Tetraquark equations

B. Blankleider*

Physics Discipline Faculty of Science and Engineering Flinders University, Adelaide South Australia

The XVIth Quark Confinement and the Hadron Spectrum Conference Cairns, August 19th - 24th, 2024

* In collaboration with A. N. Kvinikhidze, Tbilisi State University, Georgia

B. Blankleider*

• Tetraquarks consist of 2 quarks and 2 antiquarks $2q2\bar{q}$. We shall number them as:

- Tetraquarks need relativistic QFT for their description
- Goal 1: Formulate practical covariant equations describing the 2q2q̄ system where interactions are pairwise, and transitions to two-body states, 2q2q̄ → qq̄ are taken into account
- Goal 2: To provide a unified description of long-standing and seemingly unrelated tetraquark models used for *calculating* properties of tetraquarks

Covariant 4-body equations A. N. Kvinikhidze and A. M. Khvedelidze (KK), Theor. Math. Phys. **90**, 62 (1992)

• Goal: to solve the covariant 4-body bound-state equation

$$\Phi={\cal K}^{(4)}G_0^{(4)}\Phi$$

for $2q2\bar{q}$ system with pairwise interactions only.

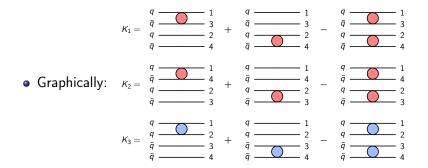
- Starting point: No particle annihilation or creation (KK 1992)
- Only 3 possible pairwise channels in a 4-body system:

• Correspondingly, the 4-body kernel can be written as $K^{(4)} = K_1 + K_2 + K_3$

Covariant 4-body equations

• Each K_{α} expressed in terms of 2-body kernels K_{ij} :

$$K_1 = K_{13} + K_{24} - K_{13}K_{24}$$
$$K_2 = K_{14} + K_{23} - K_{14}K_{23}$$
$$K_3 = K_{12} + K_{34} - K_{12}K_{34}$$



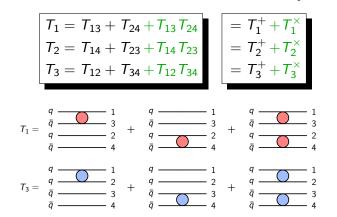
Covariant 4-body equations

٥

• Define 4-body pairwise-channel t matrices

$$T_{\alpha} = K_{\alpha} + K_{\alpha} G_0^{(4)} T_{\alpha}$$

• Each T_{α} expressed in terms of 2-body t matrices T_{ij} :



Covariant 4-body equations

• $\Phi = K^{(4)}G_0^{(4)}\Phi$ can then be rearranged similarly to the Faddeev rearrangement of 3-body theory: $\Phi = \Phi_1 + \Phi_2 + \Phi_3$ where

$$\Phi_lpha= T_lpha \sum_{eta
eq lpha} G_0^{(4)} \Phi_eta$$

• Application to the $2q2\bar{q}$ system requires antisymmetriation of 2q and $2\bar{q}$ states, reducing above to

$$\begin{pmatrix} \Phi_1 \\ \Phi_3 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} \frac{1}{2} T_1^+ & 0 \\ 0 & T_3^+ \end{pmatrix} + \begin{pmatrix} \frac{1}{2} T_1^\times & 0 \\ 0 & T_3^\times \end{pmatrix} \end{bmatrix} 2 \begin{pmatrix} -\mathcal{P}_{12} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_3 \end{pmatrix}$$

or symbolically

$$ilde{\Phi} = \left(\mathcal{T}^+ + \mathcal{T}^ imes
ight) \mathcal{R} ilde{\Phi}$$

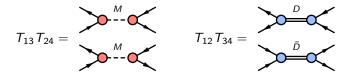
Giessen tetraquark model W. Heupel, G. Eichmann, C. S. Fischer, Phys.Lett. **B718**, 545 (2012)

Model

- (i) KK's covariant 4-body equations applied to $2q2\bar{q}$
- (ii) Single scattering terms \mathcal{T}^+ neglected:

$$T_1 = I_{13} + T_{24} + T_{13}T_{24}$$
$$T_3 = I_{12} + T_{34} + T_{12}T_{34}$$

(iii) Meson and diquark pole approximation: $T_{ij} = \Gamma_{ij} D_{ij} \overline{\Gamma}_{ij}$



