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• LCDA:  light-ray HQET matrix element  [Grozin, Neubert, PRD55, 272 (1997)]

What is  heavy meson LCDA?
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B-meson LCDA
𝐵 → 𝜋 form factor

Hard kernel

Why is LCDA important?

QCD Factorization: BBNS, PRL 83, 1914 (1999)
For PQCD, See: Keum, Li,  Sanda PRD 63,054008 (2001) 
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B meson LCSR:
De Fazio, Feldmann, Hurth, NPB 733, 1 (2006)

Khodjamirian, Mannel, Offen, PLB620,52 (2005)

Why is LCDA important? 5



• Solution of evolution equations. [Bell, Feldmann, Wang,  Yip, 2013;   Braun, Manashov, 2014]

• RG equations of 𝜙!" 𝜔, 𝜇 at two-loops. [Braun, Ji, Manashov, 2019;   Liu, Neubert, 2020]

• RG equations of the higher-twist B-meson distribution amplitudes. [Braun, Ji, Manashov, 2017]

What do we know about HM LCDA?

• Equation of Motion: [Kawamura, Kodaira, Qiao, Tanaka, PLB523, 111 (2001)]

• Evolution equations: [Lange, Neubert, 2003; Bell, Feldmann, 2008]

• Perturbative constraint for large 𝜔 [Lee, Neubert, PRD72 (2005) 094028]
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But…

Models for  heavy meson LCDAs

Cui, et.al, JHEP 03 (2023) 140

7



Lightcone: 

Cusp divergence: 

Heavy quark Field: 
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Braun, Ivanov, Korchemsky, PRD 69, 034014 (2004)

Difficulties in first-principle determinations 8



LaMET[Ji, PRL 110, 262002 2013]: 
lightcone can be accessed by simulating correlation functions with a large but finite Pz

HQET fields can be accessed by simulating correlation functions with a large but finite mQ

How to solve this problem? 9



How to solve this problem?  

Two-step method: Han, et.al, 2403.17492
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𝑚#Λ!"#~ hundreds MeV  << << 𝑃$ can achieve 4GeV currently

1 GeV 5 GeV𝑚! ⋯⋯ 1.6𝑚! 𝑚"

Quasi DA LCDA in QCD LCDA in HQET
LaMET bHQET

𝑃$ , 𝑚% , Λ&'( 𝑚% , Λ&'( Λ&'(

• A multi-scale processes:
1. LaMET requires Λ$%&, 𝑚# ≪ 𝑃' and finally integrate out 𝑃';

2. bHQET requires Λ$%& ≪ 𝑚# and integrate out 𝑚#;

⇒ Hierarchy 𝜦𝐐𝐂𝐃 ≪ 𝒎𝑯 ≪ 𝑷𝒛: A big challenge for lattice simulation but still calculable on the lattice

Ø Start from Quasi DA, calculable from LQCD

11A two-step matching method



Step 0: Lattice setup

• H48P32, 𝑛()×𝑛* = 48)×144, 𝑎 = 0.05187fm;

• 𝑚+ ≃ 317MeV, 𝑚,& = 700MeV; 

• Determine the charm quark mass by tuning 𝑚-// to its physical value, then 𝑚0 ≃

1.90GeV;

• Coulomb gauge fixed grid source with grid = 1×1×𝑛(; 549 con9igurations ×

8 measurements.

Han, et.al,2403.17492, updated 
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Step 1: Fit strategy of nonlocal correlation functions

𝑒!#"𝐶#$%(𝑃& = 7, 𝑧 = 5)𝑒!#"𝐶#$%(𝑃& = 6, 𝑧 = 9)

𝑒!#"𝐶#$%(𝑃& = 8, 𝑧 = 12) 𝑒!#"𝐶#$%(𝑃& = 8, 𝑧 = 10)

• We compare the 1, 2, 3-state fits. All 

the fit results are consistent with each 

other.

• Different fit strategy valid at different 

t-range.

• To balance the signal of data and 

reliability of the multi-state fits, we 

prefer the 1-state fit, and select the 2-

state fit when the former one is 

inadequate to describe the data. Result 

from 3-state fit is only used as a 

reliability check for the first two 

strategy.
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Step 1: Renormalization in the hybrid-ratio scheme

• We use the zero momentum matrix element -ℎ! (

)

𝑧, 𝑃' =

0 to renormalize the bare ones.

• The Dirac structure of zero momentum matrix element 

is 𝛾-𝛾., it contains same UV divergence as the one with 

𝛾'𝛾..

Ji, Liu, Schäfer, Wang, Yang, Zhang, Zhao, NPB 964, 115311 (2021) 
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Step 1: Renormalization in the hybrid-ratio scheme

• The linear divergence factor 𝛿𝑚 can be extracted from 

fitting the long-range correlations of the zero momentum 

matrix element.

