

Doubly charmed pentaquark states with and without strangeness

Wei Chen

Sun Yat-Sen University

Based on: Phys. Rev. D109, 094018 (2024); arXiv:2405.09067

Collaborators: F. B. Duan, Z. Y. Yang, Q. N. Wang, X. L. Chen, Q. Wang

XVIth Quark Confinement and the Hadron Spectrum 19-24 August 2024, Cairns, Queensland, Australia

Outline

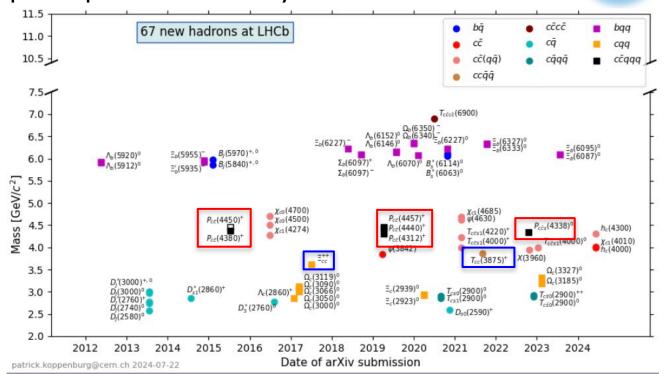
- Exotic hadrons and pentaquark states
- Doubly charmed pentaquarks without strangeness
- Doubly charmed pentaquarks with strangeness
- Summary

Quark model and Exotic hadrons

Standard Hadrons

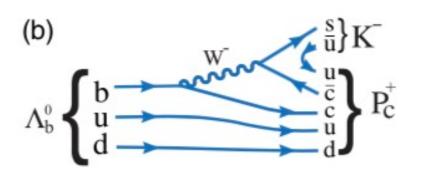
Quark Model: $q\bar{q}$ mesons and qqq baryons

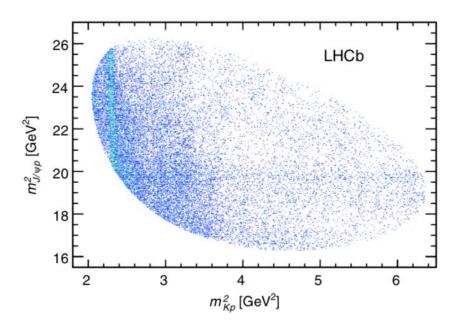
Q Q

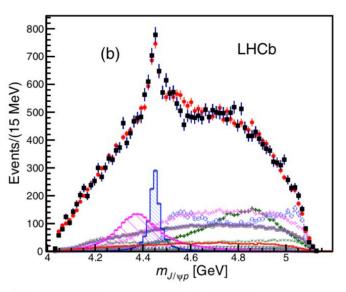

Exotic Hadrons: hadrons beyond QM, such as multiquarks, hybrids, glueballs...

Exotic Hadrons

Many contributions from LHCb, especially for the pentaquarks and doubly charmed hadrons!

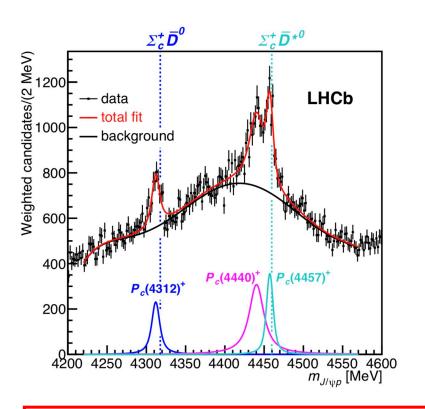


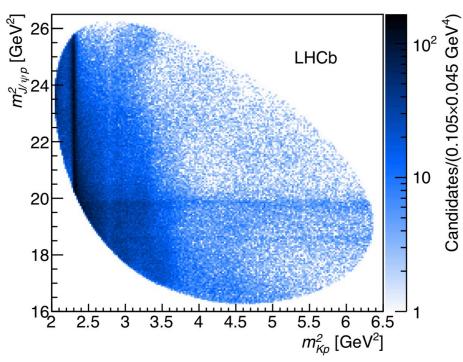




Pentaquarks: LHCb's observation in 2015

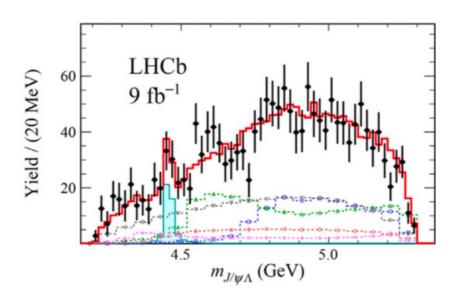
Two hidden-charm Pc states were observed in $\Lambda_b^0 \to J/\psi K^- p$ process



