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Introduction

Tetraquarks consist of 2 quarks and 2 antiquarks 2q2q̄. We
shall number them as:

1 2 3 4
q q q̄ q̄

Tetraquarks need relativistic QFT for their description

Goal 1: Formulate practical covariant equations describing the
2q2q̄ system where interactions are pairwise, and transitions to
two-body states, 2q2q̄ → qq̄ are taken into account

Goal 2: To provide a unified description of long-standing and
seemingly unrelated tetraquark models used for calculating
properties of tetraquarks
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Covariant 4-body equations
A. N. Kvinikhidze and A. M. Khvedelidze (KK), Theor. Math. Phys. 90, 62 (1992)

Goal: to solve the covariant 4-body bound-state equation

Φ = K (4)G
(4)
0 Φ

for 2q2q̄ system with pairwise interactions only.

Starting point: No particle annihilation or creation (KK 1992)

Only 3 possible pairwise channels in a 4-body system:

1 2 3︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
(qq̄)(qq̄) (qq̄)(qq̄) (qq)(q̄q̄)

(13)(24) (14)(23) (12)(34)

Correspondingly, the 4-body kernel can be written as

K (4) = K1 + K2 + K3
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Covariant 4-body equations

Each Kα expressed in terms of 2-body kernels Kij :

K1 = K13 + K24−K13K24

K2 = K14 + K23−K14K23

K3 = K12 + K34−K12K34

Graphically:

K1 =

q̄

q
q̄

q

4
2
3
1

+

q̄

q
q̄

q

4
2
3
1

−

q̄

q
q̄

q

4
2
3
1

K2 =

q̄

q
q̄

q

3
2
4
1

+

q̄

q
q̄

q

3
2
4
1

−

q̄

q
q̄

q

3
2
4
1

K3 =

q̄

q̄

q

q

4
3
2
1

+

q̄

q̄

q

q

4
3
2
1

−

q̄

q̄

q

q

4
3
2
1

B. Blankleider∗



Covariant 4-body equations

Define 4-body pairwise-channel t matrices

Tα = Kα + KαG
(4)
0 Tα

Each Tα expressed in terms of 2-body t matrices Tij :

T1 = T13 + T24 +T13T24

T2 = T14 + T23 +T14T23

T3 = T12 + T34 +T12T34

= T+
1 +T×

1

= T+
2 +T×

2

= T+
3 +T×

3
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Covariant 4-body equations

Φ = K (4)G
(4)
0 Φ can then be rearranged similarly to the

Faddeev rearrangement of 3-body theory: Φ = Φ1 +Φ2 +Φ3
where

Φα = Tα

∑
β ̸=α

G
(4)
0 Φβ

Application to the 2q2q̄ system requires antisymmetriation of
2q and 2q̄ states, reducing above to(
Φ1
Φ3

)
=

[(1
2T

+
1 0

0 T+
3

)
+

(1
2T

×
1 0

0 T×
3

)]
2
(
−P12 1

1 0

)(
Φ1
Φ3

)
or symbolically

Φ̃ =
(
T + + T ×)RΦ̃
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Giessen tetraquark model
W. Heupel, G. Eichmann, C. S. Fischer, Phys.Lett. B718, 545 (2012)

Model

(i) KK’s covariant 4-body equations applied to 2q2q̄

(ii) Single scattering terms T + neglected:

T1 =(((((T13 + T24 + T13T24

T3 =(((((T12 + T34 + T12T34

(iii) Meson and diquark pole approximation: Tij = ΓijDij Γ̄ij

T13T24 =

M

M
T12T34 =

D

D̄
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Giessen tetraquark model

Bound state equation with T + neglected

Φ̃ =
(
��T + + T ×)RΦ̃

Meson and diquark pole approximation

T × = −ΓDΓ̄

=

(
Γ13Γ24 0

0 Γ12Γ34

)(1
2D13D24 0

0 D12D34

)(
Γ̄13Γ̄24 0

0 Γ̄12Γ̄34

)
Define ϕ: tetraquark → MM, DD̄ amplitudes

Φ̃ = T ×RΦ̃ = −ΓDΓ̄RΦ̃ ⇒ ϕ ≡ Γ̄RΦ̃
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Giessen tetraquark model

Tetraquark equations of Heupel et al.