Giessen tetraquark model

 \bullet Bound state equation with \mathcal{T}^+ neglected

• Meson and diquark pole approximation

$$\begin{aligned} \mathcal{T}^{\times} &= -\Gamma D \bar{\Gamma} \\ &= \begin{pmatrix} \Gamma_{13} \Gamma_{24} & 0 \\ 0 & \Gamma_{12} \Gamma_{34} \end{pmatrix} \begin{pmatrix} \frac{1}{2} D_{13} D_{24} & 0 \\ 0 & D_{12} D_{34} \end{pmatrix} \begin{pmatrix} \bar{\Gamma}_{13} \bar{\Gamma}_{24} & 0 \\ 0 & \bar{\Gamma}_{12} \bar{\Gamma}_{34} \end{pmatrix} \end{aligned}$$

• Define ϕ : tetraquark \rightarrow MM, $D\bar{D}$ amplitudes

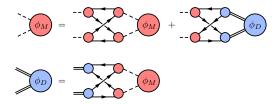
$$ilde{\Phi} = \mathcal{T}^{ imes} \mathcal{R} ilde{\Phi} = - \Gamma D ar{\Gamma} \mathcal{R} ilde{\Phi} \qquad \Rightarrow \qquad \phi \equiv ar{\Gamma} \mathcal{R} ilde{\Phi}$$

Giessen tetraquark model

۲

Tetraquark equations of Heupel *et al.* $\phi = VD\phi$ $V = -\overline{\Gamma}\mathcal{R}\Gamma$

• Graphic representation



where Φ_M and Φ_D are transition amplitudes for tetraquark $\rightarrow MM$ and tetraquark $\rightarrow D\overline{D}$, respectively

B. Blankleider*

Unified tetraquark equations A. N. Kvinikhidze and B. Blankleider (KB), Phys. Rev. D **107**, 094014 (2023)

 \bullet We considered the bound state equation with \mathcal{T}^+ retained

$$ilde{\Phi} = \left(\mathcal{T}^+ + \mathcal{T}^{ imes}
ight)\mathcal{R} ilde{\Phi}$$

 \bullet Rearrange so that \mathcal{T}^+ can be included perturbatively

$$ilde{\Phi} = (1 - \mathcal{T}^+ \mathcal{R})^{-1} \mathcal{T}^ imes \mathcal{R} ilde{\Phi}$$

 \bullet Meson and diquark pole approximation in \mathcal{T}^{\times} only

$$\mathcal{T}^{ imes} = -\Gamma D\overline{\Gamma}$$

• Define ϕ : tetraquark $\rightarrow MM$, $D\bar{D}$ amplitudes

$$ilde{\Phi} = -(1-\mathcal{T}^+\mathcal{R})^{-1}\mathsf{\Gamma} D ar{\mathsf{\Gamma}} \mathcal{R} ilde{\Phi} \quad \Rightarrow \quad egin{array}{c} \phi \equiv ar{\mathsf{\Gamma}} \mathcal{R} ilde{\Phi} \end{cases}$$

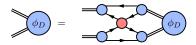
Unified tetraquark equations

Unified tetraquark equations

 $\phi = VD\phi$

$$V = -\overline{\Gamma}\mathcal{R}\left[\mathbf{1} + \mathcal{T}^{+}\mathcal{R} + \left(\mathcal{T}^{+}\mathcal{R}\right)^{2} + \dots\right]\Gamma$$

- Tetraquark model of Heupel *et al*. $V \to V^{(0)} = -\bar{\Gamma} \mathcal{R} \Gamma$
- Tetraquark model of Faustov *et al*. $V \rightarrow V^{(1)} = -\bar{\Gamma} \mathcal{RT}^+ \mathcal{R}\Gamma$



• This suggests that the Giessen and Moscow groups have been calculating non-overlapping parts of the same tetraquark equations! $\phi = [V^{(0)} + V^{(1)}] D \phi$

$$\phi = [V^{(0)} + V^{(1)}] D \phi$$

Moscow model:

- [6] D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of heavy tetraquarks in the relativistic quark model, Phys. Lett. B 634, 214 (2006), arXiv:hep-ph/0512230.
- [7] R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Masses of the QQQQ tetraquarks in the relativistic diquark–antidiquark picture, Phys. Rev. D 102, 114030 (2020), arXiv:2009.13237 [hep-ph].
- [8] R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Heavy tetraquarks in the relativistic quark model, Universe 7, 94 (2021), arXiv:2103.01763 [hep-ph].
- [9] R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Fully Heavy Tetraquark Spectroscopy in the Relativistic Quark Model, Symmetry 14, 2504 (2022), arXiv:2210.16015 [hep-ph].

