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Nuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Couplings of short-range interacIons are fixed from NN - data

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 12 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: + 5 IB operators

N2LO [Q3]: no new terms

N4LO+ [Q6]: + 4 operators (F-waves) 

# of adjustable LECs = 25 IC + 5 IB + 3 𝛑N constants = 33 parameters

Summary on NN
Employed a Bayesian approach to account for staIsIcal and systemaIc uncertainIes

Extracted 𝛑N couplings from NN data within chiral EFT

Achieved a staIsIcally perfect descripIon of NN data
𝛘2/dat = 1.005 for ~5000 data in the energy range Elab = 0 - 280 MeV

Reinert, HK, Epelbaum PRL126 (2021) 092501



Three-Nucleon Force at N2LO
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subtraction constant C is given by [32]

C = −
!(!2 − 2M2

π ) + 2
√

πM3
πe

M2
π

!2 erfc
(Mπ

!

)

3!3
, (2)

where erfc(x) is the complementary error function

erfc(x) = 2√
π

∫ ∞

x
dt e−t2

. (3)

Finally, for the LECs D and E , we employ the standard
parametrization in terms of dimensionless constants cD and
cE via D = cD/(F 2

π !χ ) and E = cE/(F 4
π !χ ) with !χ =

700 MeV.
The subtraction terms proportional to C in Eq. (1) corre-

spond to the convention employed in Ref. [32]. It ensures, for
example, that the locally regularized two-pion exchange 3NF
in the curly brackets, Fourier transformed to coordinate space,
vanishes at the origin (i.e., for $r1 − $r2 → 0 or $r3 − $r2 → 0) in
order to minimize the admixture of short-range components.
The applied regularization scheme, therefore, utilizes a local
(nonlocal) regulator for long-range (short-range) components
of the 3NF.

Partial-wave decomposition of the 3NF is accomplished
numerically in momentum space in the usual way as described
in detail in Refs. [29,30,43]. Moreover, we have benchmarked
the momentum-space results by independently carrying out
the partial-wave decomposition in coordinate space. This way
we have also explicitly verified that the subtracted long-range
potentials vanish at the origin as required by our convention.

We are now in the position to specify the values of the
various LECs. For the pion-nucleon constants ci, we em-
ploy the values from matching chiral perturbation theory at
next-to-leading order (NLO) in the NN-counting scheme to
the solutions of the Roy-Steiner equations for pion-nucleon
scattering [33,34]:

c1 = −0.74 GeV−1,

c3 = −3.61 GeV−1,

c4 = 2.44 GeV−1. (4)

The same values are used in the SMS NN potentials of
Ref. [32] at next-to-next-to-leading order (N2LO).

To determine the values of the LECs cD, cE , we require,
following our previous studies [31,44–46], that the 3H binding
energy is reproduced exactly. This constraint yields cE as a
function of the LEC cD for every value of the cutoff !. In
Fig. 1, we show the resulting cD–cE correlations for the cutoff
values ! = 450 and 500 MeV. As one may expect, the be-
havior is qualitatively similar to the one found using the SCS
interactions in Ref. [31]. In particular, the larger momentum-
space cutoff leads to a larger-in-magnitude negative slope of
the function cE (cD), exhibiting more nonlinear behavior.

Motivated by our findings in Ref. [31], the determination of
the remaining LEC cD is carried out by fitting the experimen-
tal data of Ref. [47] for the differential cross-section minimum
at the nucleon beam energy of EN = 70 MeV. Specifically,
the values of cD are determined from a least-squares fit of
12 cross-section data points in the angular range of θc.m. ∈
[107.0◦, 140.4◦] with the Coulomb force contribution sub-

FIG. 1. Correlation between the LECs cD and cE induced by the
requirement that the 3H binding energy be reproduced for the cutoff
choices of ! = 450 MeV (blue dashed line) and ! = 500 MeV (red
solid line).

tracted [48], and the statistical and systematic errors added
in quadrature. This leads to the following central values:

cD = 2.485, cE = −0.528 for ! = 450 MeV,

cD = −1.626, cE = −0.063 for ! = 500 MeV. (5)

The determination of uncertainties in the values of cD, cE and
their propagation will be considered in a separate publication.

III. NUCLEON-DEUTERON SCATTERING

We are now in the position to show selected results for Nd
scattering observables. For a description of our formalism for
solving the Faddeev-type integral equations, see Ref. [49].
To estimate the truncation errors at N2LO, we employ the
Bayesian model C̄650

0.5−10 introduced in Ref. [38] based on the
ideas of Refs. [17,50–52]. Specifically, for a three-nucleon
scattering observable X (EN ), we consider the chiral EFT ex-
pansion up to N2LO,

X = X (0) + %X (2) + %X (3) + . . .

=: Xref (c0 + c2Q2 + c3Q3 + . . . ), (6)

where %X (2) := X (2) − X (0) and %X (3) := X (3) − X (2), Q is
the expansion parameter, the superscripts denote the chiral
order Qn, the ellipses refer to terms beyond N2LO, the quan-
tity Xref sets the overall scale and ci are the corresponding
dimensionless coefficients.2The reference scale Xref is chosen
using the information from all three available chiral orders
as described in Ref. [38]. Assuming that all dimensionless
coefficients ci are normally distributed with the Gaussian prior

pr(ci|c̄) = 1√
2π c̄

e−c2
i /(2c̄2 ), (7)

and performing marginalization over the first h = 10
neglected orders for a uniform distribution of the

2Here and in Sec. VI we use the conventional notation ci for the
Bayesian expansion coefficients, not to be confused with the pion-
nucleon LECs c1, c3, and c4 in Sec. II.
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Fig. 5 Results for the differential cross section, nucleon and deuteron
analyzing powers An

y and Ad
y as well as deuteron tensor analyzing

powers Ayy , Axz and Axx in elastic nucleon–deuteron scattering at
laboratory energy of EN

lab = 70 MeV at NLO (yellow bands) and
N2LO (green bands) based on the SMS NN potentials of Ref. [7] for
Λ = 500 MeV. Red dashed lines show the N2LO results for the cutoff
values of Λ = 400, 450, 500 and 550 MeV (the lines with a shorter dash
length correspond to smaller cutoff values). Open circles are proton–
deuteron data from Ref. [62]. For remaining notation, see Fig. 4

where m is the nucleon mass and “!” refers to the non-
relativistic approximation. Identifying the scale p ≡ |p| in
Eq. (2) with pCM ≡ |pCM| results in A-dependent values of
the expansion parameter Q corresponding to the same excess
energy. For example, the pion production threshold in the NN
(Nd) system with EN

lab ∼ 290 MeV (EN
lab ∼ 215 MeV) cor-

responds to pCM ∼ 370 MeV (pCM ∼ 425 MeV), leading to
the expansion parameter of Q = 0.57 (Q = 0.65). Alterna-
tively, one can define the momentum scale p in terms of the
Lorentz-invariant excess energy

√
s−√

s0 = √
s−(A+1)m

available in the A+1-nucleon system and define the momen-
tum scale p via the relation

√
s − (A + 1)m =: 2

√
p2 + m2 − 2m, (15)

that ensures that p coincides with pCM in the NN system.
Here, s is the usual Mandelstam variable. One can thus
express the scale p in terms of EN

lab via

p2 = s − 2(A − 1)m
√
s + (A + 1)(A − 3)m2

4
(16)
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lab = 135 MeV at NLO (yellow bands) and
N2LO (green bands) based on the SMS NN potentials of Ref. [7] for
Λ = 500 MeV. Open circles are proton–deuteron data from Ref. [62].
For remaining notation, see Fig. 4

with s = m2(A + 1)2 + 2AmEN
lab. In the nonrelativistic

approximation, this relation simplifies to

p2 = A
A + 1

mEN
lab. (17)

The nonrelativistic approximation holds at a sub-percent
level for the energy range considered in this study and we
use the relation (17) to define the expansion parameter Q in
Eq. (2). The breakdown scale Λb = 650 MeV then corre-
sponds to the excess energy of ∼ 400 MeV independently of
the number of nucleons A in the target nucleus. Notice that
the employed model leads to less conservative error estimates
for A > 1 than the assignment of p = pCM in Eq. (2).

