinberg originally derived a power-
counting rule of energy dependence for the ungauged
nonlinear σ model as a description of low-energy QCD
interactions [28]. This power-counting rule has two major
ingredients: (i) The total mass-dimensionDS of a scattering
S-matrix element S is determined by the number of
external states (E) and the spacetime dimension, namely,
DS ¼ 4 − E, for 4d field theories. (ii) Consider that
the typical scattering energy E is much larger than all
the relevant mass poles in the internal propagators of the
scattering amplitude S. Then the total mass-dimension DC
of the E-independent coupling constants contained in the
amplitude S can be directly counted according to the type
of vertices therein. With these, one can deduce the total
energy power dependence DE of the amplitude S as
DE ¼ DS −DC. We note that the point (i) is fully general,
and the point (ii) holds for any field theory in which the
particle masses are much smaller than the scattering energy
E and the nontrivial energy dependence of the polarization

tensors (vectors) for the possible longitudinally polarized
KK gravitons (gauge bosons) can be properly taken
into account. Hence, we can generalize Weinberg’s
power-counting rule to the compactified 5d theories7

including KK graviton (Goldstone) fields and/or KK gauge
(Goldstone) fields, and study the high-energy scattering
amplitudes of KK particles whose masses are much smaller
than the scattering energy E.
Consider a scattering S-matrix element S having E

external states and L loops (L ≥ 0). Thus, the amplitude
S has a mass dimension

DS ¼ 4 − E; ð3:17Þ

where the number of external states E ¼ EB þ EF, with
EBðEFÞ being the number of external bosonic (fermionic)
states. For the fermions, we only consider the SM fermions
whose masses are much smaller than the scattering energy
E. We denote the number of vertices of type-j as Vj. Each
vertex of type-j contains dj derivatives, bj bosonic lines
and fj fermionic lines. Then, the energy-independent
effective coupling constant in the amplitude S is given by

DC ¼
X

j

Vj

!
4 − dj − bj −

3

2
fj

"
: ð3:18Þ

For each Feynman diagram in the scattering amplitude S,
we denote the number of the internal lines as I ¼ IB þ IF
with IB (IF) being the number of the internal bosonic
(fermionic) lines. Thus, we have the following general
relations:

L ¼ 1þ I − V;
X

j

Vjbj ¼ 2IB þ EB;

X

j

Vjfj ¼ 2IF þ EF; ð3:19Þ

where V ¼
P

j Vj is the total number of vertices in a given
Feynman diagram. The amplitude S may include EhL
external longitudinal KK graviton states. Then, using
Eqs. (3.17)–(3.19), we deduce the leading energy power
dependence DE ¼ DS −DC of the high-energy scattering
amplitude S as follows:

DE ¼ 2EhL þ ð2Lþ 2Þ þ
X

j

Vj

!
dj − 2þ 1

2
fj

"
: ð3:20Þ

Then, we consider the pure 5d KK GR theory without
involving any matter fields. Thus, for the pure longitudinal
KK graviton scattering amplitude with N external states
S ¼ M½hLn1 ;…; hLnN $, we have EhL ¼ N and fj ¼ 0. Each

7Weinberg’s power-counting rule was extended previously
[32,39] to the 4d gauge theories including the SM, the SM
effective theory (SMEFT), and the electroweak chiral Lagran-
gian.
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where Φ denotes any other external physical state(s).
The modification factors Cmod; C0

mod ¼ 1þOðloopÞ are
energy-independent constants and do not affect the energy
power-counting, which are generated at loop level [7,32]
and are not needed for the tree-level analysis in the
current study.
Then, we consider the scattering amplitudes of N

longitudinal KK gauge bosons and of the corresponding
N KK Goldstone bosons. Their leading energy powers are
given by Eqs. (3.31) and (3.32). Thus, we deduce the
following difference between their leading energy powers:

DE½NAL
n & −DE½NAn

5& ¼ N þ Vmin
3 ; ð3:34Þ

where Vmin
3 denotes the involved minimal number of

nonderivative cubic vertices in the KK Goldstone ampli-
tude and Vmin

3 ¼ 0ð1Þ for N ¼ even (odd). Next, we make
naive energy-counting on the residual term T v of the
KK GAET (3.33). To extract the leading energy depend-
ence, we start with the pure KK Goldstone amplitude
T ½Aa1n1

5 ;…; AaNnN
5 & and replace one external KK Goldstone

state (say, Aa1n1
5 ) by the KK gauge boson contracted with

the vμ factor (vμAa1n1
μ ¼ va1n1). For the case of N ¼ even,

this means to replace a derivative vertex by a nonderivative
vertex and add the factor vμ, so the leading energy
dependence DE will be reduced by E−2. For the case of
N ¼ odd, this means to replace a nonderivative cubic
vertex by a derivative cubic vertex and add a vμ factor.
So the leading energy dependence DE will not change.
Thus, we conclude that the leading energy dependence of
the residual term (3.33b) is given by