• We fit the exponential decay behavior 𝐴𝑒/01' of the 

matrix element at large-𝑧 range to extract 𝛿𝑚. We 

choose the fit range 𝑧 ∈ [𝑧234, 𝑧234 + 4𝑎] with varying 

𝑧234 from 10𝑎 to 15𝑎 to check the stability of the fits.

• We find the fit of 𝛿𝑚 becomes stable at 𝑧234 > 0.6fm, 

that suggests the extraction of 𝛿𝑚 is universal. By 

performing a constant fit, we obtain the value of 𝛿𝑚 =

1.948(11)GeV.
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Step 1: Renormalization in the hybrid-ratio scheme

• The renormalon ambiguity 𝑚) can be extracted from the matching between perturbative and lattice results:

ℑ(𝜇)): RGE from 𝜇) = 2𝑒*+!𝑧*, to MS scale 𝜇.

ℑ-./(𝑎*,): For a single lattice spacing, this term is a constant.

𝐶): perturbative Wilson coefficient up to NLO. We also try the LRR improvement.

𝐴 = 0
1

for 𝛾2/𝛾2𝛾0, 3
1

for 𝛾$/𝛾$𝛾0

Yao, Ji, Zhang, JHEP 11 (2023) 021
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Step 1: Renormalization in the hybrid-ratio scheme

The extraction of 𝑚):

• The fit is performed at region 0 ≪ 𝑧 < 𝑧4 and in range 

[𝑧 − 𝑎, 𝑧 + 𝑎] for each 𝑧.

• We compare the schemes ‘NLO’, ‘NLO+LRR’ and 

‘(NLO+LRR)×RGR’.

• We choose 𝜇 = 2GeV, and vary 𝜇) with a factor from 

0.8-1.2 to introduce the scaling uncertainty.

• The fixed-order results contain visible dependence on z, 

and these z-dependence will be removed by the RGR 

improvement at 𝑧 ≃ 0.2fm.

• We take the result 𝑚) = −0.173*).)167).),8 GeV at 𝑧 =

0.207fm. Accordingly, the choice of 𝑧4 should be larger 

than 0.3fm.
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Step 1: Renormalized matrix elements

• The renormalized matrix 

elements at different 

momenta are basically 

consistent with each other. 

𝑧4 = 6𝑎
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Step 1: Renormalized matrix elements

• 𝑧( denotes the boundary between 

perturbative and nonperturbative 

regions. 

𝑧( dependence of renormalized matrix elements:

• 𝒪 𝑧(MN typically chosen to be around 

hundreds MeV to few GeV.

• We find that at 𝑧( ≥ 6𝑎 ≃ 0.31fm, the 

renormalized matrix elements become 

consistent with each other.

• Differences between 𝑧( = (6,7,8)𝑎 are 

small. We choose 𝑧( = 6𝑎.
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Step 1: 𝝀-extrapolation

We extrapolate the renormalized matrix elements to infinity based on the data at large 𝜆:

• The parameterization inside the square brackets account for 

the algebraic behavior and motivated by the Regge behavior 

of the light-cone distributions at endpoint regions.

• The exponential decay behavior is governed by the decaying 

∝ 𝑒*9:$ at long-tail region. Based on the definition of hybrid 

ratio scheme, the renormalized matrix elements decaying with 

𝑒:"($*$#), which related to the finite correlation length 𝜆) ∼

− 𝑃$/𝑚).

• We compare the extrapolation from “fixed 𝜆)” and “free 𝜆)”. 

The results from two strategies are consistent with each other.
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Step 1: 𝝀-extrapolation and quasi DAs

• We extrapolate the renormalized matrix elements to infinity, 

and then Fourier transform them to momentum space to 

obtain the quasi DA.

• We use the “free 𝜆)” strategy for conservative and adopt 

𝜆= = {7.07, 7.34, 7.32} for 𝑃$ = {2.99, 3.49, 3.98}GeV.
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Step 1: LaMET matching and QCD LCDA

• The matching formula in LaMET:

the perturbative matching kernel up to NLO at leading power:

𝑃$ = 3.98GeV, 𝜇 = 2GeV
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Step 1: LaMET matching and QCD LCDA

The results with different momenta are consistent 

within 1-𝜎. 