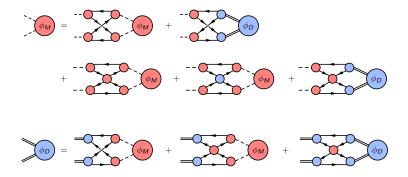
Giessen model:

- [10] W. Heupel, G. Eichmann, and C. S. Fischer, Tetraquark Bound States in a Bethe-Salpeter Approach, Phys. Lett. B718, 545 (2012), arXiv:1206.5129 [hep-ph].
- [11] G. Eichmann, C. S. Fischer, and W. Heupel, The light scalar mesons as tetraquarks, Phys. Lett. B 753, 282 (2016), arXiv:1508.07178 [hep-ph].
- [12] G. Eichmann, C. S. Fischer, W. Heupel, N. Santowsky, and P. C. Wallbott, Four-Quark States from Functional Methods, Few Body Syst. 61, 38 (2020), arXiv:2008.10240 [hep-ph].
- [13] N. Santowsky and C. S. Fischer, Four-quark states with charm quarks in a two-body Bethe–Salpeter approach, Eur. Phys. J. C 82, 313 (2022), arXiv:2111.15310 [hep-ph].

B. Blankleider*

Unified tetraquark equations

• Unified tetraquark equations: $\phi = [V^{(0)} + V^{(1)}]D\phi$



Unified tetraquark equations with nonperturbative inclusion of all meson and diquark contributions

- V = V⁽⁰⁾ + V⁽¹⁾ + V⁽²⁾ + ... first 2 terms unify two popular tetraquarks models, but is the series convergent?
- Meson and diquark poles appear in each 2q scattering term
- Perhaps ALL pole terms should be taken into account non-perturbatively
- This can be done! The clue lies in the unified approach, where the 4-body equations

$$ilde{\Phi} = \left(\mathcal{T}^+ + \mathcal{T}^{ imes}
ight) \mathcal{R} ilde{\Phi}$$

are rearranged as

$$ilde{\Phi} = (1 - \mathcal{T}^+ \mathcal{R})^{-1} \mathcal{T}^ imes \mathcal{R} ilde{\Phi}$$

precisely because $\mathcal{T}^{\times} = -\Gamma D \overline{\Gamma}$ is a pole term!

Unified tetraquark equations with nonperturbative inclusion of all meson and diquark contributions

• Write ALL 2-body t matrices as "pole" + "background":

$$T_{ij} = T^P_{ij} + K_{ij}$$

which then gives

$$egin{aligned} \mathcal{T}^+ + \mathcal{T}^ imes &= \mathcal{T}^+_{P} + \mathcal{T}^ imes _{P} + \mathcal{T}^ imes _{PK} + \mathcal{K}^+ + \mathcal{K}^ imes \ &\equiv \sum_{j=1}^3 \mathcal{F}_j \mathcal{D}_j ar{\mathcal{F}}_j + \mathcal{K} \end{aligned}$$

• Resulting in the 4-body tetraquark equations

$$\phi_i = \sum_{j=1}^3 \bar{\mathcal{F}}_i \mathcal{R} (1 - \mathcal{K} \mathcal{R})^{-1} \mathcal{F}_j \mathcal{D}_j \phi_j$$

where $\phi_j = ar{\mathcal{F}}_j \mathcal{R} ilde{\Phi}$

B. Blankleider*

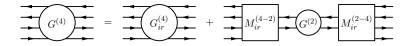
Incorporating *q* \bar{q} annihilation: K. & B. Phys. Rev. D 90, 04502 (2014); Phys. Rev. D 106, 054024 (2022) B. & K. Few Body Syst. **65** 2, 59 (2024)

- In Quantum Field Theory (QFT) the number of particles is not conserved.
- But HOW to include $2q2\bar{q} \leftrightarrow q\bar{q}$ transitions into a pure 4-body theory?
- We provided a correct but lengthy answer in 2014 involving a disconnected 2-body $(q\bar{q})$ kernel it was ignored!
- More recently we found a short and simple answer to this question

The way to incorporate $q\bar{q}$ annihilation

Step 1: Express the full 2q2q
 Green function G⁽⁴⁾ in terms of its qq

 irreducible and qq



where $G^{(2)}$ is the full $q\bar{q}$ Green function specified by a two-body kernel $K^{(2)}$ as $G^{(2)} = G_0^{(2)} + G_0^{(2)} K^{(2)} G^{(2)}$

• Note that the same tetraquark pole must be present in both $G^{(4)}$ and $G^{(2)}$: as $P^2 \to M^2$

$$G^{(4)} \to i rac{\Psi ar{\Psi}}{P^2 - M^2}, \qquad G^{(2)} \to i rac{G_0^{(2)} \Gamma^* ar{\Gamma}^* G_0^{(2)}}{P^2 - M^2},$$

• But all poles in $G^{(2)}$ will appear in $G^{(4)}$, suggesting that a tetraquark be *defined* in QFT as a pole in $G_{ir}^{(4)}$!

