
Dark Pion DM: 
WIMP vs. SIMP

Pyungwon Ko (KIAS)

QCHSC2024, Cairns, Australia 
Aug 19–24 (2024)



Contents

• DM : Brief Introduction


• Hidden (Dark) QCD scenario (with Classical Scale 
Invariance)


• WIMP scenario with the H-S portal 


• SIMP scenario in dark QCD


• SIMP + dark resonances (vector, scalar, etc.)



DM : Brief 
Introduction



Evidences for DM

Chapter 2 • The expanding universe 51

FIGURE 2.9 Constraints, assuming a Euclidean universe, placed by different probes on the matter density (!m) and
constant equation of state of the dark energy w = wDE. A cosmological constant corresponds to w = −1. The con-
straints from supernovae, the BAO standard ruler, as well as the CMB all point towards a concordance model with
wDE close to −1. From Scolnic et al. (2018).

spectively; Joyce et al. (2016) and Clifton et al. (2012) do the same for modified gravity. Most
pressing for us is the question of how we can distinguish among these possibilities given
the data. Do we have to laboriously repeat the analysis of supernovae, BAO, and so on for
each model of dark energy?

Fortunately not: as we argued at the beginning of Sect. 2.3, the form Eq. (2.44) of the
energy-momentum tensor is completely general and is dictated by the symmetries of the
FLRW spacetime. Hence, defining pressure via the equation of state wDE(a), and given the
continuity equation (2.57), whose solution is Eq. (2.61), the effect of a general dark energy
on the expansion history is completely determined by the function wDE(a).10 The cos-
mological constant, as we will see in Sect. 3.1, simply adds a term "δµ

ν to the Einstein
equations (when written with one upper index). Comparing this with Eq. (2.44) shows that
the cosmological constant effectively has an energy-momentum tensor that is of perfect
fluid form, with P = −ρ ∝ " which implies an equation of state of w" = −1. For a dynam-
ical dark energy (e.g. quintessence), wDE ≥ −1 (but still significantly below 0). Measuring
the dark energy density as a function of cosmic time (i.e. at different redshifts) then allows
us to constrain wDE and hence distinguish between different dark energy scenarios.

Fig. 2.9 shows a current example of constraints on wDE, assuming a Euclidean universe.
This figure drives home two points. First, so far all measurements are consistent with a
cosmological constant; models with values of wDE very different from −1 are ruled out.

10
If general relativity is modified, we have to be a bit careful here. Nevertheless, one can always derive an

equation of state dark energy would have to have in general relativity in order to produce the expansion history
of a given modified gravity model.
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FIGURE 1.10 Upper panel: Anisotropies in the CMB as measured by the Planck satellite (points). The line shows the
best-fit prediction by the concordance model of cosmology, based on initial conditions as predicted by inflation.
The model involves only six free parameters; its beautiful prediction matches the data almost perfectly. The x-axis
is multipole moment (e.g., l = 1 is the dipole, l = 2 the quadrupole) where large angular scales correspond to low l;
the y-axis is the variance of the temperature fluctuations as a function of scale (Dl ≡ l(l + 1)C(l)T 2

0 /2π ; we will learn
what C(l) is in Ch. 9). The characteristic signature of inflation is the series of peaks and troughs, a signature that
has been impressively verified by experiment. Lower panel: Difference between data and best-fit model. Notice the
change in y axis between l < 30 and l ≥ 30 in this panel. From Planck Collaboration (2018b).

transforming the CMB temperature, then, one typically expands it in spherical harmon-
ics, a basis appropriate for a 2D field on the surface of the sphere. Therefore, the power
spectrum of the CMB is a function of multipole moment l, not wave number k. Dozens
of groups have made measurements of the CMB power spectrum since the discovery of
anisotropies in 1992. COBE’s measurements were at the very largest angles, i.e. low l. The
definitive measurement was supplied by the Planck satellite in 2018, shown in Fig. 1.10.

One key difference between the map of the CMB and that of the structure in the current
universe is the “contrast,” or amplitude of structure. The very young universe, as mapped
out by CMB experiments, was very smooth, while maps of the current universe as depicted
in Fig. 1.8 convince us that the universe is very inhomogeneous today. How did the uni-
verse evolve from smooth to clumpy? The simple answer, at the same time one of the most
powerful underpinnings of modern cosmology, is that gravity forced more and more mat-
ter into overdense regions, so that a region starting out with only a small, 10−4 fractional
overdensity evolved, over billions of years, to become much denser than the homogeneous
universe today and in fact the site at which a galaxy formed. During this process, small-
scale perturbations grew nonlinear first, and then hierarchically assembled to form larger
structures.
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FIGURE 1.6 Predicted primordial abundances (lines) of helium (top) and deuterium (bottom) as a function of the
physical baryon density in units of ρcr, ωb = #bh2. The subscript P on the y-axes denotes that these are the primordial
abundances; YP Is the ratio of the mass density in helium to the total mass density in protons and neutrons, while
yD is defined as 105 times the ratio of deuterium to hydrogen. The horizontal bands show astrophysical constraints
on abundances, while the vertical band indicates the constraint based on CMB anisotropies, as measured by the
Planck satellite experiment. In case of deuterium, the predictions are uncertain due to imperfect knowledge of
certain nuclear reaction rates. Nevertheless, there is striking agreement between BBN (combined with astrophysical
measurements) and the CMB. From Planck Collaboration (2018b).

1.3 Big Bang nucleosynthesis
Armed with an understanding of the evolution of the scale factor and the densities of the
constituents in the universe, we can extrapolate backwards to explore phenomena at early
times. When the universe was much hotter and denser, and the temperature was of order
1 MeV/kB, there were no neutral atoms or even bound nuclei. The vast amounts of high-
energy radiation in such a hot environment ensured that any atom or nucleus produced
would be immediately destroyed by a high-energy photon. As the universe cooled well be-
low typical nuclear binding energies, light elements began to form in a process known as
Big Bang Nucleosynthesis (BBN). Knowing the conditions of the early universe and the rel-
evant nuclear cross-sections, we can calculate the expected primordial abundances of all
the elements (Ch. 4).

Fig. 1.6 shows the BBN predictions for the abundances of helium and deuterium as a
function of the mean baryon density, essentially the density of ordinary matter (Sect. 2.4) in
the universe, in units of the critical density. The predicted abundances, in particular that
of deuterium, which we will explore in detail in Ch. 4, depend on the density of protons
and neutrons at the time of nucleosynthesis. The combined proton plus neutron density
is equal to the baryon density since both protons and neutrons have baryon number one
and these are the only baryons around at the time.