We now turn to the results for Nd scattering observables
at EN

lab = 10 . . . 135 MeV shown in Figs. 4, 5, 6 and 7.
Except for the differential cross section at EN

lab = 70 MeV
shown in the upper left panel of Fig. 5, the results at N2LO
can be regarded as parameter-free predictions. It is reassur-
ing to see that the calculated observables are in a reasonably
good agreement with the experimental data, which in most
cases lie within the 95% DoB intervals. One should, however,
keep in mind that the estimated truncation errors depend on
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use the relation (17) to define the expansion parameter Q in
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the employed model leads to less conservative error estimates
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FIG. 2. The center-of-mass di↵erential cross section d�
d⌦ , the deuteron vector analyzing power AY (d) and the the tensor analyzing

power AXX�AY Y for the neutron-deuteron elastic scattering at incoming neutron lab. energy E = 200 MeV. In the top panels
the dashed blue (red) curve represents predictions based on the two-nucleon N2LO (N4LO+) forces. The solid blue curve
represents complete results at N2LO and the solid red curve stands for predictions of N4LO+ NN interaction supplemented by
N2LO 3NF. In all cases, the cuto↵ ⇤ = 450 MeV is used. In the bottom panels, the light (dark) green band shows the size of
the truncation error at 95% (68%) DoB. The grey band shows a spread of the N4LO+ NN + N2LO 3N force based predictions
due to the value of ⇤ regulator, in the range of ⇤ 2 [400 � 550] MeV. The red curve is the same as in the upper panels. In e)
and f), the dashed dark-green curve shows the borders of the dark green band. Data in a) and d) are from [34]: black circles
for E = 181 MeV and orange triangles for E = 216.5 MeV. Data in b), c), e) and f) are from [35].

N2LO with 2N and 3N interactions for lower incoming nu-
cleon kinetic energies (E = 65 MeV and E = 135 MeV)
were shown in Ref. [27]. Having now at our disposal the
N4LO+ NN interaction we decided to investigate a higher
energy case, which we choose to be E = 200 MeV. In the
top panel of Fig. 2, we compare these new predictions,
obtained with the N4LO+ NN interaction supplemented
by the N2LO 3NF, with the strict N2LO results. In addi-
tion, we show predictions solely based on the N2LO and
N4LO+ NN interactions. For the di↵erential cross sec-
tion, taking into account higher terms in the NN inter-
action slightly modifies predictions at the center-of-mass
scattering angles ✓ > 80�. The e↵ects of the 3NF only
indirectly (through the values of the LECs cD and cE)
depend on the order of the chiral NN force used, and
the whole di↵erence between N2LO and N4LO+ NN pre-
dictions transfers to those for NN+3N forces. The data
remain underpredicted in both cases, which is similar to
the observations made for phenomenological forces [36].
Among all possible polarization observables, which are
more sensitive to details of the nuclear interactions, vari-
ous situations can be found. In Figs. 2b and 2c, we show

two examples: for the vector analyzing power AY(d), the
3NF acts in a similar way if combined with the N2LO or
N4LO+ NN potential, but the 3N force e↵ects for the ten-
sor analyzing power AXX-AYY depend on the order of the
NN force. Combining the N4LO+ NN interaction with
the N2LO 3NF delivers a slightly better data description,
but definitely leaves room for improvement. The lower
panels of Fig. 2 shows theoretical uncertainties for the
N4LO+ NN + N2LO 3N force predictions. At this rather
high energy both 95% and 68% degree of belief (DoB)
intervals for truncation errors remain wide but the data
are at least in the first of these two intervals. The cut-
o↵ dependence, represented by the grey band comprising
predictions with the regulator ⇤ 2 [400 � 550] MeV, is
also significant at some scattering angles and comparable
to the 68% DoB truncation errors.

Next, in Figs. 3 and 4, we show a few results for the
di↵erential cross section and the analyzing powers for
selected kinematical configurations defined by the direc-
tions of two final proton momenta and the position on
the S-curve [31]. In the case of the cross section at both
energies (E = 135 MeV in Fig. 3, and E = 200 MeV in
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FIG. 3. The di↵erential cross section and the nucleon analyzing power AY(N) at incoming neutron lab. energy E = 135 MeV.
The directions of momenta of outgoing neutrons are: in a) and d): ✓1 = 20�

, ✓2 = 16�
, and �12 = 180�, in b) and e):

✓1 = 28�
, ✓2 = 28�

, and �12 = 180�, and in c) and f): ✓1 = 20�
, ✓2 = 16�

, and �12 = 20�. In the top panels the dashed blue
(red) curve represents predictions based on the two-nucleon N2LO (N4LO+) forces. The solid blue curve represents complete
results at N2LO and the solid red curve stands for predictions of N4LO+ NN interaction supplemented by N2LO 3NF. In all
cases, the cuto↵ ⇤ = 450 MeV is used. In the bottom panels, light (dark) green band shows size of truncation error at 95%
(68%) DoB at ⇤ = 450 MeV. The grey band shows a spread of the N4LO+ NN + N2LO 3NF based predictions due to the
variation of ⇤ in the range ⇤ 2 [400 � 550] MeV. The red curve is the same as in the upper panels. Data are from Ref. [37].

Fig. 4), the situation is similar to elastic scattering: there
are small di↵erences in the predictions when replacing the
NN forces. These di↵erences remain when the 3NF is in-
cluded. At both energies, the cut-o↵ dependence remains
visibly smaller than the truncation errors. Depending
on the kinematical configuration, the data description is
satisfactory, or small discrepancies persist. The nucleon
vector analyzing power AY(N) shown in Fig. 3c is charac-
terized by a strong e↵ect of the 3NF when combined with
the N4LO+ NN interaction, while the strictly N2LO pre-
dictions are insensitive to the 3NF for 70� < ✓ < 115�.
Clearly, the 3NF combined with the N4LO+ NN force
moves predictions towards the data, however large ex-
perimental errors do not allow us to go beyond qualita-
tive conclusions. At E = 200 MeV, we show the ten-
sor analyzing power AXX, for which, at both minimum
points (around ✓ = 75� and ✓ = 220�) the 3N force ef-
fects depend on the order of the NN interaction. As for
the di↵erential cross section, the truncation errors for the
analyzing powers shown here are much bigger than the
uncertainty related to the value of the cut-o↵.

Summarizing, we find that the N4LO+ NN interac-
tion, supplemented by the N2LO 3N force yields a sat-

isfactory description of the Nd continuum data, leaving
however room for corrections from higher orders of the
three-nucleon interaction, see Ref. [38] for recent work in
this direction.