The way to incorporate $q\bar{q}$ annihilation

• Step 2: Express the EXACT two-body $(q\bar{q})$ kernel $K^{(2)}$ as

$$\mathcal{K}^{(2)} = \Delta + \bar{N} G^{(4)}_{ir} N$$

- (i) \bar{N} and N are 2 \leftarrow 4 and 2 \rightarrow 4 $q\bar{q}$ -irreducible amplitudes
- (ii) Δ defined by ALL contributions missing from last term
- Assume that $G^{(4)}_{ir}$ has a "tetraquark" pole at $P^2 = M_0^2$ so that

$$G_{ir}^{(4)} \to i rac{\Psi_0 \bar{\Psi}_0}{P^2 - M_0^2} + B$$

• Then $G^{(2)}$ has a "tetraquark" pole at $P^2 = M^2$ where

$$M^{2} = M_{0}^{2} + i\bar{\Psi}_{0}N\left[G_{0}^{(2)-1} - \Delta - \bar{N}BN\right]^{-1}\bar{N}\Psi_{0}$$

Tetraquark equations of QFT

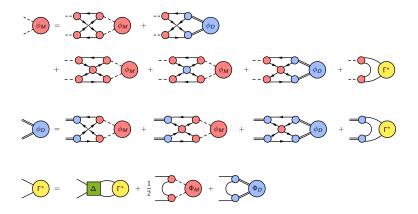
- Direct use of
 - (i) Exact two-body bound state equation: $\Gamma^* = K^{(2)}G_0^{(2)}\Gamma^*$
 - (ii) Exact two-body kernel: ${\cal K}^{(2)}=\Delta+ar{N}G^{(4)}_{ir}N$
 - (ii) Four-body Green function: $G_{ir}^{(4)} = G_0^{(4)} \left(1 K^{(4)} G_0^{(4)}\right)^{-1}$
- Results in the Exact Tetraquark Equations of QFT ($q\bar{q}$ annihilation included):

$$egin{aligned} \phi &= \mathcal{K}^{(4)} G_0^{(4)} \phi + \mathcal{N} G_0^{(2)} \Gamma^* \ &\Gamma^* &= \Delta G_0^{(2)} \Gamma^* + ar{\mathcal{N}} G_0^{(0)} \phi \end{aligned}$$

Exact unified tetraquark equations

B. Blankleider and A. N. Kvinikhidze, Few-Body Syst. 65, 59 (2024)

 $\bullet\,$ Graphic representation of the unified tetraquark equations with $q\bar{q}$ annihilation



Summary and Conclusion

- Tetraquarks ($2q2\bar{q}$ bound states) need to be described in QFT, and that means taking into account $q\bar{q}$ annihilation
- We have found a remarkable method for describing tetraquarks exactly, by expressing the $q\bar{q}$ kernel as

$$K^{(2)} = \Delta + \bar{N}G^{(4)}_{ir}N$$

- (i) $G_{ir}^{(4)}$ is the $2q2\bar{q}$ Green function with $q\bar{q}$ annihilation "switched off"
- (ii) Δ is defined as consisting of all contributions not included in $\bar{N}G_{ir}^{(4)}N$

Summary and Conclusion

- We have developed 4-body equations for $G_{ir}^{(4)}$ that:
 - (i) Extend the MM DD coupled channels model of Heupel et al. to include 2q multiple-scattering while the another 2q pair is "spectating"
 - The resulting equations, truncated to just one such rescattering, provide a unified description of 2 seemingly unrelated tetraquark models ("Giessen" and "Moscow")
 - (ii) Extend the above 4-body model for $G_{ir}^{(4)}$ to include *all* pairwise interactions with *all* pole contributions (corresponding to meson and diquark states) included nonperturbatively
- Our tetraquark equations can provide the rigorous theoretical foundation needed for future calculations.