DE½T v& ¼ 2 − N ðfor N ¼ evenÞ; ð3:35aÞ

DE½T v& ¼ 3 − N ðfor N ¼ oddÞ: ð3:35bÞ

Comparing this with the leading energy power-counting
(3.32) of the N KK Goldstone boson amplitudes in the
high-energy scattering, we deduce that for the case of N ¼
even the residual term (3.33b) is suppressed by M2

n=E2

factor relative to the leading KK Goldstone amplitude on
the RHS of the KK GAET (3.33) and thus can be ignored,
while for the case of N ¼ odd the residual term (3.33b) has
the same leading energy dependence as that of the leading
KK Goldstone amplitude. In either case, the KK GAET
(3.33) guarantees that the leading energy dependence E4 of
the pure longitudinal KK gauge boson amplitudes in
Eq. (3.31) has to be cancelled down to the leading energy
dependence of the corresponding KK Goldstone ampli-
tudes in Eq. (3.32). This energy cancellation shows that
even though the N-particle longitudinal KK gauge boson
scattering amplitudes have superficial leading energy
dependence E4 as contributed by individual Feynman
diagrams, these must be cancelled down by an energy
factor EδDE to match the leading energy dependence of the

corresponding KK Goldstone boson amplitudes, where the
energy power factor changes by

δDE ¼ N þ 1 − ð−1ÞN

2
: ð3:36Þ

This energy cancellation of δDE coincides with the above
formula (3.34). For the case of four longitudinal KK gauge
boson scattering amplitudes (N ¼ 4), it was proven [6]
that the leading energy cancellation E4 → E0 is guaranteed
by the KK GAET to match the leading energy dependence
of the corresponding KKGoldstone boson amplitudes. This
fully agrees with the above general analysis for the N-
particle scattering amplitudes. In the following, we will
focus on the four-particle KK amplitudes (N ¼ 4) for the
explicit analysis of the GRET in Sec. IVand for the double-
copy construction in Sec. V. We will pursue the analysis of
the N > 4 case in future works [33].

IV. STRUCTURE OF KK GRAVITON
SCATTERING AMPLITUDES FROM

GRAVITATIONAL EQUIVALENCE THEOREM

The compactified five-dimensional Yang-Mills theory
under orbifold S1=Z2 generates a tower of massive gauge
bosons via KK construction. The KK gauge boson mass
generation can be formulated by the geometric Higgs
mechanism in a generic Rξ gauge [6], where each massive
longitudinal KK gauge boson Aaμ

n acquires its mass by
absorbing the corresponding KK-state Goldstone Aa5

n from
the fifth component of the 5d gauge field. Reference [6]
has established the KK GAET which states that each on-
shell scattering amplitude of the longitudinal KK gauge
bosons (AaL

n ) equals the amplitude of the corresponding
Goldstone bosons (Aa5

n ) down to OðE0Þ under the high-
energy expansion,

T ½AaL
n1 A

bL
n2 →AcL

n3 A
dL
n4 &¼T ½Aa5

n1A
b5
n2 →Ac5

n3A
d5
n4 &þOðM2

ni=E
2Þ:

ð4:1Þ

This formulation was extended to gauge theories in decon-
structed extra dimension [8] and to the realistic compactified
5d standard model [9].
In this section, we will systematically compute the 2 → 2

scattering amplitudes of gravitational KK Goldstone
bosons for the first time. Then, we will explicitly demon-
strate the validity of the GRET by comparing our gravi-
tational KK Goldstone amplitudes with the corresponding
helicity-zero KK graviton amplitudes obtained in [13]. For
the case of 2 → 2 scattering, we first deduce the GRET
identity from Eq. (3.15):

M½hLn1h
L
n2 → hLn3h

L
n4 & ¼ M½Ωn1Ωn2 → Ωn3Ωn4 &; ð4:2Þ

where Ωn ¼ ϕn þ eΔn and eΔn ¼ evn − ehn. Furthermore,
according to Eq. (3.16), we reexpress our four-point
GRET identity (4.2) as
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χ ≡
X

j

χj ≡
X

j

eχj; ð5:24Þ

where the kinematics hold the relations χuðθÞ ¼ −χtðπ − θÞ
and eχuðθÞ ¼ −eχtðπ − θÞ. Then, we define the following
modified subleading numerator factors:

δN 0
j ¼ δN j − χj; δ eN 0

j ¼ δ eN j − eχj; ð5:25Þ

which keep Eq. (5.22) invariant and satisfy the kinematic
Jacobi identities separately:

X

j

ðδN 0
j − δ eN 0

jÞ ¼ 0; ð5:26aÞ

X

j

δN 0
j ¼ 0;

