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Cold and dense pQCD and phase quenching
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QCD thermodynamics at high density

• Thermodynamics of cold quark matter
(T = 0, µB ̸= 0) is largely unknown due
to the Sign Problem of lattice field
theory

• Perturbative QCD viable at high baryon
chemical potential µB and zero
temperature T as QCD coupling αs ≪ 1

• High-order corrections to pQCD
pressure constrain the neutron-star
equation of state Komoltsev &
Kurkela PRL ’22

(adapted from Annala et al. Nat. Com. ’23)
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Framework for calculating cold and dense pQCD pressure

1 Generate Feynman diagrams from partition function:

p(µ) ∼ lnZ = ln

∫
DψψAe−SQCD

pQCD
= + + . . .

• Fermionic 4-momenta at finite density: P = (p0 + iµ, p⃗)

2 Calculate multi-loop integrals in dimensional regularization

Resummations required due to IR divergences associated with in-medium screening
⇒ lnαs in perturbative expansion (Saga’s talk)
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Partial N3LO pressure of cold and dense QCD

p

pfree
= 1 + c1αs + (c2,1 lnαs + c2,0)α

2
s

+ (c3,2 ln
2 αs + c3,1 lnαs + c3,0)α

3
s + O(α4

s )

• c1, c2,1, c2,0: B. Freedman &
L. McLerran PRD ’77

• c3,2: S. Säppi et al. PRL ’18, S. Säppi
et al. PRL ’21

• c3,1: T. Gorda, R. Paatelainen,
S. Säppi, K.S., PRL ’23

• c3,0: 52 4-loops, work in progress...
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Phase quenching

• Provides an alternative nonperturbative way of determining the cold and dense
pQCD pressure Moore & Gorda JHEP ’23, Fujimoto & Reddy PRD ’24

• QCD partition function:

ZQCD(µ⃗) =

∫
DAe−S[A]

Nf∏
j=1

det D(µj)︸ ︷︷ ︸
/D+m+µjγ0

• Phase quenching:
detD(µj)︸ ︷︷ ︸

∈C

−→ | detD(µj)|︸ ︷︷ ︸
≥0

Sign Problem in 
lattice QCD

Lattice QCD ok
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Upper bound for full QCD

• Upper bound for ZQCD and pressure pQCD ∼ lnZQCD

ZQCD(µ⃗) ≤ ZPQ(µ⃗) ⇒ pQCD(µ⃗) ≤ pPQ(µ⃗)

• Turning the inequality into an equality

pPQ(µ⃗)︸ ︷︷ ︸
lattice QCD

− pQCD(µ⃗)︸ ︷︷ ︸
?

= positive number︸ ︷︷ ︸
easier to compute

than pQCD

• The difference between full QCD and phase-quenched QCD can be computed
perturbatively at high densities where αs ≪ 1

⇒ Solve for pQCD!

Kaapo Seppänen pQCD meets phase quenching August 21, 2024 7 / 26



Phase-quenched Feynman rules

• γ5-hermiticity of the Dirac operator:

γ5D(µj)γ
5 = D†(−µj) ⇒ [detD(µj)]

* = detD(−µj)

• Phase-quenched determinant:

| detD(µj)| =
√

detD(−µj) detD(µj) = exp

{
1

2

[
tr lnD(−µj) + tr lnD(µj)

]}
⇒ average over ±µj in quark loops

• PQ Feynman rule (recall P = (p0 + iµj , p⃗) for fermions): 
PQ

=
1

2


∣∣∣∣∣∣
iµj→−iµj

+

 = Re
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pPQ − pQCD perturbatively

• Vacuum-type diagrams are real due to symmetry under i µ⃗→ −i µ⃗

• Single-quark-loop diagrams are the same in phase-quenched and full QCD, e.g.

[ ]
PQ

−

[ ]
QCD

= Re −

Re + i Im︸ ︷︷ ︸
=0

 = 0

⇒ The difference has to contain at least two quark loops
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pPQ − pQCD perturbatively

• First two-quark-loop diagram appears at three loops:[ ]
PQ

−

[ ]
QCD

= −

 + 2i ︸ ︷︷ ︸
=0

−


=
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pPQ − pQCD perturbatively

• But the one-loop two-gluon function is real (P0 = p0 + iµ):

Γ
(2)
αβ(µ,Q) ≡

∫
{P}

tr [/Pγα(/P − /Q)γβ]

P2(P − Q)2
P→Q−P

= Γ
(2)
αβ(µ,Q)* ⇒ = 0

⇒ = 0

• No such symmetries for one-loop three-gluon function ⇒ ̸= 0

⇒ The difference has to contain at least two three-gluon functions
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pPQ − pQCD perturbatively at O(α3
s )

• First nonzero contribution to pPQ − pQCD at four-loop order, “Bugblatter” Moore
& Gorda JHEP ’23:

pPQ(µB)︸ ︷︷ ︸
lattice QCD

− pQCD(µB)︸ ︷︷ ︸
?