ϕ = VDϕ V = −Γ̄RΓ

Graphic representation

�D = �D

FIG. 1. Diquark-antidiquark bound state equation encompassing the Moscow group’s approach [6–

9]. The form factor �D couples the tetraquark to diquark and antidiquark states (both represented

by double-lines). Shown is the general form of the kernel where one qq̄ pair interacts (the red

circle representing the corresponding t matrix Tqq̄) while the other qq̄ pair is spectating. Quarks

(antiquarks) are represented by left (right) directed lines.

tial.1 However, in this paper we shall consider the general case of the Tqq̄ t matrix, and

correspondingly refer to the intermediate state of the kernel of Fig. 1 as qq̄(Tqq̄).

In a similar way, the Giessen group’s model is based on the solutions of the coupled-

channel equations for the MM -tetraquark and DD̄-tetraquark amplitudes �M and �D, re-

spectively, as illustrated in Fig. 2. In this case there are no contributions of type qq̄(Tqq̄),

with DD̄ scattering taking place only via intermediate MM states. One of the features of

the Giessen group’s model is that it is based on a rigorous field-theoretic derivation for the

2q2q̄ system where all approximations can be clearly specified. Thus, following the deriva-

�M = �M + �D

�D = �M

FIG. 2. Tetraquark equations of the Giessen group [10–13]. Form factor �M couples the tetraquark

to two mesons (dashed lines), and form factors �D couples the tetraquark to diquark-antidiquark

states (double-lines).

1 To be precise, the Moscow group uses quasipotential bound state form-factors instead of the D ! qq form

factor �12(p, P ) and the D̄ ! q̄q̄ form factor �34(p, P ), appearing as small blue disks in Fig. 1. Formally,

this is equivalent to assuming that �12(p, P ) and �34(p, P ) do not depend on the longitudinal projection

of the relative 4-momentum p with respect to the total momentum P of the two quarks or two antiquarks.

3

where ΦM and ΦD are transition amplitudes for
tetraquark → MM and tetraquark → DD̄, respectively
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Unified tetraquark equations
A. N. Kvinikhidze and B. Blankleider (KB), Phys. Rev. D 107, 094014 (2023)

We considered the bound state equation with T + retained

Φ̃ =
(
T + + T ×)RΦ̃

Rearrange so that T + can be included perturbatively

Φ̃ = (1− T +R)−1T ×RΦ̃

Meson and diquark pole approximation in T × only

T × = −ΓDΓ̄

Define ϕ: tetraquark → MM, DD̄ amplitudes

Φ̃ = −(1− T +R)−1ΓDΓ̄RΦ̃ ⇒ ϕ ≡ Γ̄RΦ̃
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Unified tetraquark equations

Unified tetraquark equations ϕ = VDϕ

V = −Γ̄R
[
1 + T +R+

(
T +R

)2
+ . . .

]
Γ

Tetraquark model of Heupel et al. V → V (0) = −Γ̄RΓ
Tetraquark model of Faustov et al. V → V (1) = −Γ̄RT +RΓ

�D = �D

FIG. 1. Diquark-antidiquark bound state equation encompassing the Moscow group’s approach [6–

9]. The form factor �D couples the tetraquark to diquark and antidiquark states (both represented

by double-lines). Shown is the general form of the kernel where one qq̄ pair interacts (the red

circle representing the corresponding t matrix Tqq̄) while the other qq̄ pair is spectating. Quarks

(antiquarks) are represented by left (right) directed lines.

tial.1 However, in this paper we shall consider the general case of the Tqq̄ t matrix, and

correspondingly refer to the intermediate state of the kernel of Fig. 1 as qq̄(Tqq̄).

In a similar way, the Giessen group’s model is based on the solutions of the coupled-

channel equations for the MM -tetraquark and DD̄-tetraquark amplitudes �M and �D, re-

spectively, as illustrated in Fig. 2. In this case there are no contributions of type qq̄(Tqq̄),

with DD̄ scattering taking place only via intermediate MM states. One of the features of

the Giessen group’s model is that it is based on a rigorous field-theoretic derivation for the

2q2q̄ system where all approximations can be clearly specified. Thus, following the deriva-

�M = �M + �D

�D = �M

FIG. 2. Tetraquark equations of the Giessen group [10–13]. Form factor �M couples the tetraquark

to two mesons (dashed lines), and form factors �D couples the tetraquark to diquark-antidiquark

states (double-lines).