X

j

δ eN 0
j ¼ 0: ð5:26bÞ

Thus, from Eq. (5.14), we define the improved scattering
amplitudes for the KK longitudinal gauge bosons and KK
Goldstone bosons:

T 0½4An
L% ¼ g2

!
CsN 0

s

s0
þ CtN 0

t

t0
þ CuN 0

u

u0

"
; ð5:27aÞ

eT 0½4An
5% ¼ g2

!
Cs eN

0
s

s0
þ Ct eN

0
t

t0
þ Cu eN

0
u

u0

"
: ð5:27bÞ

We note that according to the Jacobi identities (5.15) and
(5.26b), the improved numerators N 0

j ¼ N 0
j þ δN 0

j and
eN 0

j ¼ eN 0
j þ δ eN 0

j obey the kinematic Jacobi identities
separately:

N 0
s þN 0

t þN 0
u ¼ 0; ð5:28aÞ

eN 0
s þ eN 0

t þ eN 0
u ¼ 0: ð5:28bÞ

Thus, the improved KK scattering amplitudes (5.28a) and
(5.28b) exhibit all the nice features required by the conven-
tional double-copy construction of BCJ type [22,23]. We
will present such a double-copy construction for the KK
graviton scattering amplitudes and the GRET in the next
subsection. For the subleading KK YM amplitudes and KK
graviton amplitudes, our focus will be on the residual term
T v in the KK GAET identity and the residual term MΔ in
the GRET identity, which can be expressed respectively as
the difference between the NLO longitudinal KK amplitude
and the corresponding NLO KK Goldstone amplitude:

T v ¼ δT L − δeT 5; ð5:29aÞ

MΔ ¼ δM − δfM; ð5:29bÞ

where we have used the notations δM≡ δM½4hnL% and
δfM≡ δfM½4ϕn%. For deriving the above NLO KK GAET

identity (5.29a) and the NLO GRET identity (5.29b), we
have input the LO KK GAET identity (5.11) and the LO
GRET identity (F7a). The modified NLO numerators in
Eq. (5.25) give the modified NLO amplitudes as follows:

δT 0
L ¼ δT L −

X

j

Cjχj
s0j

; ð5:30aÞ

δeT 0
5 ¼ δeT 5 −

X

j

Cjeχj
s0j

: ð5:30bÞ

With the above, we can reexpress the NLO KK GAET
identity (5.29a) in the following form:

T 0
v ¼ δT 0

L − δeT 0
5; ð5:31Þ

where T 0
v denotes the modified residual term defined by

T 0
v ¼ T v −

P
j Cjðχj − eχjÞ=s0j. We note that even though

in Eq. (5.31) the NLO KK longitudinal and Goldstone
amplitudes ðδT 0

L; δeT
0
5Þ are both modified as in Eq. (5.30),

the residual term is also modified as T 0
v accordingly.

Hence, the NLO KK GAET identity (5.31) is equivalent
to its original form (5.29a), which means that the gauge
symmetry of the KK YM theory is still retained by the
identity (5.31).
With the double-copy construction, we can justify the

size of the GRET residual term MΔ ¼ OðM2
nE0Þ from the

KK GAET residual term T v ¼ OðM2
n=E2Þ, where T v is

well understood. We will demonstrate that the connection
between sizes of the two residual terms T v ¼ OðM2

n=E2Þ
andMΔ ¼ OðM2

nE0Þ is a general prediction of the double-
copy construction and does not depend on details of the
construction.

B. Constructing KK scattering amplitudes
and GRET by double copy

For the compactified 5d YM gauge theory and compac-
tified 5d GR theory, we expect the double-copy correspon-
dence:

Aaμ
n ⊗ Aaν

n → hμνn ; ð5:32aÞ

Aa5
n ⊗ Aa5

n → h55n ; ð5:32bÞ

Aaμ
n ⊗ Aa5

n → hμ5n : ð5:32cÞ

It is instructive to note that the physical spin-2 KK graviton
field hμνn arises from the double-copy of spin-1 KK gauge
fields Aaμ

n ⊗ Aaν
n . On the other hand, the Aa5

n is the would-
be KK Goldstone boson in the compactified 5d YM gauge
theory, and the double-copy counterparts h55n ð¼ ϕnÞ and
hμ5n just correspond to the scalar KK Goldstone boson and
vector KK Goldstone boson in the compactified 5d GR.
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χ ≡
X

j

χj ≡
X

j

eχj; ð5:24Þ

where the kinematics hold the relations χuðθÞ ¼ −χtðπ − θÞ
and eχuðθÞ ¼ −eχtðπ − θÞ. Then, we define the following
modified subleading numerator factors:

δN 0
j ¼ δN j − χj; δ eN 0

j ¼ δ eN j − eχj; ð5:25Þ

which keep Eq. (5.22) invariant and satisfy the kinematic
Jacobi identities separately:

X

j

ðδN 0
j − δ eN 0

jÞ ¼ 0; ð5:26aÞ

X

j

δN 0
j ¼ 0;

X

j

δ eN 0
j ¼ 0: ð5:26bÞ

Thus, from Eq. (5.14), we define the improved scattering
amplitudes for the KK longitudinal gauge bosons and KK
Goldstone bosons:

T 0½4An
L% ¼ g2

!
CsN 0

s

s0
þ CtN 0

t

t0
þ CuN 0

u

u0

"
; ð5:27aÞ

eT 0½4An
5% ¼ g2

!
Cs eN

0
s

s0
þ Ct eN

0
t

t0
þ Cu eN

0
u

u0

"
: ð5:27bÞ

We note that according to the Jacobi identities (5.15) and
(5.26b), the improved numerators N 0

j ¼ N 0
j þ δN 0

j and
eN 0

j ¼ eN 0
j þ δ eN 0

j obey the kinematic Jacobi identities
separately:

N 0
s þN 0

t þN 0
u ¼ 0; ð5:28aÞ

eN 0
s þ eN 0

t þ eN 0
u ¼ 0: ð5:28bÞ

Thus, the improved KK scattering amplitudes (5.28a) and
(5.28b) exhibit all the nice features required by the conven-
tional double-copy construction of BCJ type [22,23]. We
will present such a double-copy construction for the KK
graviton scattering amplitudes and the GRET in the next
subsection. For the subleading KK YM amplitudes and KK
graviton amplitudes, our focus will be on the residual term
T v in the KK GAET identity and the residual term MΔ in
the GRET identity, which can be expressed respectively as
the difference between the NLO longitudinal KK amplitude
and the corresponding NLO KK Goldstone amplitude:

T v ¼ δT L − δeT 5; ð5:29aÞ

MΔ ¼ δM − δfM; ð5:29bÞ

where we have used the notations δM≡ δM½4hnL% and
δfM≡ δfM½4ϕn%. For deriving the above NLO KK GAET

identity (5.29a) and the NLO GRET identity (5.29b), we
have input the LO KK GAET identity (5.11) and the LO
GRET identity (F7a). The modified NLO numerators in
Eq. (5.25) give the modified NLO amplitudes as follows:

δT 0
L ¼ δT L −

X

j

Cjχj
s0j

; ð5:30aÞ

δeT 0
5 ¼ δeT 5 −

X

j

Cjeχj
s0j

: ð5:30bÞ

With the above, we can reexpress the NLO KK GAET
identity (5.29a) in the following form:

T 0
v ¼ δT 0

L − δeT 0
5; ð5:31Þ

where T 0
v denotes the modified residual term defined by

T 0
v ¼ T v −

P
j Cjðχj − eχjÞ=s0j. We note that even though

in Eq. (5.31) the NLO KK longitudinal and Goldstone
amplitudes ðδT 0

L; δeT
0
5Þ are both modified as in Eq. (5.30),

the residual term is also modified as T 0
v accordingly.

Hence, the NLO KK GAET identity (5.31) is equivalent
to its original form (5.29a), which means that the gauge
symmetry of the KK YM theory is still retained by the
identity (5.31).
With the double-copy construction, we can justify the

size of the GRET residual term MΔ ¼ OðM2
nE0Þ from the

KK GAET residual term T v ¼ OðM2
n=E2Þ, where T v is

well understood. We will demonstrate that the connection
between sizes of the two residual terms T v ¼ OðM2

n=E2Þ
andMΔ ¼ OðM2

nE0Þ is a general prediction of the double-
copy construction and does not depend on details of the
construction.

B. Constructing KK scattering amplitudes
and GRET by double copy

For the compactified 5d YM gauge theory and compac-
tified 5d GR theory, we expect the double-copy correspon-
dence:

Aaμ
n ⊗ Aaν

n → hμνn ; ð5:32aÞ

Aa5
n ⊗ Aa5

n → h55n ; ð5:32bÞ

Aaμ
n ⊗ Aa5

n → hμ5n : ð5:32cÞ

It is instructive to note that the physical spin-2 KK graviton
field hμνn arises from the double-copy of spin-1 KK gauge
fields Aaμ

n ⊗ Aaν
n . On the other hand, the Aa5

n is the would-
be KK Goldstone boson in the compactified 5d YM gauge
theory, and the double-copy counterparts h55n ð¼ ϕnÞ and
hμ5n just correspond to the scalar KK Goldstone boson and
vector KK Goldstone boson in the compactified 5d GR.
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From Eq. (5.32a), we further expect the double-copy
correspondence between the (helicity-zero) longitudinal
KK graviton and KK gauge boson: Aan

L ⊗ Aan
L → hnL.