The horizontal lines in Fig. 1.6 show the current measurements of the light element
abundances. The deuterium abundance is measured in the intergalactic medium at high
redshifts by looking for a subtle absorption feature in the spectrum of distant quasars (see
Burles and Tytler, 1998; Cooke et al., 2018 and Exercise 1.3). These measurements of the
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FIGURE 9.17 Changes in the anisotropy spectrum as the baryon density !bh2 is varied.

FIGURE 9.18 Changes in the anisotropy spectrum as the CDM density !ch
2 is varied. Also shown are binned Planck

measurements (Planck Collaboration, 2018b); the error bars are so small that they are only discernible for l around
and below the first peak. Clearly, !ch

2 and !bh2 can be determined very precisely.

nπη0/rs(η∗) (Eq. (9.27), but see the discussion in Sect. 9.6.2 that argues that the actual value
of lpk is ∼ 25% lower).

The effects of changing the baryon density (Fig. 9.17) are a shift in the peak locations,
due to the change in the sound horizon rs(η∗), as well as modifications in the heights of the
peaks. We have already touched on the ways in which the anisotropy spectrum depends on
the baryon density. The foremost, clearly visible in Fig. 9.17, is that the ratio of the heights
of the odd to even peaks is higher when the baryon density is large. The second change
due to !bh2 is that an increased baryon density reduces the diffusion length (increases kD).
Therefore, a larger baryon density means damping moves to smaller angular scales, so the
anisotropy spectrum on scales l > 1000 is larger in a high-!bh2 model. This characteristic
combination of effects allows for very tight constraints on !bh2; the parameter variations
around the fiducial values shown in Fig. 9.17 are ruled out by the data at high significance.
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FIGURE 12.6 Slices of width 15h−1 Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 1010 particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a !CDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et
al. (2005).

a spherical region whose interior density is above some threshold (“spherical overdensity”
algorithm), or if their nearest-neighbor distance to other halo particles is below a threshold
value (“friends-of-friends” algorithm). Crucially, by definition any particle can be part of
only a single halo. For both algorithms, the result is a catalog of halos with various masses,
and various other properties, such as center-of-mass position and velocity.
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Cos. Concordance Model



• Feels Gravity > Currently 
evidences come only thru this


• Its lifetime >> Age of Universe


•  (Nonrel.)


• 


• 


• It forms a halo, not a disk

ρ( ≃ m) ≫ p( ≃ 0)

ΩDM ∼ 5 ΩBaryon

ρlocal ∼ 0.3GeV/cm3

• Mass, Spin ?


• How many species ?


• Any internal quantum #’s ?


• Any internal structures ?


• Interactions w/ SM particles ?


• DM self int. ? (  )


• Almost nothing known about 
particle physics nature of DM

σχχ /mχ ≲ 1g/cm2

KNOWNS UNKNOWNS



Local dark gauge symmetry
• Better to use local gauge symmetry for DM stability 

(Baek,Ko,Park,arXiv:1303.4280 )

• Success of the Standard Model 
of Particle Physics lies in “local 
gauge symmetry” without 
imposing any internal global 
symmetries 


• Electron stability : U(1)em gauge 
invariance, electric charge 
conservation, massless photon


• Proton longevity : baryon # is an 
accidental sym of the SM


• No gauge singlets in the SM ; all 
the SM fermions chiral

• Dark sector with (excited) dark 
matter, dark radiation and force 
mediators might have the same 
structure as the SM


• “(Chiral) dark gauge theories 
without any global sym”


•Origin of DM stability/longevity 
from dark gauge sym, and not 
from dark global symmetries, as 
in the SM


• Just like the SM (conservative)



In QFT (I)
• Kinematically long-lived if DM is very light 

(axion, sterile  ,…)


• DM could be absolutely stable due to  
unbroken local gauge symmetry 


• DM with local Z2 (inelastic), Z3 (semi-
annihilation)


•  (and 2 more works) 
for  (2016)

νs

SU(3)D → SU(2)D
H0, σ8



In QFT (II)
• DM could be stable due to nontrivial 

topology: hidden monopole DM+VDM+DR


• Longevity of DM could be due to some 
accidental symmetries of unbroken/broken 
dark gauge symmetries


• EWSB and CDM from hQCD, and scale 
invariant extensions : dark  pions and 
dark baryons : Hur, Ko et al (2007)


• Dark gauge sym completely broken 



Landscape of dark sector
• DM EFT : DM + SM (unitarity violation in most cases)


• (Improved) Simplified Model for DM : DM + SM + Mediators 
(without full SM gauge symmetry) Full SM gauge symmetry was 
imposed by P Ko, A Natale, MH Park, H Yokoya (2016) 


• DM stabilized by global symmetry can not protect DM to decay 
fast from dim-5 operators from gravity : Need to introduce dark 
gauge symmetry [S Baek, P Ko, WI Park (2013)] : Now called as a 
“dark sector” 


• (Excited) DM, DR, (Light) Mediators with dark gauge symmetry


• Only questions: mass scales and couplings (various mechanisms)
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Hidden (Dark) QCD 
Scenario (with CSI)



hQCD (Dark QCD)
• Strassler + Zurek (2006) : hQCD + U(1)’ , new collider signatures but no discussion on 

DM from hQCD. hep-ph/0604261. PLB (2007)


• B. Patt and F. Wilczek, hep-ph/0605188. “Higgs portal”


• Hur, Ko, Jung, Lee (2007): EWSB and CDM from h-QCD, arXiv:0709.1218 [hep-ph], PLB 
(2011)


• Hur, Ko (2007) : scale inv. extension of SM+hQCD. All the mass scales (including DM 
mass) from hQCD, written in 2007, arXiv:1103.2571 [hep-ph] PRL(2011)


• Proceedings: Int.J.Mod.Phys. A23 (2008) 3348-3351, AIP Conf.Proc. 1178 (2009) 37-43, 
arXiv:1012.0103 (ICHEP), etc


• Many works on dark QCD models during the past years (mostly without scale invariace, 
apology for not citing all of them)


• Hochberg et al. : SIMP in Dark QCD (2014, 2015)


• Hatanaka, Jung, Ko : AdS/QCD approach, arXiv:1606.02969, JHEP (2016)



Hidden Sector
• Any NP @ TeV scale is strongly constrained by 

EWPT and CKMology


• Hidden sector made of SM singlets, and less 
constrained, and could make CDM


• Hidden gauge sym can stabilize CDM


• Generic in many BSM’s including SUSY models


• Can address “QM generation of all the mass 
scales from strong dynamics in the hidden sector”  
(orthogonal to the Coleman-Weinberg) : Hur and 
Ko, PRL (2011) and earlier paper and proceedings



