

XVIth Quark Confinement and the Hadron Spectrum

Study of the $f_0(1710)$ and $a_0(1710)$ states

´Chu-Wen Xiao

• Guangxi Normal University

• Collaborators: Zhong-Yu Wang, Jing-Yu Yi, Wei Liang Yu-Wen Peng, Wen-Chen Luo, Xiaonu Xiong

```
arXiv: 2306.06395; arXiv: 2402.02539
```
2024.8. Cairns

Outline

1

1. Introduction 2. Study of $D_s^+ \to K_S^0 K^+ \pi^0$ 3. Investigation of $D_s^+ \to K_S^0 K_S^0 \pi^+$ 4. Summary

§1. Introduction

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq) , $(qqqqq)$ etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$ etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q\bar{q})$ similarly gives just 1 and 8.

 AN SU_2 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

CERN LIBRARIES, GENEVA

 G . Zweig^{*}) $CERN - Geneva$

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Molecular nature

PHYSICAL REVIEW LETTERS 126, 152001 (2021)

Explaining the Many Threshold Structures in the Heavy-Quark Hadron Spectrum

Xiang-Kun Dong⁰,^{1,2} Feng-Kun Guo⁰,^{1,2,*} and Bing-Song Zou⁰^{1,2,3}

F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018) H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Phys. Rept. 639, 1 (2016) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, Phys. Rept. 873, 1 (2020)

> تسابثانا **ELSEVIER**

f0 (1710) was **discovered** about **40 years ago**:

A. Etkin, et al., Phys. Rev. D 25, 1786 (1982)

C. Edwards, et al., Phys. Rev. Lett. 48, 458 (1982)

 $K^* \overline{K}^*$ molecular state: Coupled channel approach

L. S. Geng and E. Oset, Phys. Rev. D 79, 074009 (2009)

Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the σ , $f_0(980)$, $a_0(980)$ scalar mesons J.A. Oller, E. Oset

Nuclear Physics A 620 (1997) 438-456

Glueball: Bei-Jiang Liu's talk

But, its isovector partner $\overline{a}_0(1710)$ were **NOT** found for a long time.......

Recent Findings from BESIII

§2. Study of $D_s^+ \to K_S^0 K^+ \pi^0$

 \bar{d}

(1) Quark level: external and internal W-emission mechanisms

External W-emission mechanisms

$$
|H^{(1a)}\rangle = V_P^{(1a)} V_{cs} V_{ud} (u\bar{d} \to \pi^+) |s(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle
$$

+ $V_P^{*(1a)} V_{cs} V_{ud} (u\bar{d} \to \rho^+) |s(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle$
= $V_P^{(1a)} V_{cs} V_{ud} \pi^+ (M \cdot M)_{33} + V_P^{*(1a)} V_{cs} V_{ud} \rho^+ (M \cdot M)_{33}$
 $|H^{(1b)}\rangle = V_P^{(1b)} V_{cs} V_{ud} (s\bar{s} \to \frac{-2}{\sqrt{6}} \eta) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}\rangle$
+ $V_P^{*(1b)} V_{cs} V_{ud} (s\bar{s} \to \phi) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}\rangle$
= $V_P^{(1b)} V_{cs} V_{ud} \frac{-2}{\sqrt{6}} \eta (M \cdot M)_{12} + V_P^{*(1b)} V_{cs} V_{ud} \phi (M \cdot M)_{12}$

Internal W-emission mechanisms

$$
|H^{(2a)}\rangle = V_P^{(2a)} V_{cs} V_{ud} (s\bar{d} \to \bar{K}^0) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle + V_P^{*(2a)} V_{cs} V_{ud} (s\bar{d} \to \bar{K}^{*0}) |u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}\rangle = V_P^{(2a)} V_{cs} V_{ud} \bar{K}^0 (M \cdot M)_{13} + V_P^{*(2a)} V_{cs} V_{ud} \bar{K}^{*0} (M \cdot M)_{13}
$$

$$
H^{(2b)}\rangle = V_P^{(2b)} V_{cs} V_{ud} (u\bar{s} \to K^+) | s(\bar{u}u + \bar{d}d + \bar{s}s) \bar{d} \rangle + V_P^{*(2b)} V_{cs} V_{ud} (u\bar{s} \to K^{*+}) | s(\bar{u}u + \bar{d}d + \bar{s}s) \bar{d} \rangle = V_P^{(2b)} V_{cs} V_{ud} K^+ (M \cdot M)_{32} + V_P^{*(2b)} V_{cs} V_{ud} K^{*+} (M \cdot M)_{33}
$$