C. Binding energies

We now turn to the predictions for binding energies for
3He and 3H. The energies have been obtained by solv-
ing Faddeev equations in momentum space using a par-
tial wave decomposition as described in [27]. For these
calculations, the NN subsystem angular momenta are re-
stricted to j12  5. In order to take the full charge depen-
dence into account, the 3N states include the dominant
isospin T = 1/2 and a small T = 3/2 component. This is
su�cient to obtain energies with a numerical uncertainty
of 1 keV. For 3He also the point proton-proton Coulomb
interaction is taken into account. The results are sum-
marized in Table I. For the calculation of the energies
and also for the fitting of the LECs cD and cE an aver-
aged proton-neutron mass was employed. Afterwards the
change hTCSBi of the kinetic energy due to using physical

Nd Breakup Scattering
DifferenIal cross secIon and selected analyzing powers of Nd breakup at EN = 135 MeV

NN (N2LO) NN (N4LO+) NN (N2LO) +3NF NN (N4LO+) +3NF
Light (dark) green band correspond to truncaIon errors at 95% (68%) DoB
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FIG. 3. Tree diagrams contributing to the two-pion-exchange and one-pion-exchange-contact topology of the 3NF at N3LO. The solid
boxes denote insertions of either subsubleading di vertices from the effective pion-nucleon Lagrangian or the leading 1/m corrections. For
notation see Fig. 1.

there are also no contributions at N3LO from tree diagrams
involving one insertion of the higher-order di vertices in the
effective Lagrangian [see graphs (6) and (7) in Fig. 3] except
for the relativistic corrections which will be considered in
Sec. IV. As explained in Ref. [4], the contributions from these
diagrams are suppressed by at least one power of Q/m where
Q denotes a genuine soft scale.

We are thus left with Eqs. (2.1) and (2.3) as the only
nonvanishing contributions to the one-pion-exchange-contact
3NF topology. We now show that these terms cancel each
other exactly if one takes into account the antisymmetric
nature of few-nucleon states. In particular, we use the
identities

(
τ 3σ

i
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i
2

)
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i
2 − τ 3σ

i
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≡ Bi ,

(τ 2 × τ 3[#σ2 × #σ3]i)A23 = 2Bi ,
(
τ 3σ

i
2 + τ 2σ

i
3

)
A23 = −Bi , (2.4)

where the superscript i refers to the Cartesian component of
the Pauli spin matrices and A23 denotes antisymmetrization
with respect to nucleons 2 and 3, which, for a momentum-
independent operator X, can be written in the form

(X)A23 ≡ 1
2

(
X − 1 + #σ2 · #σ3

2
1 + τ 2 · τ 3

2
X

)
. (2.5)

It is easy to see that adding the contribution from interchanging
the nucleons 2 and 3 to Eqs. (2.1) and (2.3) and performing
antisymmetrization with respect to these nucleons leads to
a vanishing result. Therefore, we conclude that there are no
one-pion-exchange-contact terms in the 3NF at N3LO.

III. TWO-PION-EXCHANGE-CONTACT TOPOLOGY

We now turn to the two-pion-exchange-contact diagrams
shown in Fig. 4. Evaluating the matrix elements of the
operators listed in Eq. (A1)

for diagrams (1)–(7) in this figure we find the g4
ACS and g4

ACT contributions to the two-pion-exchange-contact topology of the
form
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there are also no contributions at N3LO from tree diagrams
involving one insertion of the higher-order di vertices in the
effective Lagrangian [see graphs (6) and (7) in Fig. 3] except
for the relativistic corrections which will be considered in
Sec. IV. As explained in Ref. [4], the contributions from these
diagrams are suppressed by at least one power of Q/m where
Q denotes a genuine soft scale.

We are thus left with Eqs. (2.1) and (2.3) as the only
nonvanishing contributions to the one-pion-exchange-contact
3NF topology. We now show that these terms cancel each
other exactly if one takes into account the antisymmetric
nature of few-nucleon states. In particular, we use the
identities
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where the superscript i refers to the Cartesian component of
the Pauli spin matrices and A23 denotes antisymmetrization
with respect to nucleons 2 and 3, which, for a momentum-
independent operator X, can be written in the form

(X)A23 ≡ 1
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X − 1 + #σ2 · #σ3
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It is easy to see that adding the contribution from interchanging
the nucleons 2 and 3 to Eqs. (2.1) and (2.3) and performing
antisymmetrization with respect to these nucleons leads to
a vanishing result. Therefore, we conclude that there are no
one-pion-exchange-contact terms in the 3NF at N3LO.

III. TWO-PION-EXCHANGE-CONTACT TOPOLOGY

We now turn to the two-pion-exchange-contact diagrams
shown in Fig. 4. Evaluating the matrix elements of the
operators listed in Eq. (A1)

for diagrams (1)–(7) in this figure we find the g4
ACS and g4

ACT contributions to the two-pion-exchange-contact topology of the
form
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there are also no contributions at N3LO from tree diagrams
involving one insertion of the higher-order di vertices in the
effective Lagrangian [see graphs (6) and (7) in Fig. 3] except
for the relativistic corrections which will be considered in
Sec. IV. As explained in Ref. [4], the contributions from these
diagrams are suppressed by at least one power of Q/m where
Q denotes a genuine soft scale.

We are thus left with Eqs. (2.1) and (2.3) as the only
nonvanishing contributions to the one-pion-exchange-contact
3NF topology. We now show that these terms cancel each
other exactly if one takes into account the antisymmetric
nature of few-nucleon states. In particular, we use the
identities
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the Pauli spin matrices and A23 denotes antisymmetrization
with respect to nucleons 2 and 3, which, for a momentum-
independent operator X, can be written in the form

(X)A23 ≡ 1
2
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It is easy to see that adding the contribution from interchanging
the nucleons 2 and 3 to Eqs. (2.1) and (2.3) and performing
antisymmetrization with respect to these nucleons leads to
a vanishing result. Therefore, we conclude that there are no
one-pion-exchange-contact terms in the 3NF at N3LO.

III. TWO-PION-EXCHANGE-CONTACT TOPOLOGY

We now turn to the two-pion-exchange-contact diagrams
shown in Fig. 4. Evaluating the matrix elements of the
operators listed in Eq. (A1)
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−
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q2
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(
1

ω4
+ω2

−
+ 1

ω2
+ω4

−

)

×
[
− q2

1 l2(#σ1 · #σ2) + q2
1 (#l · #σ1)(#l · #σ2) − (#q1 · #l)(#q1 · #σ1)(#l · #σ2)

− (#q1 · #l)(#l · #σ1)(#q1 · #σ2) + (#q1 · #l)2(#σ1 · #σ2) + l2(#q1 · #σ1)(#q1 · #σ2)
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DR= g4
ACT

48πF 4
π

{
2τ 1 · τ 2(#σ2 · #σ3)

[
3Mπ − M3

π

4M2
π + q2

1

+ 2
(
2M2

π + q2
1

)
A(q1)

]

+9
[
(#q1 · #σ1)(#q1 · #σ2) − q2

1 (#σ1 · #σ2)
]
A(q1)

}
, (3.1)
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Gradient-Flow Equation (GFE)
Yang-Mills gradient flow in QCD: Lüscher, JHEP 04 (2013) 123

∂τBμ = DνGνμ with Bμ |τ=0 = Aμ & Gμν = ∂μBν − ∂νBμ + [Bμ, Bν]

 is a regularized gluon fieldBμ

Apply this idea to ChPT:
(Proposed in various talks by D. Kaplan for nuclear forces)

Introduce a smoothed pion field  with  satisfying GFEW W |τ=0 = U

 with  and ∂τW = i w EOM(τ) w w = W EOM(τ) = [Dμ, wμ] +
i
2

χ− −
i
4

Tr(χ−)

wμ = i(w†(∂μ − i rμ)w − w(∂μ − i lμ)w†), χ− = w†χw† − wχ†w, χ = 2B(s + ip)