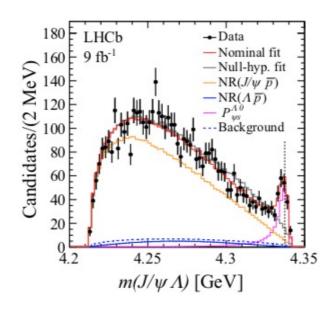

 $P_c(4380)$ and $P_c(4450)$ in $J/\psi p$ structure (PRL115, 072001(2015))

$$\begin{split} &\textit{M}_1 = (4380 \pm 8 \pm 29)\,\mathrm{MeV}\,, \\ &\Gamma_1 = (205 \pm 18 \pm 86)\,\mathrm{MeV}\,, \\ &\textit{M}_2 = (4449.8 \pm 1.7 \pm 2.5)\,\mathrm{MeV}\,, \\ &\Gamma_2 = (39 \pm 5 \pm 19)\,\mathrm{MeV}\,. \end{split}$$

Combined Run 2 data in 2019:


PRL 122 (2019) 222001

State	$M \; [\mathrm{MeV}]$	$\Gamma [\mathrm{MeV}]$	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-4.5}^{3.7}$	(< 27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(44440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-}_{-}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

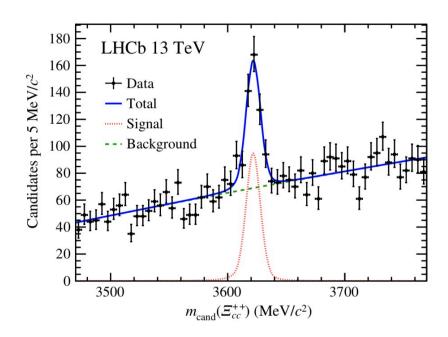

Pcs pentaquarks with strangeness

Two hidden-charm pentaquark states with strangeness were observed in the $J/\psi\Lambda$ invariant mass spectrum!

Sci. Bull. 66 (2021) 1278

$$P_{cs}(4459)^0$$
:
$$M=4458.8\pm 2.9^{+4.7}_{-1.1}~{
m MeV}$$

$$\Gamma=17.3\pm 6.5^{+8.0}_{-5.7}~{
m MeV}$$



PRL 122 (2023) 222001

$$P_{cs}(4338)^0$$
: $J^P = \frac{1}{2}^-$
 $M = 4338.2 \pm 0.7 \pm 0.4$ MeV $\Gamma = 7.0 \pm 1.2 \pm 1.3$ MeV 6

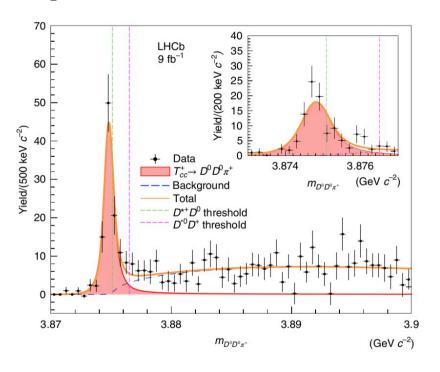
Doubly charmed baryon Ξ_{cc}^{++}

LHCb discovered \mathcal{Z}_{cc}^{++} in $\Lambda_c^+ K^- \pi^+ \pi^+$ final states:

A long-lived, weakly decaying doubly charmed baryon:

$$M = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14$$
 MeV

$$au = 0.256^{+0.024}_{-0.022} \pm 0.014 \text{ ps}$$


PRL119 (2017) 112001;

PRL121 (2018) 052002.