= + O(α4
s )

∝ α3
sd

abcdabcN2
f

∫
QS

[Im Γ
(3)
µνσ(µB,Q, S)]

2

Q2S2(Q − S)2
+ O(α4

s )

• Beta-equilibrium at high densities ⇒ µj = µB/Nc for j ∈ {u, d , s}
• UV and IR finite, positive, and gauge-invariant number

⇒ Full O(α3
s ) pressure from single four-loop diagram + PQ lattice result
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Multiloop integration techniques at finite density
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Traditional multiloop techniques at µ = 0

• Significant advancements in multiloop integration techniques for collider physics
at µ = 0 over the last decades

• Many traditional state-of-the-art methods rely on Lorentz symmetry:
• Integration by parts for a reduction to master integrals

• Differential equations

• Sector decomposition

• etc.

• Major obstacle at finite µ: broken Lorentz symmetry due to p0 → p0 + iµ for
fermions
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Traditional multiloop techniques at µ > 0

• Brute-force calculations used up to three loops

• Main approach: computing master integrals using finite-density cutting rules

• Basic idea: residue theorem only for fermionic momenta P = (p0 + iµ, p⃗)

=

µ=0

− 2

∫
p⃗

Θ(µ− Ep⃗)

2Ep⃗
p0→iEp⃗

µ=0

+

∫
p⃗

∫
q⃗

Θ(µ− Ep⃗)Θ(µ− Eq⃗)

4Ep⃗Eq⃗
p0→iEp⃗

q0→iEq⃗

µ=0

• Three-dimensional phase-space integrals over on-shell amplitudes at µ = 0

• Each term can be divergent even if the integral is finite ⇒ complicated integrals
in dimensional regularization (especially at four loops)
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Seems like we are stuck...

Are there any powerful µ = 0 methods that generalize to µ > 0?
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Inspiration from Loop-Tree Duality at µ = 0

• Direct numerical integration in
momentum space using the Loop-Tree
Duality:

1 All energy integrals computed
analytically with residue theorem

2 Remaining spatial momentum integrals
computed numerically using Monte
Carlo integration

• 0-components singled out ⇒ naturally
generalizes to finite µ where
p0 → p0 + iµ

Z. Capatti et al. PRL ’19
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Representations for the spatial integrands

• 3d integrands obtained after energy integrations can be written using different
representations:

• Loop-Tree Duality (LTD), Cross-Free Family (CFF), Time-Ordered Pert. Theory,...

• Choice of the representation affects the performance of numerical integration

• We generalize the CFF representation by Z. Capatti PRD ’23 to finite µ
• We call it the dense Loop-Tree Duality (dLTD) K.S., R. Paatelainen,

P. Navarrete [2403.02180]

• No spurious singularities unlike in the finite-density cutting rules
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dLTD derivation

l-loop vacuum-type integral at finite chemical potential µ with n propagators:

I ≡
∫ [ l∏

i=1

dp0i
2π

]
N (Q0)∏n

j=1

[
(Q0

j )
2 + E 2

j

]
• Bold symbols = n-dimensional vectors

• Q0 =
∑l

i=1 Sip
0
i +iτµ = frequencies of the propagators

• Si ∈ {±1, 0}n = vectors that fix the loop momentum basis

• τ =
∑l

i=1 Si τ̃i ∈ {±1, 0}n with τ̃i ∈ Z = fermion signature vector

• N = multilinear polynomial
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dLTD derivation: Performing the 0-component integrals

Insert the following unity for each propagator j in I :

1 =

∫
dp̃0j δ

(
p̃0j −

l∑
i=1

Sjip
0
i

)

and write the delta functions as integrals over αj (Fourier representation)

I =

∫ l∏
i=1

dp0i
2π

∫ n∏
j=1

dαj e
−iαj

∑l
i=1 Sjip

0
i

∫  n∏
j=1

dp̃0j
2π

eiαj p̃
0
j(

p̃0j + iτjµ
)2

+ E 2
j

N
(
p̃0 + iτµ

)
⇒ 0-component integrals over p̃0j can be performed independently for each propagator
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dLTD derivation: Final result

Using the residue theorem, we obtain the final result

I =
∑

ρ,σ∈{±1}n
N (iσ ⊙ ρ⊙ E)

n∏
j=1

Θ(ρjEj − σjτjµ)

2ρjEj

∫
Rn
+

dα e−α·(ρ⊙E)
l∏

i=1

δ
(
α · (σ ⊙ Si )

)
︸ ︷︷ ︸

= some rational function of Ej ’s, no µ-dependence!