The matching kernel without renormalon

resummation still contains some large log 𝑃' terms,

these terms will give the more major contribution

than the polynomial 𝑃' terms at the limit of 𝑃' → ∞.
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Step 2: LCDAs in QCD and in HQET

Ø The LCDAs in QCD defined as:

can be divided into 2 parts based on the hierarchy of 𝑦:

“Peak”: 𝑦 ~ >
:$

“Tail”: 𝑦 ~1

• For very large scale 𝜇 ≫ 𝑚!, 𝜙(𝑦, 𝜇) will tend 
to asymptotic form;

➫ Light quark carries small momentum fraction 𝑦~Λ/𝑚%

⇒ peak region, related to the HQET LCDA;

➫ 𝑦~𝑂 1 region be suppressed in LCDA:

• For the scale 𝜇 ≲ 𝑚!,

𝑃? is soft-collinear, ≪ 𝑃!, only contribute through 
power corrections;

SCET renormalized matrix element in this region 
contain only hard-collinear physics, and starts at the 
one-loop level.

𝜙!
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is connected with the QCD LCDA through a multiplicative 
factorization in the peak region:

Step 2: LCDAs in QCD and in HQET

Ø The leading twist heavy meson LCDA in HQET: 

with

We will deal with 
the tail region later

25

[Beneke, Finauri, Keri Vos, Wei, JHEP 09, 066 (2023)]



Step 2: Tail of HQET LCDA

Ø The tail region of HQET LCDA is perturbative and its 1-loop result: 

where Λ̂ ≡ 𝑚% −𝑚!
@A-B reflect the power correction, 

and usually be chosen as 400~800MeV.

• Λ̂ = 0: neglect the power correction;

• We use the difference between the lines to 

estimate the power correction.

The final results of HQET LCDA will merge the peak (from 

LQCD) and tail region (from 1-loop calculation).

[Lee, Neubert, PRD72 (2005) 094028]
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Step 2: Final Results for HQET LCDA

Ø Models for HQET LCDAs

27

Han, et.al, 2403.17492 and updated



üWe proposed a two-step method to determine heavy meson LCDA from Lattice QCD. 

üWe use the finest CLQCD ensemble (H48P32) to simulate the heavy (D) meson quasi 

DAs with largest momentum up to 4GeV.

üWe consider a hybrid renormalization on lattice and 𝜆-extrapolation scheme.

üThe obtained (preliminary) results for LCDAs are consistent with model 

parametrizations

Summary and Outlook 28
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• Finer Lattices

• Renormalization

• Different sources

• …

Precise results on heavy meson LCDAs

LatticeTheory

• Heavy quark spin symmetry

• 1/𝑷𝒛 corrections

• 1/ 𝑚L corrections

• 𝑚L dependence

• …

Summary and Outlook 29
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Thank you for your attention! 
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Quasi 
DA

QCD 
LCDA

HQET 
LCDA

LaMET bHQET
Ishaq, Jia, Xiong, Yang, PRL125, 132001 (2020)
Zhao, PRD 101, 071503 (2020)
Beneke, Finauri, Keri Vos, Wei, JHEP 09, 066 (2023)

HQET Quasi 
DA

bHQET

𝑃$ , 𝑚% , Λ&'(

𝑚% , Λ&'(

Λ&'(

𝑣, Λ&'(

Wang2, Xu, Zhao, 2020; Xu, Zhang, 2022

How to solve this problem? 

Two-step method: Han, et.al,2403.17492
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Step 0: Dispersion relation

Ø Dispersion relation

𝐸1 = 𝑚1 + 𝑐)𝑃1 + 𝑐,𝑃8𝑎1

• The signals of local matrix elements are good, 

it allows us to perform a 3-state fit and verify 

the dispersion relation of the ground-state and 

first excited state.

• We use the model averaging method to 

improve the fit quality.

• We adopt the Dirac structure of the current as 

Γ = 𝛾e𝛾f.
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Step 1: Results of the bare matrix elements

Fit strategies and ranges we used.

𝑃! = 2.99GeV 𝑃! = 3.49GeV 𝑃! = 3.98GeV
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Step 1: Renormalization in the hybrid-ratio scheme

Scale dependence of 𝑚):

• The scale dependence reflect the contamination effects 

from the uncounted higher-order terms in 𝐶).

• We compare the extracted results of 𝑚) from fixed-

order 𝐶)CDE, 𝐶)CDE7DFF, and with RGR improvement 

𝐶)
CDE7DFF ×FHF.

• The RGR method significantly improves the stability 

after scale variation.
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Step 1: 𝝀-extrapolation

• We use the data at 𝜆 ≥ 𝜆= to perform the extrapolation. The choice 

of 𝜆= should neither too small nor too large.

• We compare the results of quasi DAs h𝜙 𝑥 = 0.25, 𝑃$ from 

extrapolated data with different 𝜆=. One can see that the results 

trend to stabilize after 𝜆= ≃ 7 at each momenta, with only the 

errors increasing.

• To estimate the 𝜆= dependence, we perform the fits with data start 

from different 𝜆=, extrapolate them to infinity (we adopt 200a as the 

infinity) and then Fourier transform to the momentum space.
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Step 2: Final Results for HQET LCDA 37
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