Doubly charmed tetraquark $T_{cc}(3875)^+$

In 2022, LHCb reported T_{cc}^+ in the mass spectrum of $D^0D^0\pi^+$:

an exotic narrow tetraquark state with $cc\overline{u}\overline{d}$ and I=0, $J^P=1^+$

$$\delta m_{\rm BW} = -273 \pm 61 \pm 5 ^{+11}_{-14} \, {\rm keV} \, c^{-2},$$

$$\Gamma_{\rm BW} = 410 \pm 165 \pm 43 ^{+18}_{-38} \, {\rm keV},$$

Nature Phys. 18 (2022) 751; Nature Comm. 13 (2022) 3351.

Next, searching for doubly charmed P_{cc} pentaquarks?

Various theoretical investigations on the P_{cc} pentaquark states:

- One-boson-exchange (OBE) models, Chiral effective field theory, Bethe-Sapeter approach, QCD sum rules, Resonating group method, Chiral quark model......
- In QCD sum rules, we study the P_{cc} states without strangeness in the $\Lambda_c^{(*)}D^{(*)}, \Sigma_c^{(*)}D^{(*)}$ molecular picture and with strangeness in both the $\Xi_c^{(*')}D^*, \Xi_{cc}^*K^*, \Omega_{cc}^*\rho$ molecular picture and diquark-diquark-antiquark compact picture.

P_{cc} pentaquarks without strangeness

We construct the $\Lambda_c^{(*)} D^{(*)}$, $\Sigma_c^{(*)} D^{(*)}$ molecular currents:

$$\begin{split} J^{\Lambda_c D} &= \varepsilon^{abc} [(u_a^T \mathcal{C} \gamma_\mu c_b) \gamma_5 \gamma^\mu d_c - (d_a^T \mathcal{C} \gamma_\mu c_b) \gamma_5 \gamma^\mu u_c] [\bar{d}_d i \gamma_5 c_d], \\ J^{\Lambda_c D^*}_\mu &= \varepsilon^{abc} [(u_a^T \mathcal{C} \gamma_\nu c_b) \gamma_5 \gamma^\nu d_c - (d_a^T \mathcal{C} \gamma_\nu c_b) \gamma_5 \gamma^\nu u_c] [\bar{d}_d \gamma_\mu c_d], \\ J^{\Lambda_c^* D}_\mu &= \varepsilon^{abc} [(u_a^T \mathcal{C} \gamma_\mu c_b) d_c - (u_a^T \mathcal{C} \gamma_\mu d_b) c_c] [\bar{d}_d i \gamma_5 c_d], \\ J^{\Lambda_c^* D^*}_\mu &= \varepsilon^{abc} [(u_a^T \mathcal{C} \gamma_\nu c_b) d_c - (u_a^T \mathcal{C} \gamma_\nu d_b) c_c] [\bar{d}_d \gamma_\mu c_d] + (\mu \leftrightarrow \nu), \\ J^{\Sigma_c D}_\mu &= \varepsilon^{abc} [(u_a^T \mathcal{C} \gamma_\mu c_b) \gamma_5 \gamma^\mu d_c + (d_a^T \mathcal{C} \gamma_\mu c_b) \gamma_5 \gamma^\mu u_c] [\bar{d}_d i \gamma_5 c_d], \\ J^{\Sigma_c D^*}_\mu &= \varepsilon^{abc} [(u_a^T \mathcal{C} \gamma_\nu c_b) \gamma_5 \gamma^\nu d_c + (d_a^T \mathcal{C} \gamma_\nu c_b) \gamma_5 \gamma^\nu u_c] [\bar{d}_d \gamma_\mu c_d], \\ J^{\Sigma_c^* D^*}_\mu &= \varepsilon^{abc} [2(u_a^T \mathcal{C} \gamma_\mu c_b) u_c + (u_a^T \mathcal{C} \gamma_\mu u_b) c_c] [\bar{d}_d i \gamma_5 c_d], \\ J^{\Sigma_c^* D^*}_\mu &= \varepsilon^{abc} [2(u_a^T \mathcal{C} \gamma_\nu c_b) u_c + (u_a^T \mathcal{C} \gamma_\nu u_b) c_c] [\bar{d}_d \gamma_\mu c_d] + (\mu \leftrightarrow \nu). \end{split}$$

