Triangle Singularity in the $J/\psi \to \phi \pi^+ a_0^-(\pi^- \eta), \phi \pi^- a_0^+(\pi^+ \eta)$ Decays

Wei-Hong Liang

Guangxi Normal University, Guilin, China

QCHSC-2024

19-24 August 2024, Cairns, Australia

Based on: C. W. Xiao, J. M. Dias, L. R. Dai, WHL, E. Oset, PRD109 (2024) 074033.

Outline

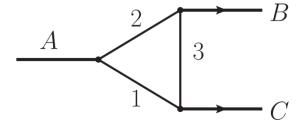
- Introduction and motivation
- Formalism
- Results and discussions
- Comparison with BESIII data
- Summary

• Triangle singularity (TS) in a reaction

 $A \rightarrow B + C$

[Landau, Nucl. Phys. 13(1959)181]

[Coleman, Norton, Nuovo Cim. 38 (1965)438]



[Bayar, Aceti, Guo, Oset, PRD 94 (2016)074039]

[F.K. Guo, X.H. Liu, S. Sakai, Prog. Part. Nucl. Phys. 112, (2020) 103757]

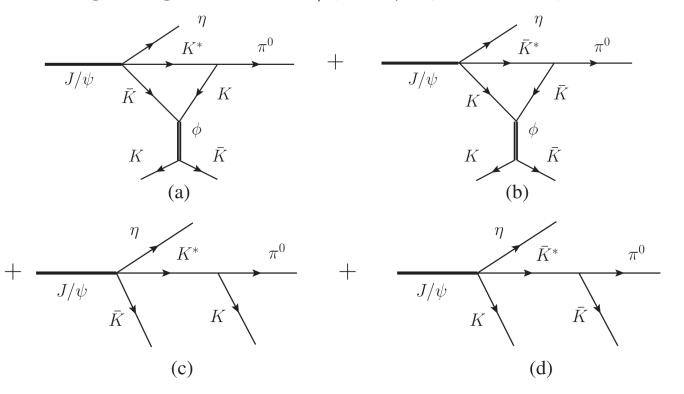
When all the intermediate particles are placed on-shell and collinear in the rest frame of A, a singularity in the decay amplitude T develops.

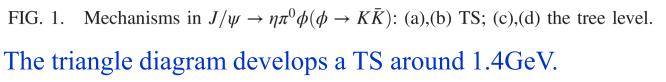
If the internal particles have zero width, $|T| \to \infty$;

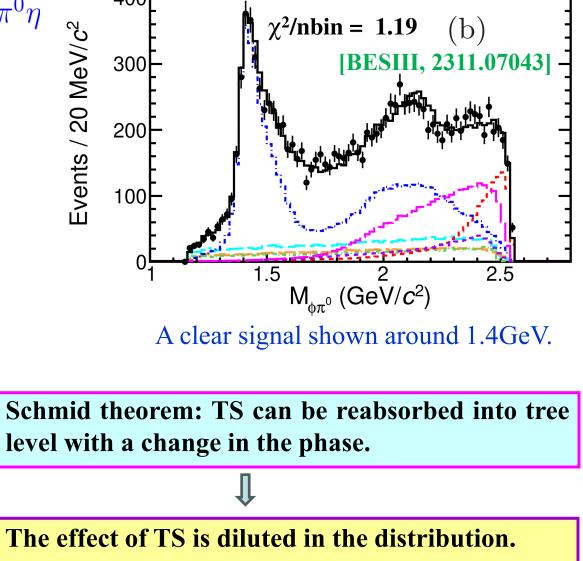
If the internal particles have non-zero width, |T| turns into a finite peak.

- $TS \Rightarrow \begin{cases} \text{Simulating a resonance;} \\ \text{Providing a mechanism for the production of particular modes in reactions;} \end{cases}$
 - [F. K. Guo, X. H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, **Examples:** Prog. Part. Nucl. Phys. 112 (2020) 103757]
 - ✓ The $a_1(1420)$ resonance, claimed by COMPASS, would not be a real state but the effect of TS in $a_1(1260) \rightarrow \pi f_0(980)$; [COMPASS, PRL115(2015)082001]; [X.H. Liu, M. Oka, Q. Zhao, PLB753(2016)297];
 - ✓ $f_1(1420)$ corresponds to TS in $f_1(1285) \rightarrow \pi f_0(980)$; [Debastiani, Aceti, WHL, Oset, PRD95(2017)034015];
 - $\checkmark f_2(1810)$ peak comes from TS involving $K^*\overline{K}^*$ production; [Xie, Geng, Oset, PRD95(2017)034004];

[Jing, Sakai, F. K.Guo, B.S.Zou, PRD100 (2019) 114010]: Triangle singularities in $J/\psi \rightarrow \eta \pi^0 \phi$ and $\pi^0 \pi^0 \phi$







with the triangle diagrams.

