Heavy meson Lightcone distribution amplitudes from Lattice QCD

Wei Wang

Shanghai Jiaotong University

Based on 2403.17492 and work in progress

XVIth Quark Confinement and the Hadron Spectrum Conference

Heavy meson LCDAs

- Two-step matching method
- > Lattice QCD calculations of LCDAs
- > Summary and outlook

• Heavy meson: B meson

• LCDA: light-ray HQET matrix element [Grozin, Neubert, PRD55, 272 (1997)]

$$\langle H(p_H)|\bar{h}_v(0)\not\!\!n_+\gamma_5[0,tn_+]q_s(tn_+)|0\rangle = -i\tilde{f}_Hm_Hn_+\cdot v\int_0^\infty d\omega e^{i\omega tn_+\cdot v}\varphi_+(\omega;\mu)$$

$$\left\langle \pi\left(p'\right)\pi(q)\left|Q_{i}\right|\bar{B}(p)\right\rangle = f^{B\to\pi}\left(q^{2}\right)\int_{0}^{1}dxT_{i}^{\mathrm{I}}(x)\phi_{\pi}(x) + \int_{0}^{1}d\xi dx dyT_{i}^{\mathrm{II}}(\xi,x,y)\phi_{B}(\xi)\phi_{\pi}(x)\phi_{\pi}(y) \right. \\ \left. \left. \begin{array}{c} B \to \pi \text{ form factor} \end{array} \right|_{Hard kernel} \left. \begin{array}{c} B \text{-meson LCDA} \end{array} \right.$$

QCD Factorization: BBNS, PRL 83, 1914 (1999) For PQCD, See: Keum, Li, Sanda PRD 63,054008 (2001)

B meson LCSR: De Fazio, Feldmann, Hurth, NPB 733, 1 (2006) Khodjamirian, Mannel, Offen, PLB620,52 (2005)

What do we know about HM LCDA?

- Equation of Motion: [Kawamura, Kodaira, Qiao, Tanaka, PLB523, 111 (2001)]
- Evolution equations: [Lange, Neubert, 2003; Bell, Feldmann, 2008]

$$\frac{d}{d\ln\mu}\phi_B^+(\omega,\mu) = -\frac{\alpha_s C_F}{4\pi} \int_0^\infty d\omega' \gamma_+^{(1)}(\omega,\omega',\mu) \phi_B^+(\omega',\mu) + \mathcal{O}\left(\alpha_s^2\right) \,.$$
$$\gamma_+^{(1)}(\omega,\omega',\mu) = \left(\Gamma_{\rm cusp}^{(1)}\,\ln\frac{\mu}{\omega} - 2\right) \delta\left(\omega - \omega'\right) - \Gamma_{\rm cusp}^{(1)}\,\omega\left[\frac{\theta\left(\omega'-\omega\right)}{\omega'\left(\omega'-\omega\right)} + \frac{\theta\left(\omega-\omega'\right)}{\omega\left(\omega-\omega'\right)}\right]_+ \,.$$

- Solution of evolution equations. [Bell, Feldmann, Wang, Yip, 2013; Braun, Manashov, 2014]
- RG equations of $\phi_B^+(\omega, \mu)$ at two-loops. [Braun, Ji, Manashov, 2019; Liu, Neubert, 2020]
- RG equations of the higher-twist B-meson distribution amplitudes. [Braun, Ji, Manashov, 2017]
- Perturbative constraint for large ω [Lee, Neubert, PRD72 (2005) 094028]

$$\phi_{+}(\omega,\mu) = \frac{C_{F}\alpha_{s}}{\pi\omega} \left[\left(\frac{1}{2} - \ln\frac{\omega}{\mu} \right) + \frac{4\bar{\Lambda}}{3\omega} \left(2 - \ln\frac{\omega}{\mu} \right) \right]$$

But...