We observe that in the high-energy limit the longitudinal
KK gauge boson Aan

L ¼ ϵμLA
an
μ has its polarization vector

ϵμL ∼ kμ=Mn, and the longitudinal KK graviton hnL ¼ εμνL hnμν
has its polarization tensor εμνL ∼ kμkν=M2

n. Thus, we have
εμνL ∼ ϵμLϵ

ν
L in the high-energy limit, which also makes

the longitudinal correspondence (Aan
L ⊗ Aan

L → hnL) well
expected. The demonstration of the double-copy corre-
spondence between the longitudinal KK gauge boson
amplitudes and the longitudinal KK graviton amplitudes
is much more nontrivial than the above relation between the
on-shell longitudinal polarization vector/tensor, as we will
analyze further in this subsection.
In this subsection, wewill first demonstrate a double-copy

construction from theKKgauge theory amplitudes to theKK
graviton amplitudes at the leading order of the high-energy
expansion, which corresponds to the limit Mn=E → 0. We
find that such leading-order amplitudes aremass independent
and their kinematic Jacobi identities (5.15) hold, in addition
to themasslessMandelstam relation s0 þ t0 þ u0 ¼ 0. Thus,
we will first extend the conventional double-copy method
[22,23] to the LO amplitudes in our 5d KK theory and
demonstrate how it works quantitatively.
We note that the (helicity-zero) longitudinal KK gauge

bosons Aan
L and longitudinal KK gravitons hnL are truly

distinctive in the KK theory because they do not exist in the
commonly studied massless YM gauge theory or massless
GR. Also, in the limit Mn → 0, the KK Goldstone bosons
Aan
5 and ϕnð¼ hn55Þ both become massless and correspond

to the physical degrees of freedom. But, it is important to
observe that according to the KK GAET (cf. Sec. VA) [6,7]
and GRET (Secs. III and IV), the leading scattering
amplitudes of the longitudinal KK gauge bosons (KK
gravitons) equal the corresponding amplitudes of the KK
Goldstone bosons and are mass independent (which cor-
responds to the limit M2

n=E2 → 0 under high-energy
expansion). Hence, we can construct a double copy from
the leading longitudinal KK gauge boson amplitudes of
OðE0Þ to the corresponding longitudinal KK graviton
amplitudes of OðE2Þ, in parallel to the double-copy
construction between the KK Goldstone amplitudes in
the KK YM theory and KK GR. The KK Goldstone
amplitudes are much simpler due to the absence of any
nontrivial energy cancellations in the KK Goldstone
amplitudes. Furthermore, since the compactified KK the-
ories have very different Feynman rules from the 4d
massless gauge theory or massless GR as commonly
studied, the double-copy realization in the KK theory is
far from obvious even for the leading-order amplitudes
before explicit demonstration. For instance, there are highly
nontrivial and intricate energy cancellations in the longi-
tudinal KK gauge boson scattering amplitudes [from
OðE4Þ down to OðE0Þ] [6] and in the (helicity-zero)

longitudinal KK graviton scattering amplitudes [from
OðE10Þ down to OðE2Þ] [13]; all of these do not exist in
the 4d massless gauge theory and massless GR.
We inspect the structures of the KK longitudinal gauge

boson scattering amplitude (5.14a) and the KK correspond-
ing Goldstone boson scattering amplitude (5.14b) in the
compactified 5d YM gauge theory under the high-energy
expansion. We see from Eqs. (5.7)–(5.9) that under high-
energy expansions, the leading amplitudes ðT 0L; eT 05Þ are of
OðE0Þ and mass independent, while the subleading ampli-
tudes ðδT L; δeT 5Þ are of OðM2

n=E2Þ and vanish in the
massless limit Mn → 0. We have formally expressed these
leading amplitudes in the form the massless gauge theories
with pole factors ðs0; t0; u0Þ in the denominator of each
channel, even though these poles are no longer real poles
under the current high-energy expansion. For the current
study of the 5d KK YM gauge theories and 5d KK GR, we
present an extended formulation of the conventional BCJ
double-copy method of the massless gauge theories [22,23],
by making the high-energy expansion with M2

n=E2 ≪ 1
under which all the nonzero KK mass poles are removed,
and the mass-dependent contributions can be treated order
by order.
From the numerators of the amplitudes (5.14a) and

(5.14b), we see that the kinematic factors ðN s;N t;N uÞ
and ð eN s; eN t; eN uÞmay beviewed as dual to the color factors
ðCs; Ct; CuÞ according to the conventional double-copy
method in the massless gauge theories [22,23]. Thus,
we attempt to construct the elastic scattering amplitude
M½hnLhnL → hnLh

n
L& of the longitudinal KK gravitons

and the gravitational KK Goldstone boson amplitude
fM½ϕnϕn → ϕnϕn& from the corresponding longitudinal
KK gauge boson amplitude T ½Aan