addronization

\n
$$
M = \begin{pmatrix}\nu\bar{u} & u\bar{d} & u\bar{s} \\
d\bar{u} & d\bar{d} & d\bar{s} \\
s\bar{u} & s\bar{d} & s\bar{s}\n\end{pmatrix}
$$
\n
$$
V = \begin{pmatrix}\n\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\
\pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\
K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta\n\end{pmatrix}
$$
\n
$$
V = \begin{pmatrix}\n\frac{1}{\sqrt{2}}\rho^0 + \frac{1}{\sqrt{2}}\omega & \rho^+ & K^{*+} \\
\rho^- & -\frac{1}{\sqrt{2}}\rho^0 + \frac{1}{\sqrt{2}}\omega & K^{*0} \\
K^{*-} & \bar{K}^{*0} & \phi\n\end{pmatrix}
$$

$$
|H\rangle = |H^{(1b)}\rangle + |H^{(2a)}\rangle + |H^{(2b)}\rangle
$$

= $\frac{1}{\sqrt{2}} (V_P^{*(1b)'} - V_P^{*(1b)}) V_{cs} V_{ud} \rho^+ \phi \pi^0 + \frac{1}{\sqrt{2}} (V_P^{(2a)} - V_P^{(2b)}) V_{cs} V_{ud} K^+ \bar{K}^0 \pi^0$
+ $\frac{1}{\sqrt{2}} (V_P^{*(2a)} - V_P^{*(2b)}) V_{cs} V_{ud} K^{*+} \bar{K}^{*0} \pi^0$,
= $\frac{1}{\sqrt{2}} V_P^{*'} V_{cs} V_{ud} \rho^+ \phi \pi^0 + \frac{1}{\sqrt{2}} V_P V_{cs} V_{ud} K^+ \bar{K}^0 \pi^0 + \frac{1}{\sqrt{2}} V_P^{*} V_{cs} V_{ud} K^{*+} \bar{K}^{*0} \pi^0$

 H

(2) Final state interaction

 K^+

 \bar{K}^0

 K^+

 $\bar K^0$

 π^0

• **Coupled Channel Unitary Approach**: solving Bethe-Salpeter equations, which take on-shell approximation for the loops.

$$
T = V + V \, G \, T, \, T = [1 - V \, G]^{-1} \, V
$$

$$
\mathbf{T} = \mathbf{V} + \mathbf{V} \mathbf{G} \mathbf{T}
$$

D. L. Yao, L. Y. Dai, H. Q. Zheng and Z. Y. Zhou, Rept. Prog. Phys. 84, 076201 (2021)

where V matrix (potentials) can be evaluated from the interaction Lagrangians.

J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438 E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99 J. A. Oller and U. G. Meißner, Phys. Lett. B 500 (2001) 263

G is a diagonal matrix with the loop functions of each channels:

$$
G_{ll}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{2M_l}{(P-q)^2 - m_{l1}^2 + i\epsilon} \frac{1}{q^2 - m_{l2}^2 + i\epsilon}
$$

The coupled channel scattering amplitudes **T matrix satisfy the unitary**:

$$
\text{Im } T_{ij} = T_{in} \sigma_{nn} T_{nj}^*
$$
\n
$$
\sigma_{nn} \equiv \text{Im } G_{nn} = -\frac{q_{cm}}{8\pi\sqrt{s}} \theta(s - (m_1 + m_2)^2))
$$

To search the poles of the resonances, we should extrapolate the scattering amplitudes to the second Riemann sheets:

$$
G_{ll}^{II}(s) = G_{ll}^{I}(s) + i \frac{q_{cm}}{4\pi\sqrt{s}}
$$

Z. Y. Wang, Y. W. Peng, J. Y. Yi, W. C. Luo and CWX, Phys. Rev. D 107 (2023) 116018.

(3) P-wave state contribution

14

Partial decay widths

PHYSICAL REVIEW D 105, 114014 (2022)