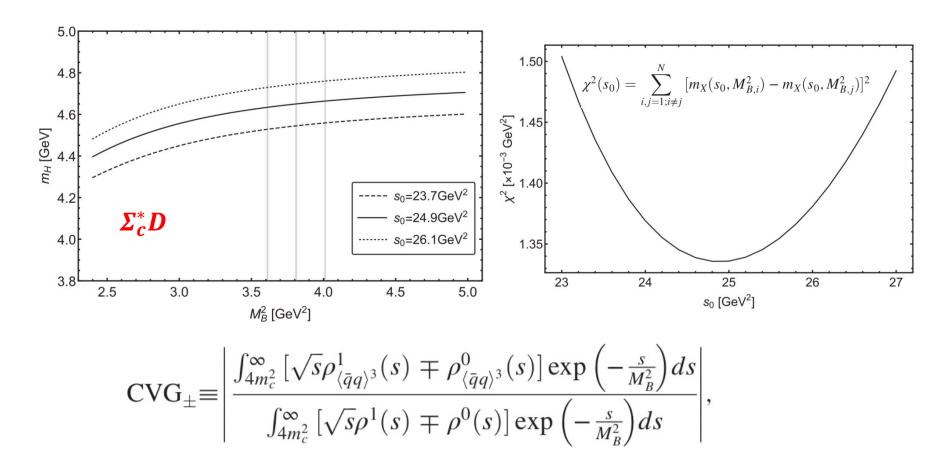
Both negative and positive parities are considered!

Parity projected sum rules:

The non- γ_5 and γ_5 couplings to opposite parities:

$$\langle 0|J_{-}|X_{1/2^{-}}\rangle = f_{X}^{-}u(p),$$

 $\langle 0|J_{-}|X_{1/2^{+}}\rangle = f_{X}^{+}\gamma_{5}u(p),$


The invariant function contains both contributions

$$\Pi(p^2) = f_X^{-2} \frac{\hat{p} + M_X^-}{M_X^{-2} - p^2} + f_X^{+2} \frac{\hat{p} - M_X^+}{M_X^{+2} - p^2} + \cdots$$

The parity projected sum rules were adopted:

$$M_{j,\pm}^{2} = \frac{\int_{4m_{c}^{2}}^{s_{0}} \left[\sqrt{s} \rho_{j,\text{QCD}}^{1}(s) \mp \rho_{j,\text{QCD}}^{0}(s) \right] \exp\left(-\frac{s}{M_{B}^{2}}\right) s ds}{\int_{4m_{c}^{2}}^{s_{0}} \left[\sqrt{s} \rho_{j,\text{QCD}}^{1}(s) \mp \rho_{j,\text{QCD}}^{0}(s) \right] \exp\left(-\frac{s}{M_{B}^{2}}\right) ds},$$

P_{cc} pentaquark mass predictions:

$$PC_{\pm} \equiv \frac{\int_{4m_c^2}^{s_0} \left[\sqrt{s}\rho^1(s) \mp \rho^0(s)\right] \exp\left(-\frac{s}{M_B^2}\right) ds}{\int_{4m_c^2}^{\infty} \left[\sqrt{s}\rho^1(s) \mp \rho^0(s)\right] \exp\left(-\frac{s}{M_B^2}\right) ds}.$$

P_{cc} pentaquark mass predictions:

PRD109 (2024) 094018

Current	J^P	$s_0[{\rm GeV^2}]$	$M_B^2[\text{GeV}^2]$	Mass [GeV]	Two-hadron threshold [GeV]
$J^{\Lambda_c D}$	<u>1</u> -	19.5(±5%)	2.83-3.43	$4.13^{+0.10}_{-0.09}$	4.15
$J^{\Sigma_c D}$	$\frac{1}{2}$	$18.3(\pm 5\%)$	3.40-3.70	$4.08^{+0.18}_{-0.13}$	4.32
$J^{\Sigma_c D^*}$	$\frac{3}{2}$	$20.3(\pm5\%)$	3.17-3.47	$4.14_{-0.15}^{+0.18}$	4.46
$J^{\Sigma_c^*D}$	$\frac{3}{2}$	$22.8 (\pm 5\%)$	3.82-4.22	$4.47^{+0.11}_{-0.10}$	4.39
$J^{\Lambda_c D^*}$	$\frac{3}{2}$	$21.0(\pm5\%)$	3.55-3.95	$4.31^{+0.11}_{-0.10}$	4.29
$J^{\Lambda_c^*D}$	$\frac{3}{2}$	$22.8 (\pm 5\%)$	2.91-3.51	$4.42^{+0.13}_{-0.12}$	4.73
$J^{\Lambda_c^*D^*}$	$\frac{5}{2}$	$22.1(\pm5\%)$	3.09-3.69	$4.41^{+0.17}_{-0.14}$	4.86
$J^{\Sigma_c^*D^*}$	<u>5</u> -	25.0(±5%)	4.0–4.6	$4.69^{+0.12}_{-0.11}$	4.53