Models for heavy meson LCDAs

$$\begin{split} \varphi_{\mathrm{I}}^{+}\left(\omega,\mu_{0}\right) &= \frac{\omega}{\omega_{0}^{2}}e^{-\omega/\omega_{0}} \,, \\ \varphi_{\mathrm{II}}^{+}\left(\omega,\mu_{0}\right) &= \frac{4}{\pi\omega_{0}}\frac{k}{k^{2}+1}\left[\frac{1}{k^{2}+1}-\frac{2\left(\sigma_{B}^{(1)}-1\right)}{\pi^{2}}\ln k\right] \\ \varphi_{\mathrm{III}}^{+}\left(\omega,\mu_{0}\right) &= \frac{2\omega^{2}}{\omega_{0}\omega_{1}^{2}}e^{-\left(\omega/\omega_{1}\right)^{2}} \,, \\ \varphi_{\mathrm{IV}}^{+}\left(\omega,\mu_{0}\right) &= \frac{\omega}{\omega_{0}\omega_{2}}\frac{\omega_{2}-\omega}{\sqrt{\omega\left(2\omega_{2}-\omega\right)}}\theta\left(\omega_{2}-\omega\right) \,, \\ \varphi_{\mathrm{V}}^{+}\left(\omega,\mu_{0}\right) &= \frac{\Gamma(\beta)}{\Gamma(\alpha)}\frac{\omega}{\omega_{0}^{2}}e^{-\omega/\omega_{0}}U(\beta-\alpha,3-\alpha,\omega/\omega_{0}) \,, \end{split}$$

$$\begin{aligned} f_{B\to\pi}^+(0) = & 0.122 \times \left[1 \pm 0.07 \Big|_{S_0^{\pi}} \pm 0.11 \Big|_{\bar{\Lambda}_q} \pm 0.02 \Big|_{\lambda_E^2/\lambda_H^2} \stackrel{+0.05}{_{-0.06}} \Big|_{M^2} \pm 0.05 \Big|_{2\lambda_E^2+\lambda_H^2} \right. \\ & \left. \stackrel{+0.06}{_{-0.10}} \Big|_{\mu_h} \pm 0.04 \Big|_{\mu} \stackrel{+1.36}{_{-0.56}} \Big|_{\lambda_{B_q}} \stackrel{+0.25}{_{-0.43}} \Big|_{\hat{\sigma}_1,\hat{\sigma}_2} \right] \end{aligned}$$

Cui, et.al, JHEP 03 (2023) 140

0

0

Lightcone:

Heavy quark Field:

Cusp divergence:

tn

$$O_{+}^{\rm ren}(t,\mu) = O_{+}^{\rm bare}(t) + \frac{\alpha_s C_F}{4\pi} \left\{ \left(\frac{4}{\hat{\epsilon}^2} + \frac{4}{\hat{\epsilon}} \ln(it\mu) \right) O_{+}^{\rm bare}(t) - \frac{4}{\hat{\epsilon}} \int_0^1 du \frac{u}{1-u} \left[O_{+}^{\rm bare}(ut) - O_{+}^{\rm bare}(t) \right] \right\}$$

Braun, Ivanov, Korchemsky, PRD 69, 034014 (2004)

How to solve this problem?

LaMET[*Ji*, *PRL 110*, *262002 2013*]:

lightcone can be accessed by simulating correlation functions with a large but finite P^z

HQET fields can be accessed by simulating correlation functions with a large but finite mQ

Two-step method: *Han, et.al, 2403.17492*

A two-step matching method

Start from Quasi DA, calculable from LQCD

• A multi-scale processes:

- 1. LaMET requires Λ_{QCD} , $m_H \ll P^z$ and finally integrate out P^z ;
- 2. bHQET requires $\Lambda_{\text{QCD}} \ll m_H$ and integrate out m_H ;
- \Rightarrow Hierarchy $\Lambda_{QCD} \ll m_H \ll P^z$: A big challenge for lattice simulation but still calculable on the lattice

- H48P32, $n_s^3 \times n_t = 48^3 \times 144$, a = 0.05187fm;
- $m_{\pi} \simeq 317 \text{MeV}, m_{\eta_s} = 700 \text{MeV};$
- Determine the charm quark mass by tuning $m_{J/\psi}$ to its physical value, then $m_D \simeq$ 1.90GeV;
- Coulomb gauge fixed grid source with grid = $1 \times 1 \times n_s$; 549 configurations \times 8 measurements.