• Our work: $J/\psi \rightarrow \phi \pi^+ a_0(980)^- \rightarrow \phi \pi^+ \pi^- \eta$, $J/\psi \rightarrow \phi \pi^- a_0(980)^+ \rightarrow \phi \pi^- \pi^+ \eta$

 $K^{*+} = \pi^{+} (k) + I = K^{*-} = K^{$ A TS appears at $M_{\rm inv}(\pi a_0) \simeq 1416$ MeV; K^{*+} ✓ without tree level diagrams interfering J/ψ J/ψ (d)(c)

> FIG. 2. Triangle diagrams for $J/\psi \to \phi \pi^+ a_0^-$ decay (a) and $J/\psi \to \phi \pi^- a_0^+$ decay (b). (c) and (d) illustrate the processes of (a) and (b) respectively, with a clear depiction of the decay channel of a_0^- and a_0^+ . In (a), the momenta of the particles are shown, where $P = p_{J/\psi} - p_{\phi}.$

The purpose: to make a realistic prediction of the shape and size of the $\pi a_0(980)$ mass distribution in the reaction.

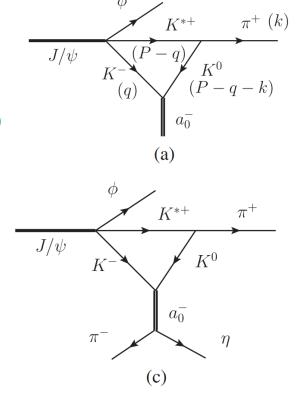
We need: 1) information on $J/\psi \to \phi K^* \bar{K}$; (taken from the experiment) 2) the dynamics of $K^* \to K\pi$ and $K\bar{K} \to a_0 \to \pi\eta$; (well known) 3) the $K\bar{K} \to a_0 \to \pi\eta$ amplitudes. (using the chiral unitary approach)

A. The $J/\psi \to \phi K^* \bar{K}$ reaction

From PDG: Br $(J/\psi \rightarrow \phi K^*(892)\bar{K} + \text{c.c.}) = (2.18 \pm 0.23) \times 10^{-3}$. But we need that for $J/\psi \rightarrow \phi K^{*+}K^{-}$.

$$J/\psi \to \phi(K^{*+}K^{-} + K^{*0}\bar{K}^{0} - K^{*-}K^{+} - \bar{K}^{*0}K^{0}), \quad (3)$$

$$Br(J/\psi \to \phi K^{*+}K^{-}) = (0.55 \pm 0.06) \times 10^{-3}.$$
 (4)



The structure of the $J/\psi \rightarrow \phi K^{*+}K^{-}$ amplitude in S-wave is given by

 $t_{J/\psi,\phi K^{*+}K^{-}} = C\vec{\epsilon}_{J/\psi} \cdot (\vec{\epsilon}_{\phi} \times \vec{\epsilon}_{K^{*}}),$ (with C being a constant.)

We can determine C from the rate of Eq. (4) using

$$\frac{\mathrm{d}\Gamma_{J/\psi\to\phi K^{*+}K^{-}}}{\mathrm{d}M_{\mathrm{inv}}(K^{*+}K^{-})} = \frac{1}{(2\pi)^3} \frac{1}{4M_{J/\psi}^2} p_{\phi} \tilde{p}_{K^{-}} \sum_{K^{-}} \sum_{K^{-}} |t|^2,$$

$$\longrightarrow \quad \frac{C^2}{\Gamma_{J/\psi}} = \frac{\text{Br}(J/\psi \to \phi K^{*+}K^{-})}{\int \frac{2}{(2\pi)^3} \frac{1}{4M_{J/\psi}^2} p_{\phi} \tilde{p}_{K^{-}} dM_{\text{inv}}(K^{*+}K^{-})} = 1.381 \times 10^{-2} \text{ (MeV}^{-1}), \quad (10)$$

(be used to evaluate the strength of the triangle mechanism)