L Abn
L → Acn

L Adn
L & and the

KK Goldstone boson amplitude eT ½Aan
5 Abn

5 → Acn
5 Adn

5 &,
respectively. We realize an extended double-copy construc-
tion for the 5d KK YM gauge theory and 5d KK GR by the
following replacement:

ðCs; Ct; CuÞ → ðN s;N t;N uÞ; ð5:33aÞ

ðCs; Ct; CuÞ → ð eN s; eN t; eN uÞ: ð5:33bÞ

Applying this duality replacement to the scattering ampli-
tudes of the longitudinal KK gauge bosons and KK
Goldstone bosons in Eqs. (5.14a), (5.14b), (5.8), (5.13c),
and (5.13d), we first construct the corresponding scattering
amplitudes of the longitudinal KK gravitons and gravita-
tional KK Goldstone bosons to the nonzero leading con-
tributions of OðE2Þ in the high-energy expansion:

M0½hnLhnL → hnLh
n
L& ¼ c0g2

!
ðN 0

sÞ2

s0
þ ðN 0

t Þ2

t0
þ ðN 0

uÞ2

u0

"
;

ð5:34aÞ
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Color -> Kinematic replacement

From Eq. (5.32a), we further expect the double-copy
correspondence between the (helicity-zero) longitudinal
KK graviton and KK gauge boson: Aan

L ⊗ Aan
L → hnL.

We observe that in the high-energy limit the longitudinal
KK gauge boson Aan

L ¼ ϵμLA
an
μ has its polarization vector

ϵμL ∼ kμ=Mn, and the longitudinal KK graviton hnL ¼ εμνL hnμν
has its polarization tensor εμνL ∼ kμkν=M2

n. Thus, we have
εμνL ∼ ϵμLϵ

ν
L in the high-energy limit, which also makes

the longitudinal correspondence (Aan
L ⊗ Aan

L → hnL) well
expected. The demonstration of the double-copy corre-
spondence between the longitudinal KK gauge boson
amplitudes and the longitudinal KK graviton amplitudes
is much more nontrivial than the above relation between the
on-shell longitudinal polarization vector/tensor, as we will
analyze further in this subsection.
In this subsection, wewill first demonstrate a double-copy
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graviton amplitudes at the leading order of the high-energy
expansion, which corresponds to the limit Mn=E → 0. We
find that such leading-order amplitudes aremass independent
and their kinematic Jacobi identities (5.15) hold, in addition
to themasslessMandelstam relation s0 þ t0 þ u0 ¼ 0. Thus,
we will first extend the conventional double-copy method
[22,23] to the LO amplitudes in our 5d KK theory and
demonstrate how it works quantitatively.
We note that the (helicity-zero) longitudinal KK gauge
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L and longitudinal KK gravitons hnL are truly

distinctive in the KK theory because they do not exist in the
commonly studied massless YM gauge theory or massless
GR. Also, in the limit Mn → 0, the KK Goldstone bosons
Aan
5 and ϕnð¼ hn55Þ both become massless and correspond

to the physical degrees of freedom. But, it is important to
observe that according to the KK GAET (cf. Sec. VA) [6,7]
and GRET (Secs. III and IV), the leading scattering
amplitudes of the longitudinal KK gauge bosons (KK
gravitons) equal the corresponding amplitudes of the KK
Goldstone bosons and are mass independent (which cor-
responds to the limit M2

n=E2 → 0 under high-energy
expansion). Hence, we can construct a double copy from
the leading longitudinal KK gauge boson amplitudes of
OðE0Þ to the corresponding longitudinal KK graviton
amplitudes of OðE2Þ, in parallel to the double-copy
construction between the KK Goldstone amplitudes in
the KK YM theory and KK GR. The KK Goldstone
amplitudes are much simpler due to the absence of any
nontrivial energy cancellations in the KK Goldstone
amplitudes. Furthermore, since the compactified KK the-
ories have very different Feynman rules from the 4d
massless gauge theory or massless GR as commonly
studied, the double-copy realization in the KK theory is
far from obvious even for the leading-order amplitudes
before explicit demonstration. For instance, there are highly
nontrivial and intricate energy cancellations in the longi-
tudinal KK gauge boson scattering amplitudes [from
OðE4Þ down to OðE0Þ] [6] and in the (helicity-zero)
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OðE10Þ down to OðE2Þ] [13]; all of these do not exist in
the 4d massless gauge theory and massless GR.
We inspect the structures of the KK longitudinal gauge