Note: The shape of regularization is dictated by the choice of the right-hand side of GFE

Our choice is motivated by a Gaussian regularization of one-pion-exchange in NN

HK, Epelbaum, arXiv:2312.13932



Properties under Chiral Transformation

Chiral transformation: by induction, one can show 

U → RUL† W → RWL†

Replace all pion fields in pion-nucleon Lagrangians :ℒ(1)
πN, …, ℒ(4)

πN U → W

Regularized pion fields transform under  - independent transformationsτ

ℒ(1)
πN = N†(D0 + g u ⋅ S)N → N†(D0

w + g w ⋅ S)N

N → KN, K = LU†R†R U

Nucleon fields transform in  - dependent wayτ

N → KτN, Kτ = LW†R†R W



Gradient-Flow Equation

[∂τ − (∂x
μ∂x

μ − M2)]ϕ(1)
b (x, τ) = 0, ϕ(1)

b (x,0) = πb(x)

In the absence of external sources we have

[∂τ − (∂x
μ∂x

μ − M2)]ϕ(3)
b (x, τ) = (1 − 2α)∂μϕ(1) ⋅ ∂μϕ(1)ϕ(1)

b − 4α∂μϕ(1) ⋅ ϕ(1)∂μϕ(1)
b

+
M2

2
(1 − 4α)ϕ(1) ⋅ ϕ(1)ϕ(1)

b , ϕ(3)
b (x,0) = 0

Iterative solution in momentum space:

ϕ̃(1)
b (q) = e−τ(q2+M2)π̃b(q)

ϕ̃(n)(q, τ) = ∫ d4x eiq⋅xϕ(n)
b (x, τ)

ϕ̃(3)
b (q) = ∫

d4q1

(2π)4

d4q2

(2π)4

d4q3

(2π)4
(2π)4δ(q − q1 − q2 − q3)∫

τ

0
ds e−(τ−s)(q2+M2)e−s∑3

j=1 (q2
j +M2)

× [4α q1 ⋅ q3 − (1 − 2α)q1 ⋅ q2 +
M2

2
(1 − 4α)]π̃(q1) ⋅ π̃(q2)π̃b(q3)

Integration over momenta of pion fields with Gaussian prefactor introduces smearing

Analytic solution is possible of  - expanded gradient flow equation:1/F

W = 1 + iτ ⋅ ϕ(1 − αϕ2) −
ϕ2

2 [1 + (1
4

− 2α)ϕ2] + 𝒪(ϕ5), ϕb =
∞

∑
n=0

1
Fn

ϕ(n)
b



Regularization for Nuclear Forces
To regularize long-range part of the nuclear forces and currents

Leave pionic Lagrangians  unregularized (essential)ℒ(2)
π & ℒ(4)

π

Replace all pion fields in pion-nucleon Lagrangians :ℒ(1)
πN, …, ℒ(4)

πN U → W

ℒ(1)
πN = N†(D0 + g u ⋅ S)N → N†(D0

w + g w ⋅ S)N

∼ e−τ(q2+M2) ∼ e−2τ(q2+M2) 1
q2 + M2

For  this regulator reproduces SMS regularization of OPEτ =
1

2Λ2



Conceptional Challenge
ϕc = e−τ(−∂2+M2)πc + … = e−τ(−∂2

0− ⃗∇2+M2)πc + …

Appearance of second and higher order in time-derivatives of pion fields

Canonical quantization of the regularized theory becomes difficult 
(Ostrogradski - approach, Constrains, …)

Use path-integral (PI) quantization

Canonical Quantization of QFT Path-Integral Quantization of QFT

Creation/annihilation operators

Hamiltonian & Hilbert space

Time-ordered perturbation theory

Lagrangian & action

Summation over all classical paths

Loop expansion & Feynman rules

Pl approach was a natural choice in pionic and single-nucleon sector
Gasser, Leutwyler, Annals Phys. 158 (1984) 142; 
Bernard, Kaiser, Kambor, Meißner, Nucl. Phys. B 388 (1992) 315

Unitary transformation (UT) approach can not be used any more



Nuclear Forces in PI Formulation 

Due to non-locality of nucleon-field redefinitions we get functional determinants                         

det (δ(N′ †, N′ )
δ(N†, N) )

Derivation steps of nuclear forces in PI formulation

Perform a perturbative loop expansion in pion fields

Non-instant NN, 3N & 4N interactions

Perform non-local nucleon field redefinitions to bring all non-instant interactions
into instant form

include loop corrections to nuclear forces

In two - and more - nucleon sector Weinberg used canonical quantization language
Weinberg Nucl. Phys. B 362 (1991) 3 

To see the origin of these infrared divergences, consider the simple one-

loop graph shown in Figure I for nucleon-nucleon scattering at zero kinetic 

energy. Using the approximation (I) for the nucleon propagator, this gives a 

matrix element proportional to 

1 d'q (qo + i<ft(qo _ ;,)-t(q' + m;)-' P(q) 

where P(q) is a polynomial in the pion four-momentum q. This polynomial 

includes terms that are non-vanishing in the limit q0 ---+ 0, so the integral 

over q0 has an infrared divergence: 

1 dqo(qo + i<)-t(q"- i<ft . 

The contour of integration is pinched between the two poles at q0 = =fit:, and 

so cannot be distorted to avoid these singularities. In contrast, for the crossed 

ladder graph both poles are on the same side of the integration contour, while 

in one-nucleon processes there is only one pole, so in these cases there are no 

infrared divergences. 

Of course the infrared divergence in Figure 1 is not real; it only arises 

because we use the approximation (3) for the nucleon propagators. Including 

the term q2 in ( P + qf in the denominators of the nucleon propagators shifts 

the poles to q0 "' ± (q 2 /2mN- i<), so that the q0 integral has the finite value 

2mNi7r / ij2 • Equivalently, the infrared divergence forces us to include in the 

Lagrangian the nucleon kinetic energy term: 

C.,n = N\12 N /2mN . (9) 

7 

The important point is that although with these corrections the q0 integral 

is finite, it is not of the order I Ql- 1 called for by our power-counting rules, 

but is larger by a factor of order mN/It/1. The failure of perturbation theory 

that is manifested in nuclear binding is to be blamed on such large factors. 

Rather than try to keep track of these nearly infrared-divergent graphs, 

it is much more convenient to switch over to old-fashioned perturbation the-

ory, where the integrals are only over three-momenta, and the problem with 

our power counting is one of small energy denominators rather than nearly 

infrared divergent integrals over energies. Intermediate states that contain 

pions have energy denominators of order Q, while those containing only nu-

cleons have much smaller energy denominators, of order Q2 /mN. To avoid 

the small energy denominators, we define an effective potential as the sum of 

connected old-fashioned perturbation theory graphs for the T-matrix exclud-

ing those with pure-nucleon intermediate states. As shown in I, the number 

v of powers of Q in each term of perturbation theory for the effective po-

tential is again given by Eq. (7). In particular, the leading terms for the 

effective potential are given by tree graphs (i. e., L :::; 0), constructed from 

the simplest chiral-invariant interactions, satisfying Eq. (8). 

In using old· fashioned perturbation theory we must work with the Hamil-

tonian rather than the Lagrangian. The application of the usual rules of 

canonical quantization to the leading terms in (1) and (9) yields the total 

8 

Formulation where we can work with the Lagrangian:

Inspired by: Friar et al. Phys. Rev. C 70 (2004) 044001, Borasoy et al. EPJA 31 (2007)105

HK, Epelbaum, arXiv:2311.10893



Status Report on 3N at N3LO
UT and PI approaches lead to the same 3NF & 4NF up to N4LO within dim. reg.