1 To be precise, the Moscow group uses quasipotential bound state form-factors instead of the D ! qq form

factor �12(p, P ) and the D̄ ! q̄q̄ form factor �34(p, P ), appearing as small blue disks in Fig. 1. Formally,

this is equivalent to assuming that �12(p, P ) and �34(p, P ) do not depend on the longitudinal projection

of the relative 4-momentum p with respect to the total momentum P of the two quarks or two antiquarks.

3

This suggests that the Giessen and Moscow groups have been
calculating non-overlapping parts of the same tetraquark
equations!

ϕ = [V (0) + V (1)]Dϕ

B. Blankleider∗



References

Moscow model:

Giessen model:

B. Blankleider∗



Unified tetraquark equations

Unified tetraquark equations: ϕ = [V (0) + V (1)]Dϕ

ϕM = ϕM + ϕD

+ ϕM + ϕM + ϕD

ϕD = ϕM + ϕM + ϕD

B. Blankleider∗



Unified tetraquark equations with nonperturbative inclusion
of all meson and diquark contributions

V = V (0) + V (1) + V (2) + . . . first 2 terms unify two popular
tetraquarks models, but is the series convergent?

Meson and diquark poles appear in each 2q scattering term

Perhaps ALL pole terms should be taken into account
non-perturbatively

This can be done! The clue lies in the unified approach, where
the 4-body equations

Φ̃ =
(
T + + T ×)RΦ̃

are rearranged as

Φ̃ = (1− T +R)−1T ×RΦ̃

precisely because T × = −ΓDΓ̄ is a pole term!
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Unified tetraquark equations with nonperturbative inclusion
of all meson and diquark contributions

Write ALL 2-body t matrices as "pole" + "background":

Tij = TP
ij + Kij

which then gives

T + + T × = T +
P + T ×

P + T ×
PK +K+ +K×

≡
3∑

j=1

FjDj F̄j +K

Resulting in the 4-body tetraquark equations

ϕi =
∑3

j=1 F̄iR(1−KR)−1FjDjϕj

where ϕj = F̄jRΦ̃
B. Blankleider∗



Incorporating qq̄ annihilation:
K. & B. Phys. Rev. D 90, 04502 (2014); Phys. Rev. D 106, 054024 (2022)
B. & K. Few Body Syst. 65 2, 59 (2024)

In Quantum Field Theory (QFT) the number of particles is not
conserved.

But HOW to include 2q2q̄ ↔ qq̄ transitions into a pure
4-body theory?

We provided a correct but lengthy answer in 2014 involving a
disconnected 2-body (qq̄) kernel - it was ignored!

More recently we found a short and simple answer to this
question
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The way to incorporate qq̄ annihilation
Step 1: Express the full 2q2q̄ Green function G (4) in terms of
its qq̄-irreducible and qq̄-reducible parts

I. INTRODUCTION

In Quantum Field Theory (QFT) the number of particles is not conserved. This fact

necessitates a careful consideration of the theoretical description, as well as the precise

definition of an exotic particle. In particular, this applies to the case of a tetraquark, an

exotic bound state of two quarks and two antiquarks (2q2q̄) whose existence has recently

been evidenced [1–3]. That the 2q2q̄ system couples to qq̄ states makes the tetraquark a

more complicated object than often assumed. This is made clear in Fig. 1 which expresses

the 2q2q̄ Green function G(4) in terms of its qq̄-irreducible1 part G
(4)
ir and its qq̄-reducible

part M
(4�2)
ir G(2)M

(2�4)
ir . Not only is the last, qq̄-reducible term of Fig. 1 necessary for a

complete description of a tetraquark, but its presence also demonstrates that any pole in

the two-body qq̄ Green function G(2) will automatically appear in G(4), thus making a pole

in G(4) (the signature of a 2q2q̄ bound state), an inadequate criterion for a tetraquark.

In this paper we are concerned with the formulation of covariant equations describing

the 2q2q̄ bound state while taking into account the coupling to qq̄ channels as illustrated

in Fig. 1. We shall refer to these equations as “tetraquark equations” even though our

formulation does not depend on any specific definition of a tetraquark; nevertheless, we

point out that the context of our derivation provides an ideal setting for considering such a

precise definition, a task which we will return to in a separate work.