- B. The $a_0^- \to K^- K^0$ coupling and $K^* \to K \pi$ vertex
 - $\checkmark K^{*+} \rightarrow K^0 \pi^+$ vertex :

$$\mathcal{L} = -ig\langle [P, \partial_{\mu}P]V^{\mu} \rangle, \ g = \frac{M_V}{2f}$$
, $M_V = 800 \text{ MeV}$, $f = 93 \text{ MeV}$

$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} \end{pmatrix} \qquad V = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}$$

 $-it = -ig\epsilon_j (K^*)(2k+q)^j$, (evaluated in the frame with $\vec{P} = \vec{p}_{J/\psi} - \vec{p}_{\phi} = 0.$)

 $\checkmark a_0^- \rightarrow K^- K^0$ coupling, g_{a_0,K^-K^0} : (a₀ (980) is a cusp, no clear couplings.)

Assuming that, close to the peak of the $a_0(980)$,

$$t_{K^-K^0,K^-K^0}(M_{\rm inv}) = \frac{g_{a_0,K^-K^0}^2}{M_{\rm inv}^2 - m_{a_0}^2 + iM_{\rm inv}\Gamma_{a_0}},$$
Cauchy's integration
$$g_{a_0,K^-K^0}^2 = -\frac{1}{\pi} \int dM_{\rm inv}^2 {\rm Im} t_{K^-K^0,K^-K^0}(M_{\rm inv}), \quad (17)$$
2-body scattering amplitude, obtained from the chiral unitary approach.

Coupled channels: $K\bar{K}$, $\pi\eta$, $\pi\pi$, and $\eta\eta$.

 $t_{K^-K^0,K^-K^0}$ amplitude is extracted by solving Bether-Salpeter equation in coupled-channels,

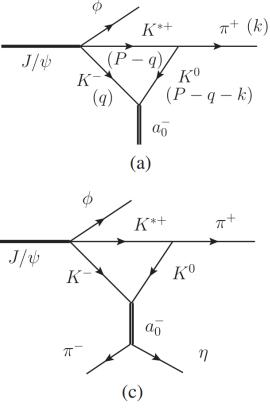
A diagonal matrix with its elements G_l being the loop function of *l*-channel.

$$T = [1 - VG]^{-1}V,$$

the kernel encoding the V_{ij} potential from *i*- to *j*-channel.

$$G_{l} = \int_{|\vec{q}| < q_{\max}} \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \frac{\omega_{1} + \omega_{2}}{2\omega_{1}\omega_{2}} \frac{1}{s - (\omega_{1} + \omega_{2})^{2} + i\varepsilon}.$$
 ($q_{\max} = 600 \text{ MeV/}c$)

C. The triangle amplitude and the differential decay width



The triangle amplitude reads, removing the g_{a_0, K^-K^0} coupling,

$$P^0 = M_{\rm inv}(\pi^+ a_0^-), \qquad k^0 = rac{P^{02} + m_{\pi^+}^2 - M_{\rm inv}^2(\pi^- \eta)}{2P^0}.$$

$$\sum_{\text{pol}} \epsilon_l(K^*) \epsilon_m(K^*) = \delta_{lm}$$

 $\tilde{t}_{\rm TS} = gC\epsilon_{ijl}\epsilon_i (J/\psi)\epsilon_j(\phi)k_l\tilde{t}'_{\rm TS}, \qquad (28)$

$$\tilde{t}'_{\rm TS} = \int \frac{d^3 q}{(2\pi)^3} \,\theta(q_{max} - |\vec{q}^*|) \,\left(2 + \frac{\vec{q} \cdot \vec{k}}{\vec{k}^2}\right) \,\frac{1}{2\,\omega_{K^-}(\vec{q})} \,\frac{1}{2\,\omega_{K^*+}(\vec{q})} \,\frac{1}{2\,\omega_{K^0}(\vec{q} + \vec{k}\,)} \\
\times \frac{i}{P^0 - \omega_{K^-}(\vec{q}\,) - \omega_{K^{*+}}(\vec{q}\,) + i\frac{\Gamma_{K^*}}{2}} \,\frac{i}{P^0 - k^0 - \omega_{K^-}(\vec{q}\,) - \omega_{K^0}(\vec{q} + \vec{k}\,) + i\varepsilon},$$
(29)