Step 1: Fit strategy of nonlocal correlation functions

- We compare the 1, 2, 3-state fits. All the fit results are consistent with each other.
- Different fit strategy valid at different t-range.
- To balance the signal of data and reliability of the multi-state fits, we prefer the 1-state fit, and select the 2state fit when the former one is inadequate to describe the data. Result from 3-state fit is only used as a reliability check for the first two strategy.

$$\tilde{h}^{R}(z, P^{z}) = \begin{cases} \frac{\tilde{h}^{B}(z, P^{z})}{\tilde{h}^{B}(z, P^{z}=0)} & |z| < z_{s} \\ e^{(\delta m + m_{0})(z - z_{s})} \frac{\tilde{h}^{B}(z, P^{z})}{\tilde{h}^{B}(z_{s}, P^{z}=0)} & |z| \ge z_{s} \end{cases},$$

- We use the zero momentum matrix element \$\tilde{h}^B\$ (z, P^z = 0) to renormalize the bare ones.
- The Dirac structure of zero momentum matrix element is $\gamma^t \gamma_5$, it contains same UV divergence as the one with $\gamma^z \gamma_5$.

Ji, Liu, Schäfer, Wang, Yang, Zhang, Zhao, NPB 964, 115311 (2021)

- The linear divergence factor δm can be extracted from fitting the long-range correlations of the zero momentum matrix element.
- We fit the exponential decay behavior Ae^{-δmz} of the matrix element at large-z range to extract δm. We choose the fit range z ∈ [z_{min}, z_{min} + 4a] with varying z_{min} from 10a to 15a to check the stability of the fits.
- We find the fit of δm becomes stable at z_{min} > 0.6fm, that suggests the extraction of δm is universal. By performing a constant fit, we obtain the value of δm = 1.948(11)GeV.

• The renormalon ambiguity m_0 can be extracted from the matching between perturbative and lattice results:

$$H^B(z,0;a)e^{(\delta m(a, au)+m_0(au))z}=C_0\left(z,\mu_0; au
ight)e^{-\mathcal{I}(\mu_0)}e^{\mathcal{I}^{ ext{lat}}\left(a^{-1}
ight)},$$

 C_0 : perturbative Wilson coefficient up to NLO. We also try the LRR improvement.

$$C_0^{\text{NLO}}(z,\mu) = 1 + \frac{\alpha_s C_F}{2\pi} \left[\frac{3}{2} \log \left(\frac{1}{4} e^{2\gamma_E} z^2 \mu^2 \right) + A \right], \qquad A = \frac{5}{2} \operatorname{for} \gamma^t / \gamma^t \gamma_5, \frac{7}{2} \operatorname{for} \gamma^z / \gamma^z \gamma_5$$

$$C_0^{\rm NLO+LRR}(z,\mu) = C_0^{\rm NLO}(z,\mu) + z\mu \left(C_{\rm PV}(z,\mu) - \sum_{i=0}^{k-1} \alpha_s^{i+1}(\mu)r_i \right),$$

Yao, Ji, Zhang, JHEP 11 (2023) 021

 $\Im(\mu_0)$: RGE from $\mu_0 = 2e^{-\gamma_E}z^{-1}$ to $\overline{\text{MS}}$ scale μ .

$${\cal I}(\mu) = \int_{lpha_s(\mu_0)}^{lpha_s(\mu)} dlpha rac{\gamma(lpha)}{eta(lpha)}$$

 $\mathfrak{I}^{lat}(a^{-1})$: For a single lattice spacing, this term is a constant.

The extraction of m_0 :

- The fit is performed at region 0 ≪ z < z_s and in range
 [z − a, z + a] for each z.
- We compare the schemes 'NLO', 'NLO+LRR' and '(NLO+LRR)×RGR'.
- We choose μ = 2GeV, and vary μ₀ with a factor from 0.8-1.2 to introduce the scaling uncertainty.
- The fixed-order results contain visible dependence on z, and these z-dependence will be removed by the RGR improvement at $z \simeq 0.2$ fm.
- We take the result $m_0 = -0.173^{+0.014}_{-0.029}$ GeV at z = 0.207 fm. Accordingly, the choice of z_s should be larger than 0.3 fm.

$$(m_0 + \delta m)z - I_0 = \ln \left[\frac{C_0^{\text{NLO}(+\text{LRR})(\times \text{RGR})}(z,\mu)}{H^B(z,0)}\right]$$

Step 1: Renormalized matrix elements

The renormalized matrix

 elements at different
 momenta are basically
 consistent with each other.