- \triangleright Some P_{cc} states were predicted to be lower than their thresholds!
- Pentaguarks in the isospin quartet with I = 3/2 are absolute exotic:

$$[P_{cc}^{+++}(ccuu\overline{d}), P_{cc}^{++}(ccuu\overline{u}), P_{cc}^{+}(ccdd\overline{d}), P_{cc}^{0}(ccdd\overline{u})]$$

Strong decays

PRD109 (2024) 094018

J^P	Current	Partial wave	$I=rac{1}{2}$	$I=\frac{3}{2}$
1-	$J^{\Lambda_c D}$	S	$\Xi_{cc}\pi$	Ø
2	$J^{\alpha_c D}$	P	$\Xi_{cc}\sigma$	Ø
	$J^{\Sigma_c D}$	S	$\Xi_{cc}\pi$ $\Xi_{cc}\sigma$ $\Xi_{cc}\pi$	$\Xi_{cc}\pi$
	J^{-cD}	P	***	
<u>3</u> -	$r\Sigma D^*$	S	$\Xi_{cc}^*\pi$	$\Xi_{cc}^*\pi$
2	$J^{\Sigma_c D^*}$	P	$\Xi_{cc}^*\pi$ $\Xi_{cc}\sigma$	
	U*2*	S	$\Lambda_c D^*, \Sigma_c D^*, \Sigma_c^* D, \Xi_{cc} \rho / \omega, \Xi_{cc}^* \pi / \eta$	$\Sigma_c D^*, \Sigma_c^* D, \Xi_{cc} \rho, \Xi_{cc}^* \pi$
	$J^{\Sigma_c^*D}$	P	$\Lambda_c(2595)D, \Xi_{cc}^{(*)}\sigma$	5 5 State 2570
	-A 798	S	$\Lambda_c D^*, \Xi_{cc}^* \pi/\eta$	Ø
	$J^{\Lambda_c D^*}$	P	$\Xi_{cc}^{(*)}\sigma$	Ø
	A D	S	$\Lambda_c D^*, \Sigma_c^* D, \Sigma_c^{(*)} D^*, \Xi_{cc} \omega/\rho, \Xi_{cc}^* \pi/\omega/\rho/\eta/\eta'$	Ø
	$J^{\Lambda_c^*D}$	P	$\Lambda_c(2595)D^{(*)}, \Lambda_c D_0/D_1, \Xi_{cc}^{(*)}\sigma/a_0/f_0(980)$	Ø
<u>5</u> -	$I^{\Lambda_c^*D^*}$	S	•••	Ø
2	$J^{\alpha_c \nu}$	P	$\Xi_{cc}^*\sigma$	Ø
	$J^{\Sigma_c^*D^*}$	S	$\Sigma_c^* D^*, \Xi_{cc}^* ho/\omega$	$\Sigma_c^* D^*, \Xi_{cc}^* ho$
	J^{ω_c}	P	$\Lambda_c(2595)D^*, \Xi_{cc}^*\sigma/f_0(980)/a_0$	$\Xi_{cc}^* a_0$

Especially interesting for the triply and neutral charged pentaguarks:

$$P_{cc}^{+++} o \mathcal{Z}_{cc}^{(*)++} \pi^+/
ho^+$$
, $\Sigma_c^{(*)++} D^{(*)+}$ and $P_{cc}^0 o \mathcal{Z}_{cc}^{(*)+} \pi^-/
ho^-$, $\Sigma_c^{(*)0} D^{(*)0}$