Nicety of QCD
• Renormalizable


• Asymptotic freedom : no Landau pole


• QM dim transmutation :


• Light hadron masses from QM dynamics


• Flavor & Baryon # conservations : 
accidental symmetries of QCD (pion is 
stable if we switch off EW interaction, 
ignoring dim-5 operators; proton is stable 
or very long lived) 1

MPlanck
H

†
Hqh�5qh

can be forbidden 
by CSI



h-pion & h-baryon DMs
• In most WIMP DM models, DM is stable 

due to some ad hoc Z2 symmetry


• If the hidden sector gauge symmetry is 
confining like ordinary QCD, the lightest 
mesons and the baryons could be stable 
or long-lived >> Good CDM candidates


• If chiral sym breaking in the hidden 
sector, light h-pions can be described by 
chiral Lagrangian in the low energy limit



Appraisal of Scale Invariance
• May be the only way to understand the origin of 

mass dynamically (including spontaneous sym 
breaking)


• Without it, we can always write scalar mass terms 
for any scalar fields, and Dirac mass terms for 
Dirac fermions, the origin of which is completely 
unknown 


• Probably only way to control higher dimensional 
op’s suppressed by Planck scale



WIMP’s 
(Weakly Interacting 
Massive Particles)



Freez-out & Thermal Relic

• X (CDM) is initially in 
thermal equilibrium 

• As universe cools down, 
X only decreases by pair 
annihilation

• As universe expands, X 
eventually decouples 
from the SM 

A thermal relic 
from the Early Universe
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• Boltzmann Equation :

• Freez-out when interaction rate drops 
expansion rate

dn

dt
= �3Hn� h�vi

⇥
n
2 � n

2
eq

⇤

neqh�vi ⇠ H

Dilution from 
expansion

X +X ! SM + SM SM + SM ! X +X

(mT )3/2e�m/T m�2 T 2/MPl

• Freeze-out Temp ~ m/25



In the end, we get

⌦X ⇡ 6⇥ 1027cm3s�1

h�annvi

⌦DM ⇡ 0.23 for

h�vi = 3⇥ 10�26cm3/s

h�vi ⇡ ↵w

M2
⇡ ↵w

1TeV 2
! ⌦X ⇠ O(few ⇥ 0.1)

A thermal relic 
from the Early Universe
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Weak x-section: WIMP



WIMP is nice, since
• WIMP in chemical equilibrium in the early 

universe has the right density to be the CDM

• The annihilation cross section that determines  
the WIMP relic density is related with the 
WIMP annihilation rate in indirect DM 
searches (upto kinematical factor)

• Crossing diagram may give sizable direct 
scattering cross section 

• In most SUSY models, this is not the case because of 
coannihilations and resonant annihilation



Crossing & WIMP detection
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However, this crossing relation could 
lead to incorrect physics sometimes !

Better to be careful, and I will come back 
to this issue in Lectures 2 and 3.



WIMP scenario with the 
Higgs-Singlet scalar portal

• Hur, Jung, Ko, Lee, arXiv:0709.1218, PLB (2011) 
• Hur, Ko, 1103.2571, PRL (2011) 
• Hatanaka, Jung, Ko, 1606.02969, JHEP (2016)

And proceedings: 

• Int. J. Mod. Phys. A23 (2008) 3348-3351 
• AIP Conf. Proc. 1178 (2009) 37-43 
• ICHEP 2010 Proceeding, hep-ph/1012.0103
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Key Observations
• If we switch off gauge interactions of 

the SM, then we find 


• Higgs sector ~ Gell-Mann-Levy’s linear 
sigma model which is the EFT for QCD 
describing dynamics of pion, sigma 
and nucleons


• One Higgs doublet in 2HDM could be 
replaced by the GML linear sigma 
model for  hidden sector QCD



Model-I

Potential for H1 and H2

V (H1, H2) = −µ2
1(H

†
1H1) +

λ1

2
(H†

1H1)
2 − µ2

2(H
†
2H2)

+
λ2

2
(H†

2H2)
2 + λ3(H

†
1H1)(H

†
2H2) +

av3
2

2
σh

Stability : λ1,2 > 0 and λ1 + λ2 + 2λ3 > 0

Consider the following phase:

H1 =

(

0
v1+hSM√

2

)

, H2 =

(

π+
h

v2+σh+iπ0
h√

2

)

Correct EWSB : λ1(λ2 + a/2) ≡ λ1λ′
2 > λ2

3

– p.34/50

Not present in the two-
Higgs Doublet model
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Relic DensityModel-I : Relic density of πh
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Model-I : Direct detection rate
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Classical Scale Sym Model

• Scale invariant extension of the SM + hQCD


• Mass scale is generated by nonperturbative strong 
dynamics in the hidden sector


• EWSB and CDM from hQCD sector : Stabilized by dark 
flavor sym with the help of Scale Invariance

All the masses (including CDM mass) 
from hidden sector strong dynamics



Model I (Scalar Messenger)

• SM - Messenger - Hidden Sector QCD

• Assume classically scale invariant lagrangian --> No 
mass scale in the beginning

• Chiral Symmetry Breaking in the hQCD generates a 
mass scale, which is injected to the SM by “S”

SM Hidden 
QCD

Singlet 
Scalar S

������������



Model-II

Introduce a real singlet scalar S

Modified SM with classical scale symmetry

LSM = Lkin −
λH

4
(H†H)2 −

λSH

2
S2 H†H −

λS

4
S4

+
(

Q
i
HY D

ij Dj + Q
i
H̃Y U

ij U j + L
i
HY E

ij Ej

+ L
i
H̃Y N

ij N j + SN iT CY M
ij N j + h.c.