z_s dependence of renormalized matrix elements:

$$\tilde{h}^{R}(z, P^{z}) = \begin{cases} \frac{\tilde{h}^{B}(z, P^{z})}{\tilde{h}^{B}(z, P^{z}=0)} & |z| \leq z_{s} \\ e^{(\delta m + m_{0})(z-z_{s})} \frac{\tilde{h}^{B}(z, P^{z})}{\tilde{h}^{B}(z_{s}, P^{z}=0)} & |z| \geq z_{s} \end{cases},$$

- *z_s* denotes the boundary between
 perturbative and nonperturbative
 regions.
- $\mathcal{O}(z_s^{-1})$ typically chosen to be around hundreds MeV to few GeV.
- We find that at z_s ≥ 6a ≃ 0.31fm, the renormalized matrix elements become consistent with each other.
- Differences between $z_s = (6,7,8)a$ are small. We choose $z_s = 6a$.

We extrapolate the renormalized matrix elements to infinity based on the data at large λ :

- The parameterization inside the square brackets account for the algebraic behavior and motivated by the Regge behavior of the light-cone distributions at endpoint regions.
- The exponential decay behavior is governed by the decaying
 ∝ e^{-δmz} at long-tail region. Based on the definition of hybrid
 ratio scheme, the renormalized matrix elements decaying with
 e^{m₀(z-z_s)}, which related to the finite correlation length λ₀ ~
 − P^z/m₀.
- We compare the extrapolation from "fixed λ₀" and "free λ₀".
 The results from two strategies are consistent with each other.

$$\tilde{h}^{R}(\lambda) = \left[\frac{c_1}{(-i\lambda_1)^{d_1}} + e^{i\lambda}\frac{c_2}{(i\lambda_2)^{d_2}}\right]e^{-\lambda/\lambda_0},$$

Step 1: λ -extrapolation and quasi DAs

- We extrapolate the renormalized matrix elements to infinity, and then Fourier transform them to momentum space to obtain the quasi DA.
- We use the "free λ_0 " strategy for conservative and adopt $\lambda_L = \{7.07, 7.34, 7.32\}$ for $P^z = \{2.99, 3.49, 3.98\}$ GeV.

• The matching formula in LaMET:

$$ilde{\phi}(x,P^z) \;=\; \int dy C(x,y,P^z) \phi(y),$$

the perturbative matching kernel up to NLO at leading power:

$$C^{(0)}(x,y) = \delta(x-y),$$

$$C^{(1)}(x,y) = C^{(1)}_B - C^{(1)}_{\text{CT}}.$$

$$C^{(1)}_B\left(x,y,\frac{P^z}{\mu}\right) = \frac{\alpha_s C_F}{2\pi} \begin{cases} [H_1(x,y)]_{+(y)} & x < 0 < y < 1\\ \left[H_2\left(x,y,\frac{P^z}{\mu}\right)\right]_{+(y)} & 0 < x < y < 1\\ \left[H_2\left(1-x,1-y,\frac{P^z}{\mu}\right)\right]_{+(y)} & 0 < y < x < 1\\ \left[H_1(1-x,1-y)]_{+(y)} & 0 < y < 1 < x \end{cases}$$

with

$$H_1(x,y) = \frac{1+x-y}{y-x}\frac{1-x}{1-y}\ln\frac{y-x}{1-x} + \frac{1+y-x}{y-x}\frac{x}{y}\ln\frac{y-x}{-x}$$
$$H_2\left(x,y,\frac{P^z}{\mu}\right) = \frac{1+y-x}{y-x}\frac{x}{y}\ln\frac{4x(y-x)(P^z)^2}{\mu^2} + \frac{1+x-y}{y-x}\left(\frac{1-x}{1-y}\ln\frac{y-x}{1-x} - \frac{x}{y}\right),$$

and the counter-term is

$$C_{\rm CT}^{(1)} = -\frac{3\alpha_s C_F}{4\pi} \left| \frac{1}{x-y} \right|_+ \\ = \frac{\alpha_s C_F}{2\pi} \begin{cases} -\frac{3}{2} \left(\frac{1}{x-y} \right)_+ & x > y \\ -\frac{3}{2} \left(\frac{1}{y-x} \right)_+ & x < y \end{cases}.$$

 $P^z = 3.98 \text{GeV}, \mu = 2 \text{GeV}$

The results with different momenta are consistent within $1-\sigma$.

The matching kernel without renormalon resummation still contains some large $\log P^z$ terms, these terms will give the more major contribution than the polynomial P^z terms at the limit of $P^z \to \infty$.