P_{ccs} pentaquarks with strangeness

In heavy antiquark-diquark symmetry (HADS), a heavy diquark field with $\overline{3}_c$ behaves like a heavy antiquark in the color space:

$$QQ \leftrightarrow \overline{Q}, \ \overline{Q}\overline{Q} \leftrightarrow Q$$

- $T_{cc}^+(cc\overline{u}\overline{d}) \leftrightarrow \overline{\Lambda}_c(\overline{c}\overline{u}\overline{d})$
- $T_{c\overline{s}0}^{a}(cd\overline{u}\overline{s})^{0} \leftrightarrow \overline{P}_{\overline{c}\overline{c}\overline{s}}(\overline{c}\overline{c}\overline{u}\overline{s}d)^{--}$
- From the HADS point of view, one expects the mass relation

$$m(QQqq\bar{q}) - m(QQ\bar{q}\bar{q}) = m(qq\bar{q}\bar{Q}) - m(\bar{Q}\bar{q}\bar{q})$$

The observation of strange charmed tetraquark $T_{c\bar{s}0}^a(2900)^0$ sugguests the existence of strange doubly charmed pentaquarks!

P_{ccs} pentaquarks with strangeness

Interpolating currents in the $\mathbf{\mathcal{Z}}_{c}^{(*')}\mathbf{\mathcal{D}}^{(*)}$ molecular picture:

$$\begin{split} \eta_1 &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_a^T C \gamma_5 s_b - s_a^T C \gamma_5 u_b \right) Q_c \right] \left[\bar{d}_d \gamma_5 Q_d \right], \\ \eta_2 &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_a^T C \gamma_\mu \gamma_5 s_b - s_a^T C \gamma_\mu \gamma_5 u_b \right) \gamma_\mu Q_c \right] \left[\bar{d}_d \gamma_5 Q_d \right], \\ \eta_3 &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_a^T C \gamma_5 s_b - s_a^T C \gamma_5 u_b \right) \gamma_\mu Q_c \right] \left[\bar{d}_d \gamma_\mu Q_d \right], \\ \eta_{4\mu} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_a^T C \gamma_\nu \gamma_5 s_b - s_a^T C \gamma_\nu \gamma_5 u_b \right) \gamma_\nu Q_c \right] \left[\bar{d}_d \gamma_\mu Q_d \right], \\ \eta_{5\mu} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_a^T C \gamma_\mu u_b \right) \gamma_5 Q_c + \left(u_a^T C \gamma_\mu Q_b \right) \gamma_5 s_c + \left(Q_a^T C \gamma_\mu s_b \right) \gamma_5 u_c \right] \left[\bar{d}_d \gamma_5 Q_d \right], \\ \eta_6 &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_a^T C \gamma_\mu u_b \right) \gamma_5 Q_c + \left(u_a^T C \gamma_\mu Q_b \right) \gamma_5 s_c + \left(Q_a^T C \gamma_\mu s_b \right) \gamma_5 u_c \right] \left[\bar{d}_d \gamma_\mu Q_d \right], \\ \eta_{7,\mu\nu} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_a^T C \gamma_\mu u_b \right) \gamma_5 Q_c + \left(u_a^T C \gamma_\mu Q_b \right) \gamma_5 s_c + \left(Q_a^T C \gamma_\mu s_b \right) \gamma_5 u_c \right] \left[\bar{d}_d \gamma_\nu Q_d \right] + \left(\mu \leftrightarrow \nu \right), \end{split}$$

Interpolating currents in the $\mathcal{Z}_{cc}^*K^*$, $\Omega_{cc}^*\pi/\rho$ molecular picture:

$$\xi_{1} = \left[\epsilon_{abc} (Q_{a}^{T} C \gamma_{\mu} Q_{b}) \gamma_{\mu} \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{5} s_{d} \right],$$

$$\xi_{2\mu} = \left[\epsilon_{abc} (Q_{a}^{T} C \gamma_{\nu} Q_{b}) \gamma_{\nu} \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} s_{d} \right],$$

$$\xi_{3\mu} = \frac{1}{\sqrt{3}} \epsilon_{abc} \left[2 \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} Q_{c} + \left(Q_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{5} s_{d} \right],$$

$$\xi_{4} = \frac{1}{\sqrt{3}} \epsilon_{abc} \left[2 \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} Q_{c} + \left(Q_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} s_{d} \right],$$

$$\xi_{5,\mu\nu} = \frac{1}{\sqrt{3}} \epsilon_{abc} \left[2 \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} Q_{c} + \left(Q_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\nu} s_{d} \right] + (\mu \leftrightarrow \nu),$$

$$\psi_{i} = \xi_{i} (u \leftrightarrow s),$$

Only spin-1 [cc] diquark field exists due to Pauli principle!