)

Hidden sector lagrangian with new strong interaction

Lhidden = −
1

4
GµνG

µν +
NHF
∑

k=1

Qk(iD · γ − λkS)Qk

– p.42/50
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Scale invariant extension of the SM
with strongly interacting hidden sector

Model considered by Meissner and Nicolai, hep-th/0612165



Model-II

Effective lagrangian far below Λh,χ ≈ 4πΛh

Lfull = Leff
hidden + LSM + Lmixing

Leff
hidden =

v2
h

4
Tr[∂µΣh∂µΣ†

h] +
v2
h

2
Tr[λSµh(Σh + Σ†

h)]

LSM = −
λ1

2
(H†

1H1)
2 −

λ1S

2
H†
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3 neutral scalars : h,  S and hidden sigma meson
Assume h-sigma is heavy enough for simplicity



Relic densityModel-II: Relic densities of Ωπh
h2

Ωπhh
2 in the (mh1

,mπh) plane for
(a) vh = 500 GeV and tan β = 1,

(b) vh = 1 TeV and tan β = 2.
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Direct Detection RateModel-II: Direct detection rates
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Comparison with the 
other works

• Dark gauge symmetry is unbroken (DM could be 
absolutely stable if they appeared in the asymptotic 
states), but confining like QCD (No long range dark 
force, DM becomes composite)


• DM : composite hidden hadrons (mesons and baryons)


• All masses including CDM masses from dynamical sym 
breaking in the hidden sector (dim transmutation)


• Singlet scalar is necessary to connect the hidden sector 
and the visible sector


• Higgs Signal strengths : universally reduced from one



• Additional singlet scalar improves the vacuum 
stability up to Planck scale


• Can modify Higgs inflation scenario (Higgs portal 
assisted Higgs inflation      [arXiv:1405.1635, 
JCAP (2017) with Jinsu Kim, WIPark]


• The 2nd scalar could be very very elusive 


• Can we find the 2nd scalar at LHC or other 
experiments ?


• We will see if this class of DM can survive the 
LHC Higgs data in the coming years



SIMP scenario in DQCD +  
Dark resonances (  ..)ρD, ωD

arXiv:1801.07726, PRD (2018) 
Soo-Min Choi, Hyunmin Lee (CAU) 

and Alexander Natale (KIAS)



SIMP paradigm

The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.

Yonit Hochberg1,2,⇤ Eric Kuflik3,† Tomer Volansky3,‡ and Jay G. Wacker4§
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We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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SIMP Conditions

�3!2 = n
2
DM h�v2i3!2 ⇠ H(TF )

h�v2i3!2 =
↵
3
e↵

m
5
DM

Freeze-out :

↵e↵ = 1� 30 ! mDM ⇠ 10MeV � 1GeV

5

No kinetic equilibriumNo kinetic equilibrium

2 Æ 2
annihi

lations

2 Æ 2
annihi

lationsXENON10XENON10

g-ray
s

g-ray
s

WM
AP

WM
AP

Pro
ject
ed G

e

Pro
ject
ed G

e

Pl
an
ck
N
ef
f

Pl
an
ck
N
ef
f

M=10
GeV, G

=1 GeV

M=10
GeV, G

=1 GeV

contact
op

contact
op

M=200
GeV

M=200
GeV

M=100
GeV, G

=Gmin

M=100
GeV, G

=Gmin

10-3 10-2 0.1 110-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

mDM @GeVD

e

Coupling to Electrons

No kinetic equilibriumNo kinetic equilibrium

2 Æ 2 annihilations2 Æ 2 annihilations

g-ra
ys

g-ra
ys

WM
AP

WM
AP

Pl
an
ck
N e
ff

Pl
an
ck
N e
ff

10-3 10-2 0.1 110-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

mDM @GeVD

e

Coupling to Photons

FIG. 3: The bounds on ✏ vs. mDM. Left, coupling to electrons: The grey regions (outlined by thick dashed lines) represents
the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where the standard
2 ! 2 annihilation to the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the exclusion limits
from: direct-detection in Xenon10 [43] (purple region), along with the expected future bound from a germanium-based electron
recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
of Ne↵ [46] (red region); indirect detection of �-rays [47] (green region); direct production at LEP for a variety of mediator
mass, M , and width, � (solid-gray) [18]. Right, coupling to photons: The grey regions (outlined by thick dashed lines)
represents the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where
the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]

✓
�scatter

mDM

◆

obs

= (0.1 � 10) cm2
/g . (25)

On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are

�scatter

mDM
. 1 cm2

/g . (26)

The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that

�scatter

mDM
=

a
2
↵

2
e↵

m
3
DM

, (27)

and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at

0.3
⇣

a

0.2

⌘2
. ↵e↵ . 8

⇣
a

0.2

⌘2
, (28)

where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range

of 8
�

a
0.2

�2
MeV . mDM . 200

�
a

0.2

�2
MeV. In Fig. 2

we show the full region preferred by the small-scale struc-
ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value
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FIG. 3: The bounds on ✏ vs. mDM. Left, coupling to electrons: The grey regions (outlined by thick dashed lines) represents
the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where the standard
2 ! 2 annihilation to the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the exclusion limits
from: direct-detection in Xenon10 [43] (purple region), along with the expected future bound from a germanium-based electron
recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
of Ne↵ [46] (red region); indirect detection of �-rays [47] (green region); direct production at LEP for a variety of mediator
mass, M , and width, � (solid-gray) [18]. Right, coupling to photons: The grey regions (outlined by thick dashed lines)
represents the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where
the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]
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On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are
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The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that
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and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at
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where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range
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ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value



Dark QCD + WZW
• Dark flavor symmetry G=SU(Nf)L x SU(Nf)R is SSB into 

diagonal H=SU(Nf)V by dark  condensation


• Effective Lagrangian for NG bosons (dark pions) contain 5-

point self interaction : WZW term for  

⟨q̄q⟩

Π5(G/H) = Z(Nf > 2)

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.
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Dark mesons & WZW term
• Dark flavor symmetry G=SU(Nf)x SU(Nf) is SSB into 

diagonal H=SU(Nf) by SU(Nc) QCD-like condensation. 

• Effective action for Goldstone bosons contains a 
5-point self-interaction from Wess-Zumino-
Witten term for π5(G/H)=Z (i.e. Nf ≥3).   

LWZW =
2Nc

15⇡2
✏µ⌫⇢�Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡]

Flavor symmetry ensures stability of dark 
mesons,  natural candidates for SIMP.

NC  : topological invariant 
of 5-sphere (Q+Q’) in SU(3)

U = e2i⇡/F , ⇡ ⌘ ⇡aT a

⇡Nf = 3 :

[Wess, Zumino,
1971;Witten, 1983]

Thursday, June 11, 15

in the absence of external gauge fields



SIMP Dark Mesons

• Large color group leads to strong 5-point interactions 
while satifying bounds on self-interactions [Hochberg, 
2014]

SIMP dark mesons
• Large color group leads to strong 5-point interactions 

while satisfying bounds on self-interactions (e.g. Bullet 
cluster, halo shape.)