We calculated all long-range contributions to 3NF & 4NF at N3LO 
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being finalized

3NF’s are given in terms of integrals over Schwinger parameters 

V2π−1π
3N = τ1 ⋅ τ2 × τ3 ⃗q1 ⋅ ⃗σ1 × ⃗σ2 ⃗q3 ⋅ ⃗σ3

e− q2
3 + M2π

Λ2

q2
3 + M2

π ( −
g4

A

F6
π

q1

2048π ∫
∞

0
dλ erfi( q1λ

2Λ 2 + λ )
exp( −

q2
1 + 4M2

π

4Λ2 (2 + λ))
2 + λ

+ …) + …

Dimension of integrals over Schwinger parameters depends on topology

Space

Momentum 2 1 3

Coordinate 4 1 0
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Selected Profile Functions
V ring

3N = F1(r12, r23, r13) + … + τ2 ⋅ τ3 ⃗σ1 ⋅ ⃗σ2F5(r12, r23, r13) + … F5(r) = F5(r, r, r) [MeV]
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At  regularized 3NF reproduce dim. reg. results fromΛ → ∞ Bernard et al. PRC77 (08)
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Homework

Fit ’s to pion-nucleon sub-threshold coefficients which are determined 
from Roy-Steiner equation

ci

Calculation of pion-nucleon scattering with gradient-flow regulator required

TPE topology includes pion-nucleon amplitude as a subprocess

PWD is computationally more expensive, due to higher dimension of integrals 
over Schwinger parameters

a b c d e f
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Pion-nucleon amplitude with gradient-flow regulator depends on ’s ci



Summary on 3N
Gradient flow regularization preserves chiral symmetry

Path-integral approach for derivation of nuclear forces

Long-range part of 3NF at N3LO has been calculated

Outlook
Short-range part of 3NF at N3LO
Partial wave decomposition
Symmetry preserving regularized nuclear currents



Neutron-Deuteron Scattering at N4LO+
Maris et al. PRC106 (2022) 6; Maris et al. PRC103 (2021) 054001

Error bar from Bayesian analysis: 68% DoB                       

Similar to phenomenological potenIals NN only from N2LO on underesImate  σtot

     N2LO 3NF increases the total cross secIon bringing the calculaIons in agreement  
     with the data

X = Xref

�
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�
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FIG. 1. Predictions for the neutron-deuteron total cross-section at 70 MeV (left panel) and 135 MeV (right panel) based on the
semilocal momentum-space regularized chiral interactions at di↵erent orders (shown by solid symbols with error bars). Three-
nucleon force is included at N2LO only. Error bars show the EFT truncation uncertainty calculated using the Bayesian model
C̄

650
0.5�10 from Ref. [26] (68% DoB intervals). For the incomplete calculations at N3LO and N4LO, the quoted errors correspond

to the N2LO truncation uncertainties. Gray open symbols without error bars show the results based on the two-nucleon forces
only. Horizontal bands are experimental data from Ref. [30].

shown in Fig. 1, therefore, come out as predictions. We
do not show the results for the total cross-section at low
energies since it is governed by the S-wave contribution
and known to be correlated with the triton binding en-
ergy. Also, the e↵ects of the 3NF we are interested in
here start becoming significant at intermediate energies
above E ⇠ 50 MeV.

The obtained results show a number of interesting fea-
tures. First, as already pointed out in Ref. [23] based on a
di↵erent version of the chiral potentials, the NLO predic-
tions appear to underestimate the total cross-section, and
the size of the discrepancy with the experimental data is
roughly consistent with the NLO truncation errors. Nat-
urally, softer NLO NN interactions with smaller values of
the cuto↵ ⇤ show larger deviations from the data at high
energies, which is most pronounced for ⇤ = 400 MeV.
Including higher-order corrections to the NN force up
through N4LO+, the results for �tot tend to converge
to values that underestimate the cross-section data by
⇠ 4% (⇠ 7%) at E = 70 MeV (E = 135 MeV). These
observations are in line with the systematics found us-
ing high-precision phenomenological NN potentials [30],
the feature that should not come as a surprise given the
nearly perfect description of NN data at N4LO+ [20].

The discrepancy between the predicted Nd scattering
observables based on NN interactions only and exper-
imental data are expected to be resolved by the 3NF.
In line with the chiral power counting, the leading 3NF
at N2LO indeed brings the calculated total cross-section
in agreement with the data within N2LO truncation er-
rors. Also the magnitude of the 3NF e↵ects appears to
be consistent with the expectations based on the power
counting, see also Ref. [23] for a related discussion. These

findings are consistent with the results shown in Fig. 2
of Ref. [27].

The cuto↵ dependence of the obtained predictions also
reveals interesting insights into the convergence pattern
of the chiral expansion. In particular, one observes that
the rather significant ⇤-dependence of the N2LO results
at the larger energy of E = 135 MeV is mostly absorbed
into the “running” of the N3LO NN contact interactions.
The remaining cuto↵ dependence of the predictions at
N3LO and N4LO+, both with and without the 3NF,
is significantly smaller than the N2LO truncation error.
This might be explained by the expectation for the resid-
ual cuto↵ dependence to be taken care of by short-range
3NF operators that appear at N4LO.2

B. Nucleon-deuteron elastic and breakup
scattering

Let us now turn to other observables in the elastic Nd
scattering process. In this case predictions obtained at

2 Notice, however, that the strength of some of the short-range
terms is enhanced by a factor of m/⇤b [33], where m and ⇤b refer
to the nucleon mass and the breakdown scale of chiral EFT in
the few-nucleon sector, respectively. This is because for the SMS
NN interactions of Ref. [20], a specific choice was made to remove
the redundant (o↵-shell) N3LO contact interactions. However,
the largely universal results for the Nd total cross-section based
on a broad class of di↵erent high-precision NN potentials seem
to indicate that this observable is almost insensitive to o↵-shell
ambiguities of the NN force.



 A = 3 & 4 Nuclei
Faddeev and Yakubovsky equaIons in momentum space: Nogga et al. PRC65 (2002) 054003

All angular momenta ≤ 5 of the two-body subsystem are taken into account

Numerical accuracy  reached for  binding energies and expectaIon values∼ 1 keV A = 3

Point Coulomb interacIon has been 
included for pp system in 3He calc

AbracIve contribuIon of 3NF  
brings  to its physical value E

7

⇤ E hHi hT i hVNN i hV3NF i hTCSBi h | i P(S) P(P) P(D) rp rn

3H

LO

450

�12.22 �12.24 52.38 �64.61 — �10.51 1.0000 96.25 0.019 3.73 1.250 1.319
NLO �8.515 �8.521 34.31 �42.82 — �5.80 0.9999 94.79 0.028 5.19 1.556 1.702
N2LO �8.483 �8.489 36.13 �44.16 �0.459 �5.84 0.9995 92.54 0.077 7.38 1.576 1.725
N3LO �8.483 �8.489 35.60 �43.56 �0.520 �5.72 0.9996 92.53 0.078 7.39 1.579 1.729
N4LO �8.483 �8.489 35.35 �43.40 �0.430 �5.75 0.9996 92.77 0.078 7.16 1.579 1.728
N4LO+ �8.483 �8.489 35.46 �43.49 �0.460 �5.75 0.9996 92.64 0.079 7.28 1.580 1.729