Interpolating currents in two compact pentaquark pictures:

$$J_{1,2} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}Q_{j}\right) \left(u_{k}^{T}C\gamma_{\mu}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T},$$

$$J_{1,3} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}Q_{j}\right) \left(u_{k}^{T}C\gamma_{5}s_{l}\right)\gamma_{\mu}C\bar{d}_{c}^{T},$$

$$J_{1,5\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}Q_{j}\right) \left(u_{k}^{T}C\gamma_{5}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T},$$

$$J_{1,8\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\nu}Q_{j}\right) \left(u_{k}^{T}C\gamma_{\nu}s_{l}\right)\gamma_{\mu}C\bar{d}_{c}^{T},$$

$$J_{1,9\mu\nu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}Q_{j}\right) \left(u_{k}^{T}C\gamma_{\nu}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T} + (\mu \leftrightarrow \nu),$$

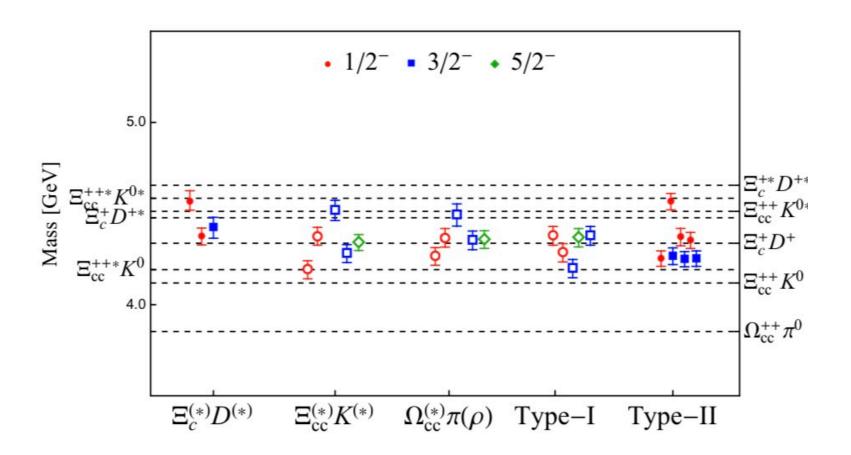
and

$$J_{2,1} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{5}u_{j}\right) \left(Q_{k}^{T}C\gamma_{5}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T},$$

$$J_{2,2} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}u_{j}\right) \left(Q_{k}^{T}C\gamma_{\mu}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T},$$

$$J_{2,3} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}u_{j}\right) \left(Q_{k}^{T}C\gamma_{5}s_{l}\right)\gamma_{\mu}C\bar{d}_{c}^{T},$$

$$J_{2,4} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{5}u_{j}\right) \left(Q_{k}^{T}C\gamma_{\mu}s_{l}\right)\gamma_{\mu}C\bar{d}_{c}^{T},$$

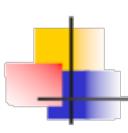

$$J_{2,5\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}u_{j}\right) \left(Q_{k}^{T}C\gamma_{5}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T},$$

$$J_{2,6\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{5}u_{j}\right) \left(Q_{k}^{T}C\gamma_{\mu}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T},$$

$$J_{2,7\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{5}u_{j}\right) \left(Q_{k}^{T}C\gamma_{5}s_{l}\right)\gamma_{\mu}C\bar{d}_{c}^{T},$$

$$J_{2,8\mu\nu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_{i}^{T}C\gamma_{\mu}u_{j}\right) \left(Q_{k}^{T}C\gamma_{\nu}s_{l}\right)\gamma_{5}C\bar{d}_{c}^{T} + (\mu \leftrightarrow \nu),$$

P_{ccs} pentaquark mass predictions:



arXiv:2405.09067 (accepted by PRD)

Predictions for the HADS tetraquark partners:

Current	J^P	Structure	b[GeV]	c[GeV ²]	$m_{P_{bbs}}[{ m GeV}]$	$m_{T_{c\bar{s}}}[\text{GeV}]$	$J^P(T_{c\bar{s}})$	=
η_3	<u>1</u> -	$\Xi_c^+ D^{*+}$	1.53	0.40	$10.04^{+0.06}_{-0.05}$	-	-	_
$\eta_{4\mu}$	$\frac{3}{2}^{-}$	$\Xi_c^{'+}D^{*+}$	1.67	0.25	$10.19^{+0.06}_{-0.05}$	_	_	
η_6	$\frac{1}{2}^{-}$	$\Xi_c^{*+}D^{*+}$	2.26	-0.35	$10.61^{+0.06}_{-0.05}$	_	-	Comparable to
ξ_1	$\frac{1}{2}^{-}$	$\Xi_{cc}^{++}\bar{K}^0$	1.48	0.24	$9.93_{0.05}^{0.06}$	2.94	0+	$T^a_{c\bar{s}0}(2900)^{++}$
$\xi_{2\mu}$	$\frac{3}{2}^{-}$	$\Xi_{cc}^{++}\bar{K}^{*0}$	1.64	0.44	$10.17^{0.06}_{0.06}$	3.26	1+	230 ()
$\xi_{3\mu}$	$\frac{3}{2}^{-}$	$\Xi_{cc}^{*++}\bar{K}^0$	1.46	0.38	$9.96^{+0.06}_{-0.05}$	3.03	1+	
ξ_4	$\frac{1}{2}^{-}$	$\Xi_{cc}^{*++}\bar{K}^{*0}$	1.04	1.07	$9.59^{+0.07}_{-0.07}$	3.16	0_{+}	
$\xi_{5\mu u}$	$\frac{5}{2}^{-}$	$\Xi_{cc}^{*++}\bar{K}^{*0}$	1.50	0.38	$9.99^{+0.06}_{-0.05}$	3.07	$0^+, 1^+, 2^+$	
ψ_1	$\frac{1}{2}^{-}$	$\Omega_{cc}^{*+}\pi^{+}$	1.48	0.30	$9.96^{+0.06}_{-0.05}$	2.99	0_{+}	
$\psi_{2\mu}$	$\frac{3}{2}^{-}$	$\Omega_{cc}^{+} ho^{+}$	1.57	0.51	$10.04^{+0.06}_{-0.06}$	3.25	1+	
$\psi_{3\mu}$	$\frac{3}{2}^{-}$	$\Omega_{cc}^{*+}\pi^{+}$	1.45	0.47	$9.96^{+0.06}_{-0.05}$	3.09	1+	
ψ_4	$\frac{1}{2}^{-}$	$\Omega_{cc}^{*+} ho^{+}$	1.16	0.88	$9.71^{+0.06}_{-0.06}$	3.12	0_{+}	
$\psi_{5\mu\nu}$	$\frac{5}{2}^{-}$	$\Omega_{cc}^{*+} ho^{+}$	1.61	0.25	$10.14^{+0.07}_{-0.06}$	3.08	0+, 1+, 2+	_

arXiv:2405.09067

Summary

- ➤ The observations of hidden-charm pentaquarks and doubly charmed tetraquarks directly inspired the investigations on doubly charmed pentaquark states;
- ➤ We systematically predicted the mass spectra of the doubly charmed pentaquark states with and without strangeness;
- We suggest to search for the triply and neutral charged pentaquarks: $P_{cc}^{+++} \to \mathcal{Z}_{cc}^{(*)++} \pi^+/\rho^+, \mathcal{\Sigma}_{c}^{(*)++} D^{(*)+}$ and $P_{cc}^0 \to \mathcal{Z}_{cc}^{(*)+} \pi^-/\rho^-, \mathcal{\Sigma}_{c}^{(*)0} D^{(*)0}$, belonging to the exotic isospin quartet $[P_{cc}^{+++}(ccuu\bar{d}), P_{cc}^{++}(ccuu\bar{u}), P_{cc}^+(ccdd\bar{d}), P_{cc}^0(ccdd\bar{u})]$ with I = 3/2.

Introduction of four journals:

Welcome to submit your original works to CPL!

Thank you