,
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K̃�
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⇡̃0

⇡̃0

⇡̃0

⇡̃0

[Hochberg et al, 2014]

~const~const
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[Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727, PRL (2015)]



SIMP Parameter Space

• DM self scattering :                             


• Validity of ChPT : 
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FIG. 2: Solid curves: the solution to the Boltzmann equation of the 3 ! 2 system, yielding the measured dark matter relic
abundance for the pions, m⇡/f⇡ as a function of the pion mass (left axis). Dashed curves: the self-scattering cross section
along the solution to the Boltzmann equation, �scatter/m⇡ as a function of pion mass (right axis). All curves are for selected
values of Nc and Nf , for an SU(Nc) (top panel) or an O(Nc) (bottom panel) gauge group with a conserved (left panel)
or broken (right panel) SU(Nf ) or SO(Nf ) flavor symmetry, respectively. The solid horizontal line depicts the perturbative
limit of m⇡/f⇡ ⇠< 2⇡, providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and
halo shape constraints on the self-scattering cross section, Eq. (16), placing a lower limit on the pion mass. Each shaded region
depicts the resulting approximate range for m⇡ for the corresponding symmetry structure.

below those depicted exhibit a tension between the per-
turbativity regime m⇡/f⇡ ⇠

< 2⇡ and the self-interaction
constraint of Eq. (16).
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Issues in the SIMP w/ hQCD
• Dark flavor sym is not good enough to stabilize dark pion 

(We have to assume dim-5 operator is highly suppressed)


• Dark baryons can make additional contribution to DM of the 
universe (It could produce additional diagrams for SIMP)


• Validity region of ChPT : need to include resonances (dark 
rho meson, dark sigma meson, etc.              this talk)


• How to achieve Kinetic equilibrium with the SM ? (Dark 
sigma meson or adding singlet scalar S may help. Or lifting 
the mass degeneracy of dark pions can help. Work in 
progress.)



Digression on ChPT + VM
• We consider Gglobal SSB into Hglobal : non Linear sigma model on 

Gglobal/Hglobal is equivalent to linear sigma model on Gglobal X Hlocal 


• Vector meson ~ gauge field for Hlocal

Note for chiral lagrangian with light vector mesons

The Author

September 1, 2017

1 Lagrangians

1.1 Goldstone bosons + vector mesons

We consider QCD like system where global Gglobal = SU(3)L ⇥ SU(3)R is spontaneously

broken into Hglobal = SU(3)V . Then the nonlinear realization on Gglobal/Hglobal is equiva-

lent to linear sigma model with Gglobal ⇥Hlocal.

Consider the following fields with the following transformation properties under global

SU(3)L ⇥ SU(3)R and local SU(3)V :

⇠L(x) ! U(x)⇠L(x)L
†

(1)

⇠R(x) ! U(x)⇠R(x)R
†

(2)

gVµ(x) ! U(x) [@µ � igVµ(x)]U
†
(x) (3)

Dµ⇠L = (@µ � igVµ)⇠L(x) + i⇠L(x)lµ (4)

Dµ⇠R = (@µ � igVµ)⇠R(x) + i⇠R(x)lµ (5)

lµ and rµ can be considered as gauge fields of local SU(3)L ⇥ SU(3)R gauge symmetries

and identified as �, Z,W
±
, etc..

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field U(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

⌃(x) ! L⌃(x)R
†

Note that the ⇡ field is normalzied in such a way that

⇡(x) =
1p
2

0

B@

1p
2
⇡
0
+

1p
6
⌘8 +

1p
3
⌘0 ⇡

+
K

+

⇡
� � 1p

2
⇡
0
+

1p
6
⌘8 +

1p
3
⌘0 K

0

K
�

K0 � 2p
6
⌘8 +

1p
3
⌘0

1

CA (6)

1

• CCWZ (1969) 
• Bando, Kugo, Yamawaki, Phys. Rept. 164, 217 (1988)



Vector meson as hidden 
local gauge boson

Note for chiral lagrangian with light vector mesons

The Author

September 1, 2017

1 Lagrangians

1.1 Goldstone bosons + vector mesons

We consider QCD like system where global Gglobal = SU(3)L ⇥ SU(3)R is spontaneously

broken into Hglobal = SU(3)V . Then the nonlinear realization on Gglobal/Hglobal is equiva-

lent to linear sigma model with Gglobal ⇥Hlocal.

Consider the following fields with the following transformation properties under global

SU(3)L ⇥ SU(3)R and local SU(3)V :

⇠L(x) ! U(x)⇠L(x)L
†

(1)

⇠R(x) ! U(x)⇠R(x)R
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gVµ(x) ! U(x) [@µ � igVµ(x)]U
†
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Dµ⇠L = (@µ � igVµ)⇠L(x) + i⇠L(x)lµ (4)

Dµ⇠R = (@µ � igVµ)⇠R(x) + i⇠R(x)lµ (5)

lµ and rµ can be considered as gauge fields of local SU(3)L ⇥ SU(3)R gauge symmetries

and identified as �, Z,W
±
, etc..

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field U(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

⌃(x) ! L⌃(x)R
†

Note that the ⇡ field is normalzied in such a way that

⇡(x) =
1p
2

0

B@

1p
2
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0
+

1p
6
⌘8 +

1p
3
⌘0 ⇡

+
K

+

⇡
� � 1p
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⇡
0
+
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6
⌘8 +

1p
3
⌘0 K

0

K
�

K0 � 2p
6
⌘8 +

1p
3
⌘0
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CA (6)

1

Vµ =
1p
2

0

B@

1p
2
⇢
0
µ +

1p
6
!8µ +

1p
3
!0µ ⇢

+
µK

⇤+
µ

⇢
�
µ � 1p

2
⇢
0
µ +

1p
6
!8µ +

1p
3
!0µ K

⇤0
µ

K
⇤�
µ K⇤0

µ � 2p
6
!8µ +

1p
3
!0µ

1

CA

(7)

In real hadronic world, there are mixings between ⌘8 and ⌘0, and also between !8 and

!0 with mixing angles ✓p and ✓V , respectively:

⌘ = ⌘8 cos ✓P � ⌘0 sin ✓P (8)

⌘
0

= ⌘8 sin ✓P + ⌘0 cos ✓P (9)

!µ =
1p
3
!8µ +

r
2

3
!0µ (10)

�µ =
2p
6
!8µ � 1p

3
!0µ (11)

In this paper, we will ignore mixing for the time being, and consider ⌘0, ⌘8, !8µ and

!0µ as the basis, and discuss the physics thereof.