> The LCDAs in QCD defined as:

$$egin{aligned} 0 |ar{q}(tn_+) n\!\!\!/_+ \gamma_5 W_c(tn_+,0) Q(0)| H(P_H)
angle \ &= i f_H n_+ \cdot P_H \int_0^1 dy e^{i y P_H \cdot tn_+} \phi(y,\mu), \end{aligned}$$

can be divided into 2 parts based on the hierarchy of *y*:

- For very large scale $\mu \gg m_Q$, $\phi(y,\mu)$ will tend to asymptotic form;
- For the scale $\mu \leq m_Q$,
 - ⇒ Light quark carries small momentum fraction $y \sim \Lambda/m_H$ ⇒ peak region, related to the HQET LCDA;
 - \Rightarrow *y*~*0*(1) region be <u>suppressed</u> in LCDA:
 - P_q is soft-collinear, $\ll P_Q$, only contribute through power corrections;

SCET renormalized matrix element in this region contain only hard-collinear physics, and starts at the one-loop level. > The leading twist heavy meson LCDA in HQET:

$$egin{aligned} &\langle 0|ar{q}(tn_+) n\!\!\!/_+ \gamma_5 W_c(tn_+,0) h_v(0)|H(v)
angle \ &= i F_H(\mu) n_+ \cdot v \int_0^\infty d\omega e^{i\omega tn_+\cdot v} arphi_+(\omega,\mu), \end{aligned}$$

is connected with the QCD LCDA through a multiplicative factorization in the peak region:

$$\phi(u,m_H) \;=\; rac{f_H}{f_H} J_{\mathrm{peak}} \, m_H \, arphi_+(\omega\,=\,u\,m_H),$$

$$\begin{aligned} J_{\text{peak}} &= 1 + \frac{\alpha_s C_F}{4\pi} \bigg(\frac{1}{2} \ln^2 \frac{\mu^2}{m_H^2} + \frac{1}{2} \ln \frac{\mu^2}{m_H^2} + \frac{\pi^2}{12} + 2 \bigg) + O(\alpha_s^2), \\ F_H &= \tilde{F}_H(\mu) \bigg[1 - \frac{\alpha_s C_F}{4\pi} \bigg(\frac{3}{2} \ln \frac{\mu^2}{m_H^2} + 2 \bigg) + O(\alpha_s^2) \bigg], \end{aligned}$$

[Beneke, Finauri, Keri Vos, Wei, JHEP 09, 066 (2023)]

> The tail region of HQET LCDA is perturbative and its 1-loop result: [Lee, Neubert, PRD72 (2005) 094028]

$$\phi_{+}(\omega,\mu) = \frac{C_{F}\alpha_{s}}{\pi\omega} \left[\left(\frac{1}{2} - \ln\frac{\omega}{\mu}\right) + \frac{4\bar{\Lambda}}{3\omega} \left(2 - \ln\frac{\omega}{\mu}\right) \right]$$

where $\overline{\Lambda} \equiv m_H - m_Q^{\text{pole}}$ reflect the power correction, and usually be chosen as 400~800MeV.

- $\overline{\Lambda} = 0$: neglect the power correction;
- We use the difference between the lines to estimate the power correction.

The final results of HQET LCDA will merge the peak (from LQCD) and tail region (from 1-loop calculation).

Models for HQET LCDAs

$$\begin{split} \varphi_{\mathrm{I}}^{+}\left(\omega,\mu_{0}\right) &= \frac{\omega}{\omega_{0}^{2}}e^{-\omega/\omega_{0}} \,, \\ \varphi_{\mathrm{II}}^{+}\left(\omega,\mu_{0}\right) &= \frac{4}{\pi\omega_{0}}\frac{k}{k^{2}+1}\left[\frac{1}{k^{2}+1} - \frac{2\left(\sigma_{B}^{(1)}-1\right)}{\pi^{2}}\ln k\right] \\ \varphi_{\mathrm{III}}^{+}\left(\omega,\mu_{0}\right) &= \frac{2\omega^{2}}{\omega_{0}\omega_{1}^{2}}e^{-\left(\omega/\omega_{1}\right)^{2}} \,, \\ \varphi_{\mathrm{IV}}^{+}\left(\omega,\mu_{0}\right) &= \frac{\omega}{\omega_{0}\omega_{2}}\frac{\omega_{2}-\omega}{\sqrt{\omega\left(2\omega_{2}-\omega\right)}}\theta\left(\omega_{2}-\omega\right) \,, \\ \varphi_{\mathrm{V}}^{+}(\omega,\mu_{0}) &= \frac{\Gamma(\beta)}{\Gamma(\alpha)}\frac{\omega}{\omega_{0}^{2}}e^{-\omega/\omega_{0}}U(\beta-\alpha,3-\alpha,\omega/\omega_{0}) \,, \end{split}$$

Han, et.al, 2403.17492 and updated

 \checkmark We proposed a two-step method to determine heavy meson LCDA from Lattice QCD.