 \vec{q}^* is the K^- momentum in the $\pi^-\eta$ rest frame given by

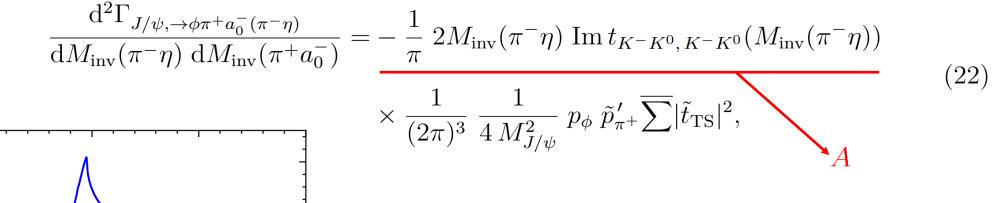
$$\vec{q}^* = \left[\left(\frac{E_{a_0}}{M_{\rm inv}(\pi^- \eta)} - 1 \right) \frac{\vec{q} \cdot \vec{k}}{\vec{k}^2} + \frac{q^0}{M_{\rm inv}(\pi^- \eta)} \right] \vec{k} + \vec{q},$$

$$E_{a_0} = \sqrt{M_{\rm inv}^2 + \vec{k}^2}$$
, and $q^0 = \sqrt{m_K^2 + \vec{q}^2}$.

The differential decay width:

$$\frac{\mathrm{d}^{2}\Gamma_{J/\psi,\to\phi\pi^{+}a_{0}^{-}(\pi^{-}\eta)}}{\mathrm{d}M_{\mathrm{inv}}(\pi^{-}\eta)\,\mathrm{d}M_{\mathrm{inv}}(\pi^{+}a_{0}^{-})} = -\frac{1}{\pi}\,2M_{\mathrm{inv}}(\pi^{-}\eta)\,\mathrm{Im}\,t_{K^{-}K^{0},\,K^{-}K^{0}}(M_{\mathrm{inv}}(\pi^{-}\eta)) \\ \times \frac{1}{(2\pi)^{3}}\,\frac{1}{4\,M_{J/\psi}^{2}}\,p_{\phi}\,\tilde{p}_{\pi^{+}}^{\prime}\overline{\sum}|\tilde{t}_{\mathrm{TS}}|^{2}, \qquad (22)$$

$$\bar{\sum} |\tilde{t}_{\rm TS}|^2 = \frac{2}{3} \vec{k}^2 g^2 C^2 |\tilde{t}'_{\rm TS}|^2.$$
(30)



✓ A cusp-like structure around $M_{inv}(\pi^{-}\eta) = m_{a_0} = 980$ MeV, reflecting the spectral function of the $a_0(980)$.

✓ The shape of Fig.3 does not reflect $|t_{K\bar{K},\pi\eta}|^2$, because, through the optical theorem, $\text{Im}t_{K^-K^0,K^-K^0}$ contains a part from $K^-K^- \to K\bar{K}$, and also $K^-K^0 \to K\bar{K}$.

This is the reason for the flattening of factor *A* when going away from the KKbar threshold.

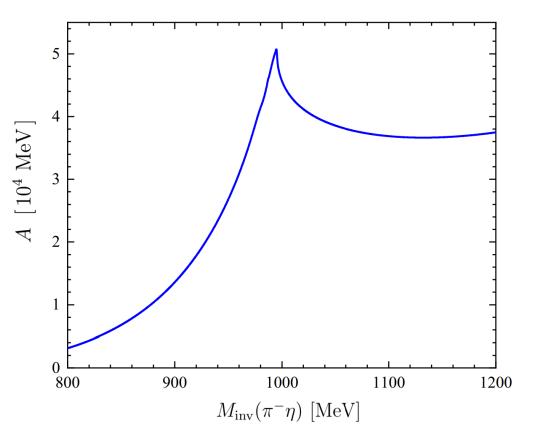


FIG. 3. Factor $A \equiv \left[-\frac{2}{\pi}M_{\text{inv}}(\pi^-\eta)\operatorname{Im} t_{K^-K^0,K^-K^0}(M_{\text{inv}}(\pi^-\eta))\right]$ as a function of $M_{\text{inv}}(\pi^-\eta)$.