The chiral Lagrangian for pions and vector mesons is given by

L = LA + LmLB + Lkin(V ) + �
anom

(⇠L, ⇠R, V, l, r) (12)

LA = �f
2
⇡

4
Tr

h
(Dµ⇠L)⇠

†
L
� (Dµ⇠R)⇠

†
R

i2
(13)

Lm = �f
2
⇡

2
Tr

h
µ(⌃+ ⌃

†
)

i
(14)

LB = �a
f
2
⇡

4
Tr

h
(Dµ⇠L)⇠

†
L
+µ ⇠R)⇠

†
R

i2
(15)

Lkin = �1

2
Tr [Fµ⌫F

µ⌫
] (16)

Fµ⌫ = @µV⌫ � @⌫Vµ � ig[Vµ, V⌫ ] (17)

The µ term breaks chiral symmetry explicitly, thereby generating nonzero pion and kaon

masses:

m
2
⇡ = µ(mu +md) (18)

mK± = µ(mu +ms) (19)

m
2
K0 = µ(md +ms) (20)

m
2
⌘8

= µ(????) (21)

m
2
⌘0

= µ() + (2⇡⇤)
2
crude form for ⌘0 (22)

2



Ch Lagrangian (pi,V)
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In real hadronic world, there are mixings between ⌘8 and ⌘0, and also between !8 and

!0 with mixing angles ✓p and ✓V , respectively:

⌘ = ⌘8 cos ✓P � ⌘0 sin ✓P (8)

⌘
0

= ⌘8 sin ✓P + ⌘0 cos ✓P (9)

!µ =
1p
3
!8µ +

r
2

3
!0µ (10)

�µ =
2p
6
!8µ � 1p

3
!0µ (11)

In this paper, we will ignore mixing for the time being, and consider ⌘0, ⌘8, !8µ and

!0µ as the basis, and discuss the physics thereof.

The chiral Lagrangian for pions and vector mesons is given by

L = LA + Lm + LB + Lkin(V ) + �
anom

(⇠L, ⇠R, V, l, r) (12)

LA = �f
2
⇡

4
Tr

h
(Dµ⇠L)⇠

†
L
� (Dµ⇠R)⇠

†
R

i2
(13)

Lm = �f
2
⇡

2
Tr

h
µ(⌃+ ⌃

†
)

i
(14)

LB = �a
f
2
⇡

4
Tr

h
(Dµ⇠L)⇠

†
L
+µ ⇠R)⇠

†
R

i2
(15)

Lkin = �1

2
Tr [Fµ⌫F

µ⌫
] (16)

Fµ⌫ = @µV⌫ � @⌫Vµ � ig[Vµ, V⌫ ] (17)

The µ term breaks chiral symmetry explicitly, thereby generating nonzero pion and kaon

masses:

m
2
⇡ = µ(mu +md) (18)

mK± = µ(mu +ms) (19)

m
2
K0 = µ(md +ms) (20)

m
2
⌘8

= µ(????) (21)

m
2
⌘0

= µ() + (2⇡⇤)
2
crude form for ⌘0 (22)

2

For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field ⌃(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

LA =
f
2
⇡

4
Tr

h
Dµ⌃D

µ
⌃
†
i

(23)

DµU = @µ⌃� ilµ⌃+ i⌃rµ (24)

This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R

(36)

1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by

�
anom

= �WZW +

4X

i=1

ciLi (37)

3

a~2 and g~6 
in real QCD. 
In Dark QCD,  
we consider  
they are free 



Another useful quantities

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

Here `V’ is the vector meson associated with 
hidden local gauge symmetry



WZW (gauged)
PYUNGWON KO

r„(U,l„,r„)=CJ,d'x Tr(a')
+5CJ,d x Tr[i(la +rP ) [—(dl 1+1dl)a+(dr r+r dr)P]+(dl dUrU ' d—r dU ' IU)

+(rU 'lUP lU—rU 'a )+—,'[(la) —(rP) ]+i[1a+r P]
+i[(dr r+r dr)U lU (dl—1+1dl)UrU ']+i [1UrU 'la+rU 'lUrP] .

+[r U 'lU —1 UrU '+ —,'(UrU '1) ]],

where M is a five-dimensional manifold whose boundary
is the ordinary Minkowski manifold M . This
6=U(3)L XU(3)R-invariant form of the anomaly was
used in the original paper by Fujiwara et al. [29]. How-
ever, this form of the anomaly is not consistent with
current algebra and modified PCAC in the following
sense. From the above Lagrangian, Eq. (1), we can con-
struct the left-handed and the right-handed currents jL„
and j&„. Then, we find that the axial-vector current J„'"'"
is given by

I„'"'"(x)= f D ~—(x)— e„&Q 3'(x)(3 A~(x) .

If we take the divergence of J„'"'"(x)and use the Euler-
Lagrange equation for vr(x) derived from Eq. (1), we can
show that the axial-vector current for the third com-
ponent of the isospin, A „'""',satisfies

I

gpJ3axial( ) y 2

+(1——,
' ) e„)3()"2 "(x)B A~(x),

where P o(x) is an interpolating pion field appearing in
the calculation in the Lehmann-Symanzik-Zimmermann
(LSZ) formalism. This is not consistent with the modified
PCAC relation [30] which has the coefficient 1 in front of
Q instead of (1——,

' ) =—', . This in turn means that we get
too small a rate for m ~yy when it is calculated by the
current algebra and the modified PCAC in the LSZ for-
malism. To keep the consistency between the effective-
Lagrangian approach and the good old current-algebra
and PCAC calculation of m ~yy in the LSZ formalism,
we should modify the I.R-symmetric anomaly form, Eq.
(11). The correct answer is to keep the conservation of
vector currents, sacrificing that of axial-vector currents
as done by Bardeen [31]. Bardeen's form of the anomaly
satisfies the following condition under the local
G =U(3)L XU(3)R:

51 wz(U, l, r)= J d x (eL—eR ) F~ F~— (F~—A +A—F~A+A F~)——A
24m

L R V 3 A 3 V (12)

where

I wz(U, l, r)=I LR(U, l, r)—I LR(U = 1, l, r) . (13)

This coincides with the original form of Mess and Zumi-
no. If we consider only electromagnetic fields as external
gauge fields, we have l„=r„=eQA„. Since
I LR(U = l, l, r) is antisymmetric under l~r, the two
forms of anomalies, I L~ and I ~z are identical.

D. The W'Z anomaly in the presence of vector mesons

Electromagnetic decays of vector mesons such as
co~~ y, co—+pm, etc. , are all intrinsic parity-violating

V= —,'(1+r), .A =—,'(1 r), —
F~=dV+i(V +A ),
F~ =dA+i(VA+AV) .