boson scattering amplitude (5.14a) and the KK correspond-
ing Goldstone boson scattering amplitude (5.14b) in the
compactified 5d YM gauge theory under the high-energy
expansion. We see from Eqs. (5.7)–(5.9) that under high-
energy expansions, the leading amplitudes ðT 0L; eT 05Þ are of
OðE0Þ and mass independent, while the subleading ampli-
tudes ðδT L; δeT 5Þ are of OðM2

n=E2Þ and vanish in the
massless limit Mn → 0. We have formally expressed these
leading amplitudes in the form the massless gauge theories
with pole factors ðs0; t0; u0Þ in the denominator of each
channel, even though these poles are no longer real poles
under the current high-energy expansion. For the current
study of the 5d KK YM gauge theories and 5d KK GR, we
present an extended formulation of the conventional BCJ
double-copy method of the massless gauge theories [22,23],
by making the high-energy expansion with M2

n=E2 ≪ 1
under which all the nonzero KK mass poles are removed,
and the mass-dependent contributions can be treated order
by order.
From the numerators of the amplitudes (5.14a) and

(5.14b), we see that the kinematic factors ðN s;N t;N uÞ
and ð eN s; eN t; eN uÞmay beviewed as dual to the color factors
ðCs; Ct; CuÞ according to the conventional double-copy
method in the massless gauge theories [22,23]. Thus,
we attempt to construct the elastic scattering amplitude
M½hnLhnL → hnLh

n
L& of the longitudinal KK gravitons

and the gravitational KK Goldstone boson amplitude
fM½ϕnϕn → ϕnϕn& from the corresponding longitudinal
KK gauge boson amplitude T ½Aan

L Abn
L → Acn

L Adn
L & and the

KK Goldstone boson amplitude eT ½Aan
5 Abn

5 → Acn
5 Adn

5 &,
respectively. We realize an extended double-copy construc-
tion for the 5d KK YM gauge theory and 5d KK GR by the
following replacement:

ðCs; Ct; CuÞ → ðN s;N t;N uÞ; ð5:33aÞ

ðCs; Ct; CuÞ → ð eN s; eN t; eN uÞ: ð5:33bÞ

Applying this duality replacement to the scattering ampli-
tudes of the longitudinal KK gauge bosons and KK
Goldstone bosons in Eqs. (5.14a), (5.14b), (5.8), (5.13c),
and (5.13d), we first construct the corresponding scattering
amplitudes of the longitudinal KK gravitons and gravita-
tional KK Goldstone bosons to the nonzero leading con-
tributions of OðE2Þ in the high-energy expansion:

M0½hnLhnL → hnLh
n
L& ¼ c0g2

!
ðN 0

sÞ2

s0
þ ðN 0

t Þ2

t0
þ ðN 0

uÞ2

u0

"
;

ð5:34aÞ

YAN-FENG HANG and HONG-JIAN HE PHYS. REV. D 105, 084005 (2022)

084005-28

fM0½ϕnϕn → ϕnϕn" ¼ c0g2
!
ð eN 0

sÞ2

s0
þ ð eN 0

t Þ2

t0
þ ð eN 0

uÞ2

u0

"
;

ð5:34bÞ

where the overall coefficient c0 is a conversion constant due
to replacing the gauge coupling g by gravitational coupling κ.
The constant c0 is not known a priori before a unified UV
theory of gauge and gravitational forces becomes available.
Then, substituting Eqs. (5.8a)–(5.8c) into Eqs. (5.34a)

and (5.34b), we explicitly reconstruct the longitudinal KK
graviton scattering amplitude and the gravitational KK
Goldstone scattering amplitude as follows:

M0½hnLhnL → hnLh
n
L" ¼ fM0½ϕnϕn → ϕnϕn"

¼
#
− 9c0g2

4

$!
ð3þ cos2θÞ2

sin2θ

"
s0

ð5:35aÞ

¼
#
−
9c0g2

16

$
½ð7þ cos 2θÞ2 csc2 θ"s0

ð5:35bÞ

¼
#
−
9c0g2

4

$!
ðs20 þ t20 þ u20Þ2

s0t0u0

"
;

ð5:35cÞ

where we have dropped the mass-dependent subleading
term of OðM2

nÞ which is much smaller than the above
leading OðE2Þ amplitude in the high-energy scattering.
Strikingly, we find that our above leading amplitudes of

the longitudinal KK graviton and the gravitational KK
Goldstone boson in Eq. (5.35), as constructed by the
double-copy method, perfectly agree to the gravitational
KK Goldstone amplitude (4.22) at OðE2Þ which we
computed directly from the KK theory of compactified
5d GR.
Equation (5.35) also explicitly establishes the equiva-

lence between the longitudinal KK graviton amplitude
and the corresponding gravitational KK Goldstone boson
amplitude. In fact, we can demonstrate this equivalence in a
more elegant and transparent way, by making use of
the relation (5.17). With this, we can express the KK
graviton amplitude (5.34a) in terms of the gravitational KK
Goldstone boson amplitude:

M0½hnLhnL → hnLh
n
L" ¼ c0g2

%!
ð eN 0

sÞ2

s0
þ ð eN 0

t Þ2

t0
þ ð eN 0

uÞ2

u0

"
− 8cθð eN

0
s þ eN 0

t þ eN 0
uÞ þ 16c2θðs0 þ t0 þ u0Þ

&

¼ fM0½ϕnϕn → ϕnϕn"; ð5:36Þ

where in the last step we have made use of the kinematic
Jacobi identity (5.15b) and the Mandelstam relation
s0 þ t0 þ u0 ¼ 0. We see that the longitudinal KK gra-
viton scattering amplitude equals the gravitational KK
Goldstone scattering amplitude at the leading OðE2

nÞ and
they differ only by subleading terms of OðE0M2

nÞ. The
above Eq. (5.36) just demonstrates that the GRET holds for
the longitudinal KK graviton scattering amplitude and the
corresponding KK Goldstone scattering amplitude down to
OðE2M0

nÞ under the high-energy expansion,

M½hnLhnL → hnLh
n
L" ¼ fM½ϕnϕn → ϕnϕn" þOðE0M2

nÞ:
ð5:37Þ

It is truly impressive to see that by building upon the
longitudinal-Goldstone equivalence of the KK GAET
(5.12) [or (5.19)], we have established the corresponding
longitudinal-Goldstone equivalence of the GRET for the
amplitudes of the longitudinal KK graviton scattering and
of the gravitational KK Goldstone scattering as in the above
Eq. (5.37) by using the double-copy construction. Hence,
this demonstrates a double-copy correspondence between

the KK GAET in the compactified 5d YM gauge theory and
the KK GRET in the compactified 5d GR.
We have the following comments in order:
(i) Impressively, we find that our reconstructed

gravitational KK Goldstone ϕnð¼h55n Þ amplitude
fM0½ϕnϕn→ϕnϕn" in Eqs. (5.34b) and (5.35) from
the KK Goldstone Aan

5 amplitude eT 0½Aan
5 Abn

5 →
Acn
5 Adn

5 " in Eqs. (5.14b), (5.8a)–(5.8c) in the com-
pactified 5d YM gauge theory via the double-copy
approach has exactly the same energy and angular
dependence as what we obtained by directly com-
puting the ϕn amplitude (4.22) in the compactified
5d KK GR theory. This double-copy reconstruction
is naturally expected via the correspondence Aan

5 ⊗
Aan
5 → hn55 where both the KK Goldstone bosons

Aan
5 and hn55ð¼ ϕnÞ become effectively massless in

the high-energy limitM2
n=E2 → 0. We note that both

the leading gravitational KK Goldstone amplitude
(5.34b) and (5.35) of OðE2Þ and the leading gauge-
theory KK Goldstone amplitude (5.14b), (5.8a)–
(5.8c) of OðE0Þ are mass independent. Hence, their
structures reflect the 5d gauge symmetry of the KK
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 Works for Compactified Torus on flat space-times -> Hang-He  PRD 2022 

  Works for a compactified spacetime with an ADS background -> Chivukula, DS, Gill, Wang et al, PRD 2023



Further works in this direction 

 Supersymmetric Structure of Compactified theories -> Chivukula, Simmons, Wang 2021  

 Scattering amplitudes for Moduli/radius stabilized geometries -> Chivukula, Foren, Mohan, DS, Simmons 2021,2023 

 Goldstone Equivalence Theorem with Matter couplings and generalized Poincare symmtries (Kac-Moody 
Algebras) -> Chivukula, Gill, Mohan, DS, Simmons,  Wang 2023 (Josh Gill’s Poster) 

 Scattering Amplitudes in models with curvature localized on D-branes/ DGP model correspondence -> 
Chivukula,  Mohan, DS<  Simmons, Wang 2024  

 Scattering Amplitudes and matter couplings in massive gravity -> Gill, DS, Williams 2022 (Josh Gill’s Poster)  

 Applications for KK portal dark matter models -> To appear soon 



Conclusions

•Compactified theories of extra dimensions -> No low energy cut-off 

•Cancellations due to different diagrams reduce O(s5) growth to O(s). 

•No low energy cut-off for consistent models of stabilization 

• Uncovered sum rules enforcing this cancellation 

•Can show ->  Analysis extends to matter on brane or bulk 

• Consistent with literature on massive gravity. 

• Possible to double-copy a compactified gauge theory to compactified gravity  for flat toroidal compactification 

• Pheno papers : Doing an unitarity analysis for DM models, ultralight radion as a candidate …  

• Theory papers : Spinor Helicity/Goldstone Equivalence calculation ?  

• More connections with massive gravity community … 
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