 \checkmark We use the finest CLQCD ensemble (H48P32) to simulate the heavy (D) meson quasi

DAs with largest momentum up to 4GeV.

• We consider a hybrid renormalization on lattice and λ -extrapolation scheme.

✓ The obtained (preliminary) results for LCDAs are consistent with model parametrizations

Theory

- Heavy quark spin symmetry
- $1/P^z$ corrections
- $1/m_Q$ corrections
- m_Q dependence

• • •

Lattice

- Finer Lattices
- Renormalization
- Different sources

Precise results on heavy meson LCDAs

. . .

29

Thank you for your attention!

Two-step method: Han, et.al,2403.17492

> Dispersion relation

 $E^2 = \sqrt{m^2 + c_0 P^2 + c_1 P^4 a^2}$

- The signals of local matrix elements are good, it allows us to perform a 3-state fit and verify the dispersion relation of the ground-state and first excited state.
- We use the model averaging method to improve the fit quality.
- We adopt the Dirac structure of the current as $\Gamma = \gamma^{Z} \gamma_{5}.$

Step 1: Results of the bare matrix elements

Fit strategies and ranges we used.

Z			
0	1-state, [11, 16]	2 -state, [6, 15]	2-state, [6, 13]
1	1-state, [11, 16]	2-state, [6, 15]	2-state, [6, 13]
2	1-state, [11, 16]	2-state, [6, 15]	2-state, [6, 13]
3	1-state, [11, 16]	2-state, [5, 15]	2-state, [5, 13]
4	1-state, [11, 16]	2-state, [5, 14]	2-state, [5, 13]
5	1-state, [11, 14]	2-state, [5, 13]	2-state, [5, 13]
6	1-state, [11, 14]	2-state, [5, 13]	2-state, [5, 13]
7	1-state, [11, 14]	2 -state, [5, 12]	2-state, [5, 12]
8	1-state, [11, 14]	2-state, [5, 10]	1-state, [8, 12]
9	1-state, [11, 14]	2 -state, [5, 9]	1-state, [8, 11]
10	1-state, [11, 14]	2-state, [5, 9]	1-state, [8, 11]
11	1-state, [11, 14]	1-state, [8, 13]	1-state, [8, 11]
12	1-state, [10, 14]	1-state, [8, 11]	1-state, [8,11]
13	1-state, [10, 14]	1-state, [8, 11]	
14	1-state, [10, 14]	1-state, [7, 11]	
15	1-state, [10, 14]		
16	1 -state, [10, 14]		

Scale dependence of m_0 :

- The scale dependence reflect the contamination effects from the uncounted higher-order terms in C_0 .
- We compare the extracted results of m_0 from fixedorder C_0^{NLO} , $C_0^{\text{NLO+LRR}}$, and with RGR improvement $C_0^{(\text{NLO+LRR})\times\text{RGR}}$.
- The RGR method significantly improves the stability after scale variation.

- We use the data at $\lambda \ge \lambda_L$ to perform the extrapolation. The choice of λ_L should neither too small nor too large.
- To estimate the λ_L dependence, we perform the fits with data start from different λ_L, extrapolate them to infinity (we adopt 200a as the infinity) and then Fourier transform to the momentum space.
- We compare the results of quasi DAs φ̃(x = 0.25, P^z) from extrapolated data with different λ_L. One can see that the results trend to stabilize after λ_L ≃ 7 at each momenta, with only the errors increasing.

KMM 2020: Khodjamirian, Mandal , Mannel, JHEP 10, 043 (2020) LN 2005: Lee, Neubert, PRD 72, 094028 (2005) BIK2004: Braun, Ivanov, Korchemsky, PRD69, 034014 (2004) GN 1997: Grozin,Neubert, Phys. Rev. D 55, 272- 290 (1997)