For the vector transformation, eL=ez, and the above
anomaly vanishes identically. This in turn ensures the
conservation of the vector currents, as we anticipated.
The minimal solution to this equation is given simply

in terms of I LR(U, l, r) as

I

processes, so that we might be able to describe them in
the effective-Lagrangian approach by including terms
with the Levi-Civita tensor. One can achieve this by add-
ing homogeneous solutions of Eq. (12) to Eq. (13). Since
the newly added terms are homogeneous solutions of the
anomaly equation (i.e., gauge invariant, or 51=0), there
will be no additional anomaly and the anomalous low-
energy theorems remain intact.
The correct form of the WZ anomaly including vector

mesons is conveniently expressed in terms of the follow-
ing gauge-covariant entities [29]:

aL =DgL gL =aL —igI'+ll
aR Dk kR aR ig~++
aL(r) dkL(R) kL(R)

1=4.'1'4, r =OR 'r'4
F~=dV—ig V
F, =gL F, gL =gL(dl il')gL, —
FR =gR FR 4 gR(«Rir )gR



WZW with vector mesons

For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field ⌃(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

LA =
f
2
⇡

4
Tr

h
Dµ⌃D

µ
⌃
†
i

(23)

DµU = @µ⌃� ilµ⌃+ i⌃rµ (24)

This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R

(36)

1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by

�
anom

= �WZW +

4X

i=1

ciLi (37)

3

For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field ⌃(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

LA =
f
2
⇡

4
Tr

h
Dµ⌃D

µ
⌃
†
i

(23)

DµU = @µ⌃� ilµ⌃+ i⌃rµ (24)

This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R

(36)

1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by

�
anom

= �WZW +

4X

i=1

ciLi (37)

3�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

• Fujiwara, Kugo, Yamawaki et al., Prog. Theo. Phys. 73, 926 (1985)  
• P.Ko, PRD44, 139 (1991) 139 for a useful compact summary
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.

FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and

ω

ω

K+(K0)

K−(K0)
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vector meson masses are given by LB :

LB = m
2
V
TrVµV

µ
� 2igV ⇡⇡Tr (Vµ[@

µ
⇡,⇡]) (21)

m
2
V
= ag

2
f
2
⇡

(22)

gV ⇡⇡ =
1

2
ag (23)

In ordinary hadron system a ' 2, but this can be con-

sidered a free parameter in general. Before we show the

anomalous WZW Lagrangian, it is convenient to define

the following objects:

↵̂L = D⇠L · ⇠
†
L
= ↵L � igV + il̂ (24)

↵̂R = D⇠R · ⇠
†
R
= ↵R � igV + ir̂ (25)

↵L = d⇠L · ⇠
†
L
, (26)

↵R = d⇠R · ⇠
†
R

(27)

FV = dV � igV
2 (28)

The anomalous WZW in the presence of light vector

mesons are given by

�anom = �WZW +
4X

i=1

ciLi (29)

L1 = Tr
⇥
↵̂
3
L
↵̂R � ↵̂

3
R
↵̂L

⇤
(30)

L2 = Tr [↵̂L↵̂R↵̂L↵̂R] (31)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L)] (32)

L4 = iTr
h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
. (33)

Let us ignore the external gauge fields by setting lµ =

rµ = 0 and keep only the pions and vector mesons Vµ,

thus L3,4 are zero. Under these assumptions then

�anom = LWZW � 15C (c1L1 + c2L2)c1�c2=�1 (34)

with

C = �i
Nc

240⇡2
, (35)

and LWZW is the familiar Wess-Zumino-Witten term for

pions [10–12]:

LWZW =
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�

Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡] (36)

Expanding ↵L,R in terms of ⇡ up to O(g/f3
⇡
) results in

L1 = �
4c1gC

f3
⇡

✏
µ⌫⇢�

Tr[@µ⇡@⌫⇡@⇢⇡V�] (37)

and

L2 =
4c2gC

f3
⇡

✏
µ⌫⇢�

Tr[Vµ@⌫⇡@⇢⇡@�⇡@⇢⇡] (38)

where C is defined in Eq. 35. These new vector meson

terms generate additional 3-to-2 interactions between the

pions, as illustrated in Fig. 1.

An important constraint on the model is the 2-to-

2 scattering cross section. The bullet cluster con-

straints place an upper limit of around 1 cm
2
/g on

�scatter/mDM [6]. In our model this 2-to-2 cross section

can be calculated by the ChPT Lagrangian:

�scatter =
m

2
⇡

192⇡f4
⇡
m

4
V

⇥

(81a4g4f4
⇡
+ 216a2f2

⇡
g
2
m

2
V
+ 154m4

V
)

(39)

where the degenerate pion (vector meson masses) are

given by m⇡ (mV ). In the limit where the vector mesons

decouple, �scatter reduces to the value found in Ref. [8].

The upper bounds on �scatter/m⇡ places a lower bound

on m⇡; in the minimal QCD-like model without vec-

tor mesons, this produces a tension between the require-

ments that m⇡/f⇡ < 2⇡ and the lower bound of m⇡ [8].

Relic Density.—In the SIMP model, where the 3 ! 2

number-changing processes are dominant, the resulting

Boltzmann equation for one species of DM is given by

dnDM

dt
+ 3HnDM = �h�v

2
i3!2(n

3
DM

� n
2
DM

n
eq

DM
).

In the presence of an exact flavor symmetry there are

N⇡ = 8 mass degenerate pions, and suppose n1 = n2 =

. . . = n8 = n, we can define nDM =
P8

i=1 ni. Thus the

resulting Boltzmann equation for the total DM density

is

Y
0
DM

= �
⇢⌃h�v2i

N3
⇡
x5

(Y 3
DM

� Y
2
DM

Y
eq

DM
). (40)

where ⌃h�v2i is the sum of the relevant sub-processes af-

ter thermal averaging, with Y = nDM/s, ⇢ = s
2(m⇡)
H(m⇡)

, and

x = m⇡/T . The SIMP paradigm requires that the dark

sector remains in kinetic equilibrium with the SM [7],

this is accomplished via a dark Higgs [13] or additional

dark gauge bosons such as the Z
0 [14, 15], which are not

discussed further in this work.

In the case of a resonance (mV ⇡ 3m⇡) the thermal av-

erage takes a Breit-Wigner form as discussed in Ref. [16]:

h�ijk!mnv
2
iR =

3

4
⇡x

3
1X

l=0

bl

l!
Gl(zR;x), (41)

with zR = ✏ + i�, � = mV �
9m2

⇡
, and ✏ = m

2
V �9m2

⇡
9m2

⇡
. In

the case of SIMP mesons with a significant vector meson
We choose a small epsilon [say, 0.1 (near resonance) ] 

and a small gamma (NWA)

New diagrams involving dark vector mesons

⇡+⇡�⇡0 ! ! ! K+K�(K0K0)

(for 3 pi resonance case)

We can dial  and  independently ! 