3H

LO

500

�12.52 �12.53 57.84 �70.36 — �11.53 0.9999 94.96 0.036 5.01 1.224 1.286
NLO �8.325 �8.332 35.87 �44.19 — �6.15 0.9998 94.29 0.032 5.68 1.575 1.725
N2LO �8.482 �8.488 40.27 �48.09 �0.660 �6.24 0.9992 91.39 0.109 8.50 1.581 1.731
N3LO �8.483 �8.489 37.83 �45.59 �0.724 �5.93 0.9994 91.80 0.103 8.10 1.580 1.731
N4LO �8.483 �8.489 37.86 �45.72 �0.628 �6.07 0.9994 92.02 0.106 7.87 1.580 1.730
N4LO+ �8.484 �8.490 38.08 �45.89 �0.672 �6.07 0.9994 91.84 0.108 8.05 1.582 1.731
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NLO �7.751 �7.745 33.55 �41.30 — 5.22 0.9998 94.79 0.027 5.18 1.744 1.579
N2LO �7.734 �7.729 35.37 �42.65 �0.452 5.26 0.9995 92.57 0.076 7.35 1.766 1.598
N3LO �7.737 �7.732 34.85 �42.08 �0.509 5.15 0.9995 92.55 0.076 7.37 1.770 1.601
N4LO �7.739 �7.734 34.61 �41.93 �0.423 5.18 0.9995 92.78 0.076 7.14 1.769 1.601
N4LO+ �7.740 �7.734 34.72 �42.01 �0.452 5.18 0.9995 92.66 0.078 7.26 1.770 1.602

3He
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500

�11.63 �11.62 56.88 �68.51 — 10.87 0.9999 94.94 0.036 5.02 1.308 1.237
NLO �7.574 �7.568 35.07 �42.65 — 5.56 0.9997 94.30 0.031 5.67 1.768 1.598
N2LO �7.739 �7.733 39.44 �46.54 �0.641 5.65 0.9991 91.43 0.107 8.47 1.772 1.602
N3LO �7.738 �7.733 37.04 �44.07 �0.705 5.34 0.9993 91.83 0.101 8.07 1.772 1.602
N4LO �7.743 �7.737 37.08 �44.21 �0.615 5.49 0.9993 92.05 0.104 7.85 1.771 1.602
N4LO+ �7.744 �7.738 37.29 �44.38 �0.658 5.49 0.9993 91.87 0.106 8.02 1.772 1.603
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TABLE I. Summary of energies and wave function properties for 3H/3He for NN interactions up to N4LO+ (including N2LO
3NFs starting from N2LO). Energies and cuto↵s are given in MeV except for hTCSBi which is given in keV. Radii are given
in fm and the S,P and D-state probabilities are given in %. For the experimental values of the point-proton radii, we use the
structure radii.

proton charge radius and R
2
n the neutron charge radius

squared. N and Z are the neutron and proton numbers.
The values given here have been obtained in [27] using
the values of CODATA-2018 and the current PDG val-
ues for Rp and Rn, respectively. The structure radius
di↵ers from the non-observable point-proton radius due
to relativistic corrections and exchange charge density
and similar contributions. For 3H, the structure radius
is in agreement with the point-proton radius within the
experimental error bar. For 3He, we observe a slight un-
derprediction of experiment.

III. LIGHT NUCLEI

A. Helium-4

We also performed Yakubovsky calculations in momen-
tum space for 4He. The approach has been briefly de-
scribed in [27]. We present our results in Table II. For
these calculations, we truncate the partial waves in sev-
eral ways. First, the two-body subsystem total angular
momentum is restricted to j12  5, then the orbital angu-
lar momentum of the third and fourth nucleon or between
two two-nucleon clusters is restricted to li  6. Finally,

the sum of all orbital angular momenta is smaller than
or equal to 10. For the calculations shown here, we also
take the small admixtures of isospin T = 1 and 2 to the
dominant T = 0 component into account. With these re-
strictions, our numerical accuracy is better than 10 keV
for the binding energy and energy expectation values.
Again, results up to N2LO have already been shown in
[27]. Note the small di↵erences compared to the previous
work that are due to the isospin T = 1 and 2 components
of the 4He state which were omitted in [27]. The calcu-
lations were performed using an averaged nucleon mass.
For 4He, the contribution of the proton-neutron mass dif-
ference is tiny and is omitted. Due to the correlation of
the 3N and 4N binding energy, we again find a consider-
able overbinding in LO and NLO. Starting from N2LO,
the 3N system is correctly bound. Nevertheless, there are
still variations of the 4He binding energy of the order of
400 keV when the cuto↵ and/or order of the NN interac-
tion is changed. The changes of energy at N4LO are only
of the order of 60 keV. The remaining deviations of the
energies at the two cuto↵s and the deviation from exper-
iment can therefore be expected to be explained by the
missing three- and four-nucleon forces at order N3LO.
Based on the contribution from NN interactions, we can
expect to predict energies with an accuracy of 60 keV
once a complete calculation up to N3LO is performed.
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squared. N and Z are the neutron and proton numbers.
The values given here have been obtained in [27] using
the values of CODATA-2018 and the current PDG val-
ues for Rp and Rn, respectively. The structure radius
di↵ers from the non-observable point-proton radius due
to relativistic corrections and exchange charge density
and similar contributions. For 3H, the structure radius
is in agreement with the point-proton radius within the
experimental error bar. For 3He, we observe a slight un-
derprediction of experiment.
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We also performed Yakubovsky calculations in momen-
tum space for 4He. The approach has been briefly de-
scribed in [27]. We present our results in Table II. For
these calculations, we truncate the partial waves in sev-
eral ways. First, the two-body subsystem total angular
momentum is restricted to j12  5, then the orbital angu-
lar momentum of the third and fourth nucleon or between
two two-nucleon clusters is restricted to li  6. Finally,

the sum of all orbital angular momenta is smaller than
or equal to 10. For the calculations shown here, we also
take the small admixtures of isospin T = 1 and 2 to the
dominant T = 0 component into account. With these re-
strictions, our numerical accuracy is better than 10 keV
for the binding energy and energy expectation values.
Again, results up to N2LO have already been shown in
[27]. Note the small di↵erences compared to the previous
work that are due to the isospin T = 1 and 2 components
of the 4He state which were omitted in [27]. The calcu-
lations were performed using an averaged nucleon mass.
For 4He, the contribution of the proton-neutron mass dif-
ference is tiny and is omitted. Due to the correlation of
the 3N and 4N binding energy, we again find a consider-
able overbinding in LO and NLO. Starting from N2LO,
the 3N system is correctly bound. Nevertheless, there are
still variations of the 4He binding energy of the order of
400 keV when the cuto↵ and/or order of the NN interac-
tion is changed. The changes of energy at N4LO are only
of the order of 60 keV. The remaining deviations of the
energies at the two cuto↵s and the deviation from exper-
iment can therefore be expected to be explained by the
missing three- and four-nucleon forces at order N3LO.
Based on the contribution from NN interactions, we can
expect to predict energies with an accuracy of 60 keV
once a complete calculation up to N3LO is performed.
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the values of CODATA-2018 and the current PDG val-
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di↵ers from the non-observable point-proton radius due
to relativistic corrections and exchange charge density
and similar contributions. For 3H, the structure radius
is in agreement with the point-proton radius within the
experimental error bar. For 3He, we observe a slight un-
derprediction of experiment.
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momentum is restricted to j12  5, then the orbital angu-
lar momentum of the third and fourth nucleon or between
two two-nucleon clusters is restricted to li  6. Finally,