$$\tilde{t}_{\rm TS}' = \int \frac{d^3 q}{(2\pi)^3} \,\theta(q_{max} - |\vec{q}^*|) \,\left(2 + \frac{\vec{q} \cdot \vec{k}}{\vec{k}^2}\right) \,\frac{1}{2\,\omega_{K^-}(\vec{q})} \,\frac{1}{2\,\omega_{K^*+}(\vec{q})} \,\frac{1}{2\,\omega_{K^0}(\vec{q} + \vec{k})} \\
\times \frac{i}{P^0 - \omega_{K^-}(\vec{q}) - \omega_{K^{*+}}(\vec{q}) + i\frac{\Gamma_{K^*}}{2}} \,\frac{i}{P^0 - k^0 - \omega_{K^-}(\vec{q}) - \omega_{K^0}(\vec{q} + \vec{k}) + i\varepsilon},$$
(29)

$$\frac{\mathrm{d}^{2}\Gamma_{J/\psi,\to\phi\pi^{+}a_{0}^{-}(\pi^{-}\eta)}}{\mathrm{d}M_{\mathrm{inv}}(\pi^{-}\eta)\,\mathrm{d}M_{\mathrm{inv}}(\pi^{+}a_{0}^{-})} = -\frac{1}{\pi}\,2M_{\mathrm{inv}}(\pi^{-}\eta)\,\mathrm{Im}\,t_{K^{-}K^{0},\,K^{-}K^{0}}(M_{\mathrm{inv}}(\pi^{-}\eta)) \\ \times \frac{1}{(2\pi)^{3}}\,\frac{1}{4\,M_{J/\psi}^{2}}\,p_{\phi}\,\tilde{p}_{\pi^{+}}^{\prime}\overline{\sum}|\tilde{t}_{\mathrm{TS}}|^{2},$$
(22)

The triangle amplitude \tilde{t}'_{TS} and the differential decay width $\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{\text{inv}}(\pi^- \eta) dM_{\text{inv}}(\pi^+ a_0^-)}$ are functions of both $M_{\text{inv}}(\pi^- \eta)$ and $M_{\text{inv}}(\pi^+ a_0^-)$.

The results will be presented in three cases:

1) fixing
$$M_{inv}(\pi^-\eta) = m_{a_0} = 980$$
 MeV,

2) fixing $M_{inv}(\pi^+ a_0^-) = 1416$ MeV, where the TS occurs

3) integrating
$$\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{inv}(\pi^- \eta) dM_{inv}(\pi^+ a_0^-)}$$
 over $M_{inv}(\pi^- \eta)$. 16

Case 1): Fixing $M_{inv}(\pi^{-}\eta) = m_{a_0} = 980 \text{ MeV}$

The picture of the triangle amplitude:

✓ The structure of the triangle amplitude exhibits features typical of TS observed in other cases.

✓ $|\tilde{t}'_{\rm TS}|$ has a clear peak, looking like the structure of a resonance.

 \checkmark The origin of this structure comes from the triangle diagram, tied to the kinematical singularity, not from the interaction of quarks or hadrons.

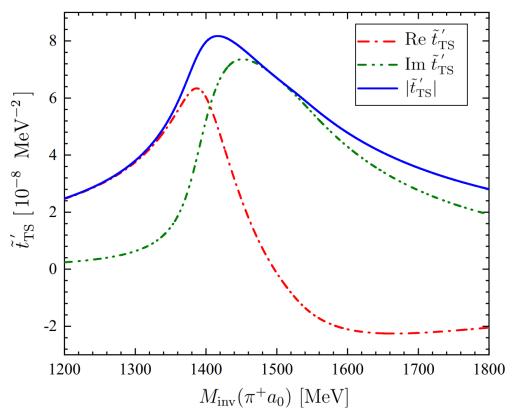


FIG. 4. \tilde{t}'_{TS} given by Eq. (29) as a function of $M_{\text{inv}}(\pi^+ a_0^-)$ when fixing $M_{\text{inv}}(\pi^- \eta) = m_{a_0}$.

The picture of
$$\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{inv}(\pi^- \eta) dM_{inv}(\pi^+ a_0^-)}$$
, fixing $M_{inv}(\pi^- \eta) = m_{a_0} = 980$ MeV:

✓ A clear peak is seen around $M_{inv}(\pi^+a_0^-) = 1440$ MeV, coming from $|\tilde{t}'_{TS}|$.