G(4) = G
(4)
ir

+ M
(4�2)
ir G(2) M

(2�4)
ir

FIG. 1. Field theoretic structure of the 2q2q̄ Green function G(4), where G
(4)
ir is the qq̄-irreducible

part of G(4), G(2) is the qq̄ Green function, with M
(4�2)
ir and M

(2�4)
ir being qq̄-irreducible 2q2q̄  qq̄

and qq̄  2q2q̄ transition amplitudes, respectively.

1 In this work we use the commonly used definition of “irreducibility”, namely, a Feynman diagram with

any number of external quark legs is n-particle irreducible if it cannot be divided into two parts separating

initial states from final states, by cutting n quark lines where at least one of the cut quark lines is internal.

In particular, we apply this definition to skeleton Feynman diagrams as we assume all propagtors and

vertices in such diagrams are fully dressed.

2

where G (2) is the full qq̄ Green function specified by a
two-body kernel K (2) as G (2) = G

(2)
0 + G

(2)
0 K (2)G (2)

Note that the same tetraquark pole must be present in both
G (4) and G (2): as P2 → M2

G (4) → i
ΨΨ̄

P2 −M2 , G (2) → i
G

(2)
0 Γ∗Γ̄∗G (2)

0
P2 −M2 ,

But all poles in G (2) will appear in G (4), suggesting that a
tetraquark be defined in QFT as a pole in G

(4)
ir !
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The way to incorporate qq̄ annihilation

Step 2: Express the EXACT two-body (qq̄) kernel K (2) as

K (2) = ∆+ N̄G
(4)
ir N

(i) N̄ and N are 2← 4 and 2→ 4 qq̄-irreducible amplitudes

(ii) ∆ defined by ALL contributions missing from last term

Assume that G (4)
ir has a "tetraquark" pole at P2 = M2

0 so that

G
(4)
ir → i

Ψ0Ψ̄0

P2 −M2
0
+ B

Then G (2) has a "tetraquark" pole at P2 = M2 where

M2 = M2
0 + iΨ̄0N

[
G

(2)
0

−1 −∆− N̄BN
]−1

N̄Ψ0
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Tetraquark equations of QFT

Direct use of
(i) Exact two-body bound state equation: Γ∗ = K (2)G

(2)
0 Γ∗

(ii) Exact two-body kernel: K (2) = ∆+ N̄G
(4)
ir N

(ii) Four-body Green function: G
(4)
ir = G

(4)
0

(
1− K (4)G

(4)
0

)−1

Results in the Exact Tetraquark Equations of QFT (qq̄
annihilation included):

ϕ = K (4)G
(4)
0 ϕ+ NG

(2)
0 Γ∗

Γ∗ = ∆G
(2)
0 Γ∗ + N̄G

(0)
0 ϕ
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Exact unified tetraquark equations
B. Blankleider and A. N. Kvinikhidze, Few-Body Syst. 65, 59 (2024)

Graphic representation of the unified tetraquark equations with
qq̄ annihilation

ϕM = ϕM + ϕD

+ ϕM + ϕM + ϕD + Γ∗

ϕD = ϕM + ϕM + ϕD + Γ∗

Γ∗ = ∆ Γ∗ +
1
2

ΦM + ΦD
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Summary and Conclusion

Tetraquarks (2q2q̄ bound states) need to be described in
QFT, and that means taking into account qq̄ annihilation

We have found a remarkable method for describing tetraquarks
exactly, by expressing the qq̄ kernel as

K (2) = ∆+ N̄G
(4)
ir N

(i) G
(4)
ir is the 2q2q̄ Green function with qq̄ annihilation

"switched off"

(ii) ∆ is defined as consisting of all contributions not included in
N̄G

(4)
ir N
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Summary and Conclusion

We have developed 4-body equations for G (4)
ir that:

(i) Extend the MM − DD̄ coupled channels model of Heupel et
al. to include 2q multiple-scattering while the another 2q pair
is "spectating"

The resulting equations, truncated to just one such
rescattering, provide a unified description of 2 seemingly
unrelated tetraquark models ("Giessen" and "Moscow")

(ii) Extend the above 4-body model for G (4)
ir to include all pairwise

interactions with all pole contributions (corresponding to
meson and diquark states) included nonperturbatively

Our tetraquark equations can provide the rigorous theoretical
foundation needed for future calculations.
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