the sum of all orbital angular momenta is smaller than
or equal to 10. For the calculations shown here, we also
take the small admixtures of isospin T = 1 and 2 to the
dominant T = 0 component into account. With these re-
strictions, our numerical accuracy is better than 10 keV
for the binding energy and energy expectation values.
Again, results up to N2LO have already been shown in
[27]. Note the small di↵erences compared to the previous
work that are due to the isospin T = 1 and 2 components
of the 4He state which were omitted in [27]. The calcu-
lations were performed using an averaged nucleon mass.
For 4He, the contribution of the proton-neutron mass dif-
ference is tiny and is omitted. Due to the correlation of
the 3N and 4N binding energy, we again find a consider-
able overbinding in LO and NLO. Starting from N2LO,
the 3N system is correctly bound. Nevertheless, there are
still variations of the 4He binding energy of the order of
400 keV when the cuto↵ and/or order of the NN interac-
tion is changed. The changes of energy at N4LO are only
of the order of 60 keV. The remaining deviations of the
energies at the two cuto↵s and the deviation from exper-
iment can therefore be expected to be explained by the
missing three- and four-nucleon forces at order N3LO.
Based on the contribution from NN interactions, we can
expect to predict energies with an accuracy of 60 keV
once a complete calculation up to N3LO is performed.
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N3LO �8.483 �8.489 35.60 �43.56 �0.520 �5.72 0.9996 92.53 0.078 7.39 1.579 1.729
N4LO �8.483 �8.489 35.35 �43.40 �0.430 �5.75 0.9996 92.77 0.078 7.16 1.579 1.728
N4LO+ �8.483 �8.489 35.46 �43.49 �0.460 �5.75 0.9996 92.64 0.079 7.28 1.580 1.729

3H

LO

500

�12.52 �12.53 57.84 �70.36 — �11.53 0.9999 94.96 0.036 5.01 1.224 1.286
NLO �8.325 �8.332 35.87 �44.19 — �6.15 0.9998 94.29 0.032 5.68 1.575 1.725
N2LO �8.482 �8.488 40.27 �48.09 �0.660 �6.24 0.9992 91.39 0.109 8.50 1.581 1.731
N3LO �8.483 �8.489 37.83 �45.59 �0.724 �5.93 0.9994 91.80 0.103 8.10 1.580 1.731
N4LO �8.483 �8.489 37.86 �45.72 �0.628 �6.07 0.9994 92.02 0.106 7.87 1.580 1.730
N4LO+ �8.484 �8.490 38.08 �45.89 �0.672 �6.07 0.9994 91.84 0.108 8.05 1.582 1.731

Expt. 3H �8.482 �8.482 — — — — — — — — 1.604(96) —

3He

LO

450

�11.34 �11.33 51.45 �62.79 — 9.85 1.0000 96.24 0.019 3.75 1.342 1.264
NLO �7.751 �7.745 33.55 �41.30 — 5.22 0.9998 94.79 0.027 5.18 1.744 1.579
N2LO �7.734 �7.729 35.37 �42.65 �0.452 5.26 0.9995 92.57 0.076 7.35 1.766 1.598
N3LO �7.737 �7.732 34.85 �42.08 �0.509 5.15 0.9995 92.55 0.076 7.37 1.770 1.601
N4LO �7.739 �7.734 34.61 �41.93 �0.423 5.18 0.9995 92.78 0.076 7.14 1.769 1.601
N4LO+ �7.740 �7.734 34.72 �42.01 �0.452 5.18 0.9995 92.66 0.078 7.26 1.770 1.602

3He

LO

500

�11.63 �11.62 56.88 �68.51 — 10.87 0.9999 94.94 0.036 5.02 1.308 1.237
NLO �7.574 �7.568 35.07 �42.65 — 5.56 0.9997 94.30 0.031 5.67 1.768 1.598
N2LO �7.739 �7.733 39.44 �46.54 �0.641 5.65 0.9991 91.43 0.107 8.47 1.772 1.602
N3LO �7.738 �7.733 37.04 �44.07 �0.705 5.34 0.9993 91.83 0.101 8.07 1.772 1.602
N4LO �7.743 �7.737 37.08 �44.21 �0.615 5.49 0.9993 92.05 0.104 7.85 1.771 1.602
N4LO+ �7.744 �7.738 37.29 �44.38 �0.658 5.49 0.9993 91.87 0.106 8.02 1.772 1.603

Expt. 3He �7.718 �7.718 — — — — — — — — 1.792(17) —

TABLE I. Summary of energies and wave function properties for 3H/3He for NN interactions up to N4LO+ (including N2LO
3NFs starting from N2LO). Energies and cuto↵s are given in MeV except for hTCSBi which is given in keV. Radii are given
in fm and the S,P and D-state probabilities are given in %. For the experimental values of the point-proton radii, we use the
structure radii.

proton charge radius and R
2
n the neutron charge radius

squared. N and Z are the neutron and proton numbers.
The values given here have been obtained in [27] using
the values of CODATA-2018 and the current PDG val-
ues for Rp and Rn, respectively. The structure radius
di↵ers from the non-observable point-proton radius due
to relativistic corrections and exchange charge density
and similar contributions. For 3H, the structure radius
is in agreement with the point-proton radius within the
experimental error bar. For 3He, we observe a slight un-
derprediction of experiment.

III. LIGHT NUCLEI

A. Helium-4

We also performed Yakubovsky calculations in momen-
tum space for 4He. The approach has been briefly de-
scribed in [27]. We present our results in Table II. For
these calculations, we truncate the partial waves in sev-
eral ways. First, the two-body subsystem total angular
momentum is restricted to j12  5, then the orbital angu-
lar momentum of the third and fourth nucleon or between
two two-nucleon clusters is restricted to li  6. Finally,

the sum of all orbital angular momenta is smaller than
or equal to 10. For the calculations shown here, we also
take the small admixtures of isospin T = 1 and 2 to the
dominant T = 0 component into account. With these re-
strictions, our numerical accuracy is better than 10 keV
for the binding energy and energy expectation values.
Again, results up to N2LO have already been shown in
[27]. Note the small di↵erences compared to the previous
work that are due to the isospin T = 1 and 2 components
of the 4He state which were omitted in [27]. The calcu-
lations were performed using an averaged nucleon mass.
For 4He, the contribution of the proton-neutron mass dif-
ference is tiny and is omitted. Due to the correlation of
the 3N and 4N binding energy, we again find a consider-
able overbinding in LO and NLO. Starting from N2LO,
the 3N system is correctly bound. Nevertheless, there are
still variations of the 4He binding energy of the order of
400 keV when the cuto↵ and/or order of the NN interac-
tion is changed. The changes of energy at N4LO are only
of the order of 60 keV. The remaining deviations of the
energies at the two cuto↵s and the deviation from exper-
iment can therefore be expected to be explained by the
missing three- and four-nucleon forces at order N3LO.
Based on the contribution from NN interactions, we can
expect to predict energies with an accuracy of 60 keV
once a complete calculation up to N3LO is performed.
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3NFs starting from N2LO). Energies and cuto↵s are given in MeV except for hTCSBi which is given in keV. Radii are given
in fm and the S,P and D-state probabilities are given in %. For the experimental values of the point-proton radii, we use the
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squared. N and Z are the neutron and proton numbers.
The values given here have been obtained in [27] using
the values of CODATA-2018 and the current PDG val-
ues for Rp and Rn, respectively. The structure radius
di↵ers from the non-observable point-proton radius due
to relativistic corrections and exchange charge density
and similar contributions. For 3H, the structure radius
is in agreement with the point-proton radius within the
experimental error bar. For 3He, we observe a slight un-
derprediction of experiment.
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We also performed Yakubovsky calculations in momen-
tum space for 4He. The approach has been briefly de-
scribed in [27]. We present our results in Table II. For
these calculations, we truncate the partial waves in sev-
eral ways. First, the two-body subsystem total angular
momentum is restricted to j12  5, then the orbital angu-
lar momentum of the third and fourth nucleon or between
two two-nucleon clusters is restricted to li  6. Finally,