• Difference to the µ = 0 case:
• Step functions with a chemical potential µ

• Additional sum over sign vectors ρ

• α-integral is a Laplace transform of a nonsimplicial convex cone
• The same integral already appears in the µ = 0 case

• Closed-form solution using diagrammatic algorithm by Z. Capatti PRD ’23
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Example: two-loop sunset

∫  l∏
i=1

dp0i

2π

 N (Q0)∏n
j=1

[
(Q0

j )
2 + E2

j

] =
∑

ρ,σ∈{±1}n
N (iσ ⊙ ρ ⊙ E)

n∏
j=1

Θ(ρjEj − σjτjµ)

2ρjEj

∫
Rn
+

dα e
−α·(ρ⊙E)

l∏
i=1

δ
(
α · (σ ⊙ Si )

)

• l = 2, n = 3, S1 = (1, 0, 1), S2 = (0, 1,−1), τ = (1, 1, 0),
E = (|p⃗1|, |p⃗2|, |p⃗1 − p⃗2|)

• Performing the α-integrals for the sunset yields four distinct nonvanishing terms

∝
∫

d3p⃗1

(2π)3
d3p⃗2

(2π)3

{
(E1E2 + p⃗1 · p⃗2)Θ(E1 − µ)

2E12E22E3(E1 + E2 + E3)
−

(−E1E2 + p⃗1 · p⃗2)Θ(E1 − µ)Θ(−E2 + µ)

2E12E22E3(E1 − E2 + E3)
+ (1 ↔ 2)

}

• For numerical integration, UV divergences are subtracted with local counterterms
using BPHZ R-operation
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Numerical integration & benchmarks

• Spatial loop momenta p⃗i parametrized using spherical coordinates

• Numerical integration of spatial momentum integrals using Vegas

• Multichannel approach implemented for flattening integrable singularities (see
Z. Capatti et al. JHEP ’20)

Massive scalars

at µ = 0

{
QCD at µ > 0

{
Diagram Analytic dLTD N [106] [µs]

2.16928 · 10−9 2.16931(4) · 10−9 3000 5.2

−0.00128325 −0.00128338(23) 150 5.8

−0.000256547 −0.00025654(9) 800 9.6
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Result for pPQ − pQCD using dLTD

pPQ(µB)− pQCD(µB) = 3.368(7) ·
(αs

π

)3
pfree + O(α4

s )

• dLTD representation of the Bugblatter
integrated using 6 · 1011 MC samples

• First ever computation of 2PI
four-loop diagram at finite µB

• Small number compared to the known
perturbative coefficients at O(α3

s )

• Conclusion: Phase-quenched lattice
can provide a complementary method
for determining the pressure of cold
quark matter at high µB
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Next: Applying dLTD to computing c3,0 directly


IR finite
⇒ dLTD

 IR div.

• Recall the 4-loop pressure:

p

pfree
= 1 + c1αs + (c2,1 lnαs + c2,0)α

2
s

+ (c3,2 ln
2 αs + c3,1 lnαs + c3,0)α

3
s

• Plan: apply dLTD to IR finite
diagrams contributing to c3,0

• Completion of the O(α3
s ) pressure

seems feasible for the first time
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Summary

• pQCD constrains the neutron-star equation of state

• O(α3
s ) cold and dense QCD pressure can be determined from phase-quenched

lattice simulations + our new four-loop result

• Powerful numerical tool from collider physics generalized to finite µ: direct
numerical integration of Feynman diagrams in momentum space using the dense
Loop-Tree Duality

Thanks for your attention!
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Extra slides
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Future directions for dLTD

Finite temperature

• Already benchmarked at 2-loops

• Θ → nB/F

UV/IR subtractions

• All-orders automatization of
UV-subtraction nearly complete

• IR HTL-counterterms at T = 0, µ > 0

dLTD

Performance

• More efficient sampling methods

• Optimizations

External legs

• Real-time n-point correlators

• Production rates, etc.
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Lattice results for 2 + 1 flavors at finite µI

R. Abbott, W. Detmold et al. [2406.09273]:
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Results for N3LO pressure with only soft and mixed sectors

• N3LO result including only screened
gluonic sectors (soft+mixed) incredibly
well-behaved with nearly vanishing
renormalization-scale dependence

• Conclusion: hard sector main source
for uncertainty

• Stark contrast to the high-T case
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Full N3LO pressure with fixed c0

• Full N3LO with c0 = −23 most
consistent with lower-order results
according to Bayesian analysis

• Actual computation of c0 may lead to
a significantly improved EOS usable
even at µB = 2.2GeV (n = 27n0), cf.
N2LO at µB = 2.7GeV (n = 40n0)
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