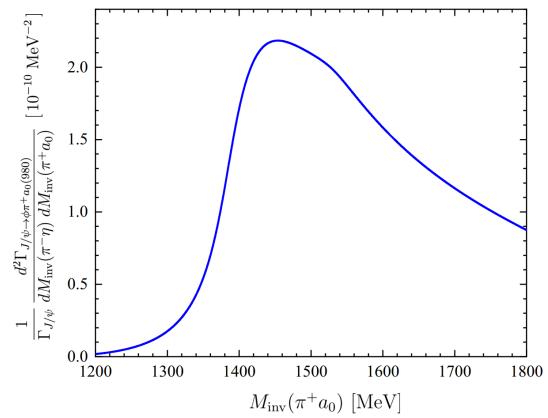


FIG. 5.
$$\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{inv}(\pi^- \eta) dM_{inv}(\pi^+ a_0^-)}$$
 as a function of $M_{inv}(\pi^+ a_0^-)$ when fixing $M_{inv}(\pi^- \eta) = m_{a_0}$.

Case 2): Fixing $M_{inv}(\pi^+ a_0^-) = 1416$ MeV

The picture of the triangle amplitude:

✓ Again, the imaginary part and the modulus delineate the shape of the $a_0(980)$ resonance.

✓ The real part changes sign at the peak of the $a_0(980)$, reflecting a typical resonance behavior.

✓ Even if the $a_0(980)$ appears as cusp, corresponding to a nearly missed bound state, or virtual state, it still exhibits the typical shape of a resonance amplitude.

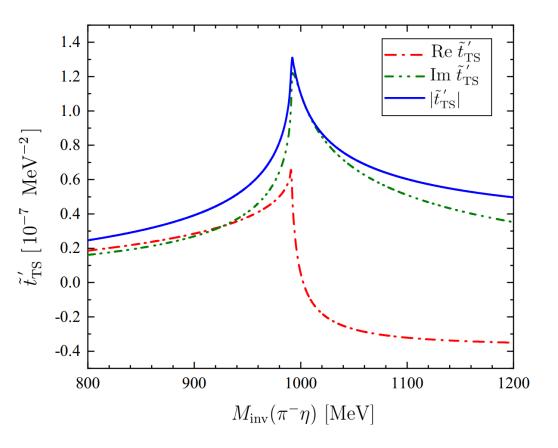


FIG. 6. \tilde{t}'_{TS} given by Eq. (29) as a function of $M_{\text{inv}}(\pi^-\eta)$ when fixing $M_{\text{inv}}(\pi^+a_0^-) = 1416$ MeV.

The picture of $\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{inv}(\pi^- \eta) dM_{inv}(\pi^+ a_0^-)}$, fixing $M_{inv}(\pi^+ a_0^-) = 1416$ MeV:

✓ The shape of the $a_0(980)$ resonance shows up as a clear cusp structure.

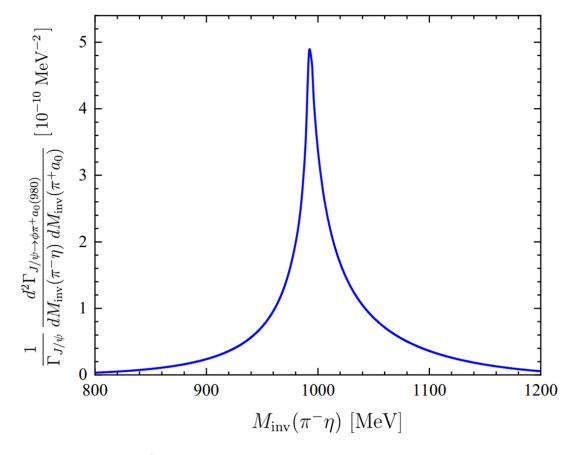


FIG. 7. $\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{inv}(\pi^- \eta) dM_{inv}(\pi^+ a_0^-)}$ as a function of $M_{inv}(\pi^- \eta)$ when fixing $M_{inv}(\pi^+ a_0^-) = 1416$ MeV.

Case 3): Integrating $\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{inv}(\pi^- \eta) dM_{inv}(\pi^+ a_0^-)}$ over $M_{inv}(\pi^- \eta)$

 \checkmark The shape of the TS is clearly seen, and should be observed in the experiments.

✓ Integrating the double mass distribution over $M_{\rm inv}(\pi^{-}\eta)$ within the range $m_{a_0} \pm 100$ MeV accounts for the whole strength of the $a_0(980)$ resonance.

✓ For the case where $M_{inv}(\pi^-\eta) \in [m_{a_0} - 100, m_{a_0} + 100]$ MeV, integrating over $M_{inv}(\pi^+a_0^-)$ in the range $[m_{\pi^+} + m_{a_0}, M_{J/\psi} - m_{\phi}]$ gives the branching ratio

$$Br(J/\psi \to \phi \pi^+ a_0^-) = 1.07 \times 10^{-5},$$
 (35)

which is easily reachable in BESIII, where branching ratios of 10⁻⁷ can be reached.