Branching ratios

 $\frac{\mathcal{B}(D_s^+\to K^*(892)^+K_S^0,K^*(892)^+\to K^+\pi^0)}{\mathcal{B}(D_s^+\to \bar{K}^*(892)^0K^+,\bar{K}^*(892)^0\to K_S^0\pi^0)}=0.40^{+0.002}_{-0.003}$ $\frac{\mathcal{B}(D_s^+\to a_0(980)^+\pi^0, a_0(980)^+\to K_S^0K^+)}{\mathcal{B}(D_s^+\to \bar{K}^*(892)^0K^+, \bar{K}^*(892)^0\to K_S^0\pi^0)} = 0.53^{+0.06}_{-0.08},$ $\frac{\mathcal{B}(D_s^+\to a_0(1710)^+\pi^0, a_0(1710)^+\to K_S^0 K^+)}{\mathcal{B}(D_s^+\to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0\to K_S^0 \pi^0)} = 0.41^{+0.04}_{-0.05}$ $\overline{B(D_s^+ \to \bar{K}^*(892)^0 K^+, \bar{K}^*(892)^0 \to K_S^0 \pi^0}) = (4.77 \pm 0.38 \pm 0.32) \times 10^{-3}$ Our predictions $\mathcal{B}(D_s^+ \to K^*(892)^+ K_S^0, K^*(892)^+ \to K^+\pi^0) = (1.91 \pm 0.20^{+0.01}_{-0.01}) \times 10^{-3}$ $\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to K_S^0 K^+) = (2.53 \pm 0.26^{+0.27}_{-0.38}) \times 10^{-3}$ $\mathcal{B}(D_s^+ \rightarrow a_0(1710)^+ \pi^0, a_0(1710)^+ \rightarrow K_s^0 K^+) = (1.94 \pm 0.20^{+0.18}_{-0.24}) \times 10^{-3}$ BESIII measurements

> $\mathcal{B}(D_s^+ \to K^*(892)^+ K_s^0, K^*(892)^+ \to K^+\pi^0) = (2.03 \pm 0.26 \pm 0.20) \times 10^{-3}$ $\mathcal{B}(D_s^+ \rightarrow a_0(980)^+ \pi^0, a_0(980)^+ \rightarrow K_S^0 K^+) = (1.12 \pm 0.25 \pm 0.27) \times 10^{-3}$ $\mathcal{B}(D_s^+ \rightarrow a_0(1710)^+ \pi^0, a_0(1710)^+ \rightarrow K_S^0 K^+) = (3.44 \pm 0.52 \pm 0.32) \times 10^{-3}$

§3. Investigation of $D_s^+ \to K_S^0 K_S^0 \pi^+$

Eight channels contributed

Also P-wave resonance contribution

Consistent with our previous results in $D_s^+ \to K_S^0 K^+ \pi^0$

Our results

$$
\mathcal{B}(D_s^+ \to S(980)\pi^+, S(980) \to K_S^0 K_S^0) = (0.36 \pm 0.04^{+0.10}_{-0.06}) \times 10^{-3}
$$

$$
\mathcal{B}(D_s^+ \to S(1710)\pi^+, S(1710) \to K_S^0 K_S^0) = (1.66 \pm 0.17^{+1.38}_{-0.89}) \times 10^{-3}
$$

BESIII measurements

$$
B(D_s^+ \to K^* (892)K_S^0 \to K_S^0 K_S^0 \pi^+)
$$

= (3.0 ± 0.3 ± 0.1) × 10⁻³;

$$
B(D_s^+ \to S(1710)\pi^+ \to K_S^0 K_S^0 \pi^+)
$$

= (3.1 ± 0.3 ± 0.1) × 10⁻³.

Y. W. Peng, W. Liang, X. Xiong and CWX, arXiv2402.02539.

L. R. Dai, E. Oset and L. S. Geng, Eur. Phys. J. C 82, 225 (2022) X. Zhu, D. M. Li, E. Wang, L. S. Geng and J. J. Xie, Phys. Rev. D 105, 116010 (2022)

$$
T_{K^+K^-\to K^0\bar{K}^0} = \frac{1}{2} \left(T_{K\bar{K}\to K\bar{K}}^{I=0} - T_{K\bar{K}\to K\bar{K}}^{I=1} \right)
$$

$$
T_{K^0\bar{K}^0\to K^0\bar{K}^0} = \frac{1}{2} \left(T_{K\bar{K}\to K\bar{K}}^{I=0} + T_{K\bar{K}\to K\bar{K}}^{I=1} \right)
$$

 $C_1 \neq C_2$ and $C_4 \neq C_5$

§4. Summary

- We use the final state interaction formalism to investigate the Ds three-body weak decays
	- In the final state interaction, $f_0 / a_0 (1710)$ and/or $f_0 / a_0 (980)$ generated (molecular nature)
	- Related branching ratios are evaluated, some of which are consistent with the experiments.

Hope future experiments and theories bring more clarifications on these issues…….

Thanks for your attention!

感谢大家的聆听!