the sum of all orbital angular momenta is smaller than
or equal to 10. For the calculations shown here, we also
take the small admixtures of isospin T = 1 and 2 to the
dominant T = 0 component into account. With these re-
strictions, our numerical accuracy is better than 10 keV
for the binding energy and energy expectation values.
Again, results up to N2LO have already been shown in
[27]. Note the small di↵erences compared to the previous
work that are due to the isospin T = 1 and 2 components
of the 4He state which were omitted in [27]. The calcu-
lations were performed using an averaged nucleon mass.
For 4He, the contribution of the proton-neutron mass dif-
ference is tiny and is omitted. Due to the correlation of
the 3N and 4N binding energy, we again find a consider-
able overbinding in LO and NLO. Starting from N2LO,
the 3N system is correctly bound. Nevertheless, there are
still variations of the 4He binding energy of the order of
400 keV when the cuto↵ and/or order of the NN interac-
tion is changed. The changes of energy at N4LO are only
of the order of 60 keV. The remaining deviations of the
energies at the two cuto↵s and the deviation from exper-
iment can therefore be expected to be explained by the
missing three- and four-nucleon forces at order N3LO.
Based on the contribution from NN interactions, we can
expect to predict energies with an accuracy of 60 keV
once a complete calculation up to N3LO is performed.
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Parameter-free: depend on δMπ, δm = 1.29 MeV and 
(δm)QCD = -1.87(16) MeV [Gasser, Leutwyler, Rusetsky ’21]

Depend on 3 πN coupling constants + 3 IB contact 
terms in p-waves

van Kolck et al.’98; Friar et al. ’99,’03,’04; Niskanen ’02; Epelbaum, Meißner ’05

Isospin-breaking in the Nuclear Force

Away from the isospin limit, one introduces 3 𝛑N coupling constants:
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Pionic hydrogen exp. at PSI 
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1s + ϵπD
1s gπNN = 13.10 ± 0.10

 :    ΓπH
1s gπNN = 13.24 ± 0.10

Hirtl et al.´21



Iterative solution in Coordinate Space

Solid line stands for Green-function:

9

⃗x

t

�

�(1)(x�, �)

[integrated over ]⃗x1, t1, �1

� (x�) �(3)(x�, �)

⃗x
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�

⃗x1
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� (x�)

�(x�, �) = + + …
0 0

FIG. 3: Schematic graphical representation of the solution of the gradient flow equation in coordinate space in the absence
of external sources. Solid dots denote a point xµ, ⌧ , while solid lines refer to the Green’s function defined in Eq. (4.32).
Light shaded areas visualize the smearing in Euclidean space-time, whose characteristic size is ⇠

p
2⌧ . Pion fields live on the

boundary with ⌧ = 0.

The boundary condition for �(3)(x, 0) can be derived by examining the matrix W (x, ⌧):

W = 1 +
i

F
⌧ · �(1)

�
1

2F 2
�(1)

· �(1) +
i

F 3

�
⌧ · �(3)

� ↵ ⌧ · �(1)�(1)
· �(1)� + O

✓
1

F 4

◆
, (4.44)

where we have used that �(2)(x, ⌧) = 0. Given that �(1)
b (x, 0) = ⇡b(x), we obtain

W
���
⌧=0

= 1 +
i

F
⌧ · ⇡ �

1

2F 2
⇡ · ⇡ +

i

F 3

⇣
⌧ · �(3)

���
⌧=0

� ↵ ⌧ · ⇡⇡ · ⇡
⌘

. (4.45)

Using W |⌧=0 = U and matching Eq. (4.45) to Eq. (3.12), we finally obtain the boundary condition �(3)(x, 0) = 0.
We then write the solution of Eq. (4.43) in the form

�(3)
b (x, ⌧) =

Z ⌧

0
ds

Z
d4y G(x � y, ⌧ � s)


(1 � 2↵)@µ�
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(1)(y, s) �(1)

b (y, s)

� 4↵ @µ�
(1)(y, s) · �(1)(y, s) @µ�(1)

b (y, s) +
M2

2
(1 � 4↵)�(1)(y, s) · �(1)(y, s) �(1)

b (y, s)

�
. (4.46)

The corresponding momentum-space expression is given by

�̃(3)
b (q, ⌧) =

Z
d4q1

(2⇡)4
d4q2

(2⇡)4
d4q3

(2⇡)4
(2⇡)4�4(q � q1 � q2 � q3)

Z ⌧

0
ds e�(⌧�s)(q2+M2)e�s
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j=1(q

2
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⇥


4↵ q1 · q3 � (1 � 2↵)q1 · q2 +

M2

2
(1 � 4↵)

�
⇡̃(q1) · ⇡̃(q2) ⇡̃b(q3) . (4.47)

By looking at the regulator

Z ⌧

0
ds e�(⌧�s)(q2+M2)e�s

P3
j=1(q

2
j+M2) =

e�⌧(q2+M2)
� e�⌧

P3
j=1(q

2
j+M2)

q2
1 + q2

2 + q2
3 � q2 + 2M2

, (4.48)

one observes that not every pion field gets regularized since the first Gaussian regulator in the right-hand side of
Eq. (4.48) only acts on the total pion momentum q = q1+q2+q3. However, as will be argued below, this regularization
is su�cient for our purposes. Notice further that the above expression is non-singular for all values of the momenta
qi and q.

The above considerations help to elucidate the general structure of the solution of the gradient flow equation �(x, ⌧),
which is schematically depicted in Fig. 3. Specifically, the field �(x, ⌧) is expressed in terms of an increasing number
of smeared pion fields that live on the boundary ⌧ = 0, with the extent of smearing being controlled by the parameterp

2⌧ . In the limit ⌧ ! 0, all multi-pion contributions to � get suppressed and the field � turns to the pion field ⇡.
After these preparations, we are now in the position to define our regularization scheme using the gradient flow

method. In the Goldstone boson sector, we employ the standard (i.e., unregularized) Lagrangian L⇡ = L
(2)
⇡ +L

(4)
⇡ +. . .,

Light-shaded area visualizes smearing in Euclidean space of size ∼ 2τ

ϕ(1)
b (x, τ) = ∫ d4y G(x − y, τ)πb(y)

[∂τ − (∂x
μ∂x

μ − M2)]G(x − y, τ − s) = δ(x − y)δ(τ − s)

ϕ(3)
b (x, τ) = ∫

τ

0
ds∫ d4y G(x − y, τ − s)[(1 − 2α)∂μϕ(1)(y, s) ⋅ ∂μϕ(1)(y, s)ϕ(1)

b (y, s)

− 4α ∂μϕ(1)(y, s) ⋅ ϕ(1)(y, s)∂μϕ(1)
b (y, s) +

M2

2
ϕ(1)(y, s) ⋅ ϕ(1)(y, s)ϕ(1)

b (y, s)]

G(x, τ) = θ(τ)∫
d4q

(2π)4
e−τ(q2+M2)e−i q⋅x



Subtraction Scheme
Choice of the short-range scheme

NN case: local part of NN force vanishes if distance between nucleons vanishes

leads to natural size of LECs

3N case: vanishing of the local part of 3NF is topology dependent
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Can be achieved by adjustment of D- and E-like terms:

Vanishing of 3NF for any  would require inclusion of two-pion-contact termsrij = 0

Appear first at N5LO and are expected to be small