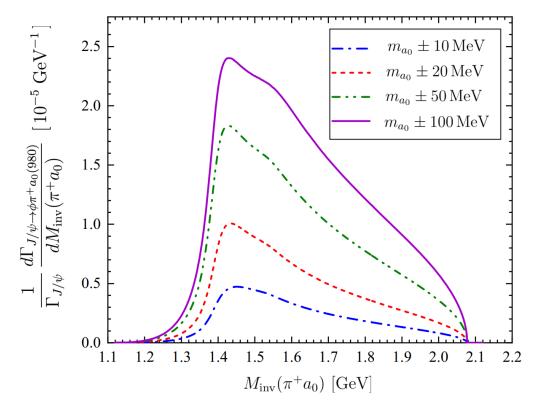


FIG. 8. $\frac{1}{\Gamma_{J/\psi}} \frac{d^2 \Gamma_{J/\psi \to \phi \pi^+ a_0(980)^-}}{dM_{\text{inv}}(\pi^- \eta) dM_{\text{inv}}(\pi^+ a_0^-)} \text{ as a function of } M_{\text{inv}}(\pi^+ a_0^-)$ when integrating over $M_{\text{inv}}(\pi^- \eta)$ in the ranges $m_{a_0} \pm 10$ MeV, $m_{a_0} \pm 20$ MeV, $m_{a_0} \pm 50$ MeV and $m_{a_0} \pm 100$ MeV.

✓ Twice our rate of Eq. (35), to account also for $\phi \pi^- a_0^+$ decay, with 30% uncertainty, gives

Br $(J/\psi \to \phi \pi a_0) = (2.14 \pm 0.64) \times 10^{-5}$.

Comes from the uncertainties when calculating the constant C^2 and the experimental error in $Br(J/\psi \rightarrow \phi K^*(892)\bar{K} + c.c.)$, summing in quadrature.

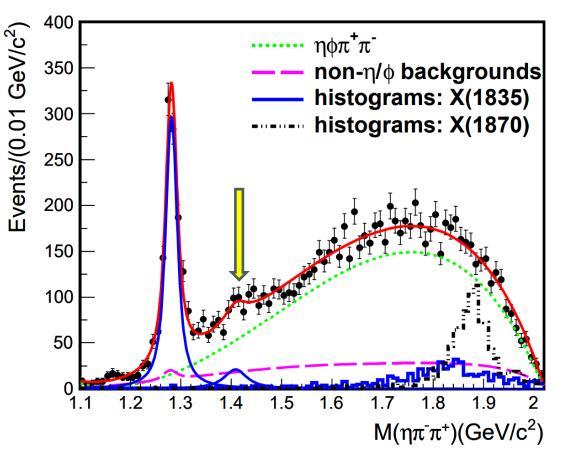
Comparison with BESIII data

✓ There is a clear bump in the $\eta \pi^+ \pi^-$ mass distribution stretching from 1.4 ~ 1.53 GeV.

✓ In BESIII paper, this bump is associated to the excitation of $\eta(1405)$, which has the $\eta\pi^+\pi^-$ as one of the decay modes.

✓ In BESIII paper, the branching ratio of the bump was estimated to $(2.01 \pm 0.58 \pm 0.82) \times 10^{-5}$, compatible with our estimate for the TS.

✓ This coincidence and the position of the peak compared to our Fig. 8 give us strong arguments to encourage the reanalysis of this decay mode from the perspective given in this work.



BESIII Collaboration, Study of $J/\psi \rightarrow \eta \phi \pi^+ \pi^-$ at BESIII, Phys. Rev. D 91, 052017 (2015).

-	Decay mode	Branching fraction \mathcal{B}
-	$J/\psi \to \eta Y(2175), Y(2175) \to \phi f_0(980), f_0(980) \to \pi^+\pi^-$	$(1.20 \pm 0.14 \pm 0.37) \times 10^{-4}$
	$J/\psi \to \phi f_1(1285), \ f_1(1285) \to \eta \pi^+ \pi^-$	$(1.20 \pm 0.06 \pm 0.14) \times 10^{-4}$
(From BES	$J/\psi \to \phi \eta(1405), \ \eta(1405) \to \eta \pi^+ \pi^-$	$(2.01 \pm 0.58 \pm 0.82)(< 4.45) \times 10^{-5}$
paper.)	$J/\psi \to \phi X(1835), \ X(1835) \to \eta \pi^+ \pi^-$	$< 2.80 \times 10^{-4}$
P"P"")	$J/\psi \to \phi X(1870), \ X(1870) \to \eta \pi^+ \pi^-$	$< 6.13 \times 10^{-5}$

TABLE III. Measurements of the branching fractions for the decay modes. Upper limits are given at the 90% C.L.

Summary

- We propose the $J/\psi \to \phi \pi^+ a_0 (980)^- (a_0^- \to \pi^- \eta)$ decay, showing that it develops a TS at $M_{\rm inv}(\pi a_0) \simeq 1.42 \text{ GeV}$. There is no tree level competing mechanism, and then the TS appearing can be clearly interpreted.
- We evaluate the mass distributions in terms of $M_{inv}(\pi^-\eta)$ and $M_{inv}(\pi^+a_0^-)$. A clear cusp structure shows up in the $\pi^-\eta$ mass distribution, and the TS peak appears in the $\pi^+a_0^-$ mass distribution at $M_{\rm inv}(\pi^+ a_0^-) \sim 1420$ MeV.
- The results obtained are consistent with a peak seen in a recent BESIII experiment.
- We predict a branching ratio for the reaction of the order of 10^{-5} , within present measurable range. and encourage the experimental teams to look into the $\phi \pi^+ a_0^-$ and $\phi \pi^- a_0^+$ decay channels of J/ ψ to further clarify experimentally the $\eta(1405)$ excitation mode from the TS mechanism suggested here.

Thank you for your attention!

Study of the decay $J/\psi \to \phi \pi^0 \eta$

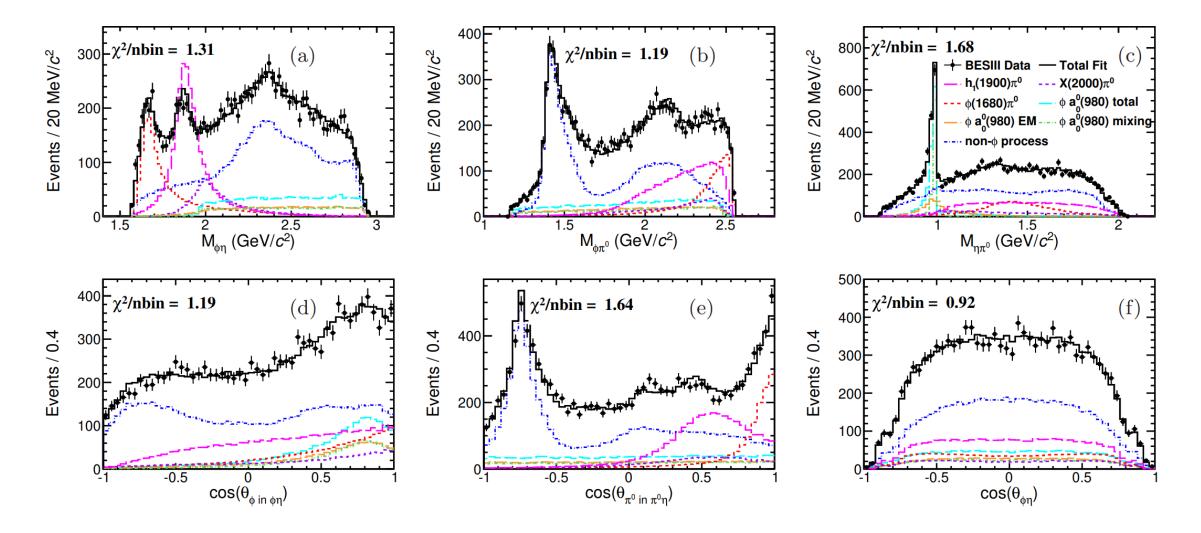


FIG. 2. Invariant mass distributions of (a) $\phi\eta$, (b) $\phi\pi^0$, and (c) $\eta\pi^0$, and angular distributions of (d) $\cos\theta_{\phi}$ in the $\phi\eta$ helicity frame, (e) $\cos\theta_{\pi^0}$ in the $\pi^0\eta$ helicity frame, (f) $\cos\theta_{\phi\eta}$ in the center-of-mass rest frame. The black dots are the background-subtracted data, the black continuous lines are the PWA fit projections, the colored non-continuous lines show the components of the fit model.