-  

-

mπ mV

mπ ∝ ΛQCDmq

m2
V ∝ Λ2

QCD



Results

•The allowed parameter space is in a better 
shape now, especially for 2 pi resonance 
case
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.
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FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and
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FIG. 3: Similar contours of relic density for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass as in Fig. 2. Vector

meson masses are taken o↵ the resonance with ✏V = 0.3, and c1 � c2 = �1 and c3 = 1 are chosen.

u2 = 1
3 (v

2
1 + v22 + v23) for three-pion resonances. Then,

we can solve the Boltzmann equation by fixing the vector

meson masses or ✏V and find the condition for the correct

relic density.

In Fig. 2, we illustrate contours of constant relic den-

sity (⌦h2
⇡ 0.119) for m⇡ vs m⇡/f⇡ and the dark

pion self-scattering cross section as a function of m⇡

for the value of f⇡ that yields the correct relic den-

sity. Parametrizing vector meson masses by mV =

2(3)m⇡
p
1 + ✏V on left(right) plots, we have chosen c1 �

c2 = �1, c3 = 1 and ✏V = 0.1 for both plots in Fig. 2.

Taking the WZW terms without vector mesons, we show

the relic density condition in black dot-dashed lines and

the self-scattering cross section without vector mesons in

black dotted lines in both plots, respectively. For di↵er-

ent choices of a, the relic density condition is satisfied in

colored solid lines and the corresponding self-scattering

cross sections are shown in colored dashed lines.

As can be seen in Fig. 2, the value of m⇡/f⇡ needed

for the correct relic density is reduced due to vector me-

son resonances with a = O(1) (a ⌧ 1) for mV ⇠ 2m⇡

(mV ⇠ 3m⇡), as compared with the case with the WZW

terms without vector mesons. The self-scattering cross

section in our scenario with vector mesons is greatly re-

duced due to a smaller value of m⇡/f⇡ than in the case

without vector mesons. We have checked that varying

the anomalous parameters c1,2,3, acceptable values for

the relic density and the self-scattering cross section can

be obtained within the validity region of chiral perturba-

tion theory with light vector mesons.

We remark on the vector meson coupling, gV ⇡⇡ =
3
2 (1)

p
a(m⇡/f⇡)

p
1 + ✏V , near the three(two)-pion reso-

nance, from Eqs. (14) and (15). First, for mV ⇠ 3m⇡,

c1 � c2 = �1 and c3 = 1 (on right in Fig. 2), the correct

relic density requires m⇡/f⇡ . 6(4.5) for a = 0.1(0.01)

and m⇡ . 1GeV, but we need gV ⇡⇡ . 3.0(0.7) in this

case. For mV ⇠ 2m⇡, c1 � c2 = �1 and c3 = 1

(on left in Fig. 2), the correct relic density requires

m⇡/f⇡ . 5.5(4) for a = 1(0.1) and m⇡ . 1GeV, result-

ing in gV ⇡⇡ . 5.8(1.3), which is comparable to the case

with mV ⇠ 3m⇡. Then, the unitarity violation is delayed

to much higher energy scales due to vector mesons in our

scenario, although not far from the scale of vector meson

masses, for instance, through V ⇡ ! ⇡⇡.

O↵ the resonance poles, there is still a meaningful

improvement of perturbativity with vector mesons. In

Figs. 3 and 4, we take the vector meson masses o↵

the resonance poles to ✏V = 0.3 and 0.5 with respect

to mV = 2m⇡ and mV = 3m⇡ on left and right panels,

respectively. With mV = 3m⇡
p
1 + ✏V and ✏V = 0.5,

the correct relic density requires m⇡/f⇡ . 8(6) for

a = 0.1(0.01) and m⇡ . 1GeV, thus gV ⇡⇡ . 4.6(1.6);

with mV = 2m⇡
p
1 + ✏V and ✏V = 0.3, the correct

relic density requires m⇡/f⇡ . 8(6) for a = 1(0.1) and

m⇡ . 1GeV, thus gV ⇡⇡ . 9(2). Therefore, we may tol-

erate vector meson masses to be further o↵ the resonance

conditions, mV = 2m⇡ or mV = 3m⇡, being consistent

with perturbativity and extending a viable parameter

space.

Before closing, two remarks are in order. First of all,
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FIG. 4: Similar contours of relic density for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass as in Fig. 2. Vector

meson masses are taken o↵ the resonance with ✏V = 0.5, and c1 � c2 = �1 and c3 = 1 are chosen.

if the assumption of degenerate masses is relaxed, the

thermal relic density could be achieved in some interest-

ing parameter space, which we hope to return in a future

publication. Secondly, in the SIMP scenario, the dark

sector is required to remain in kinetic equilibrium with

the SM [13]. This is accomplished via portal interac-

tions for dark scalars such as sigma field (or dark Higgs)

[35, 36] or dark photon [27, 37, 38], the details of which

would deserve a further study for the detection of SIMP

dark matter.

CONCLUSIONS

We have considered a SIMP scenario where dark pi-

ons in the dark QCD are light dark matter candidates.

Including dark vector mesons in the hidden gauge sym-

metry scheme, we showed that the 3 ! 2 annihilation

cross section can be enhanced near resonance poles to re-

alize the SIMP freeze-out mechanism, while reducing the

self-scattering cross section. As a result, we proposed

a consistent scenario for natural light dark matter with

3 ! 2 processes where there is no perturbativity prob-

lem for the parameter values rendering the correct relic

density.
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APPENDIX

Here we provide the details for the chiral Lagrangian

with vector mesons for QCD-like chiral symmetry,

SU(3)L ⇥ SU(3)R/SU(3)V , in the hidden local gauge

symmetry scheme. We also list the anomalous WZW

Lagrangian that is responsible for four-point interactions

between dark pions and vector mesons.

It is convenient to introduce the fields which transform

under global SU(3)L ⇥ SU(3)R and local SU(3)V as fol-

lows:

⇠L(x) ! U(x)⇠L(x)L
† (27)

⇠R(x) ! U(x)⇠R(x)R
† (28)

gVµ(x) ! U(x) [@µ � igVµ(x)]U
†(x) (29)

Dµ⇠L = (@µ � igVµ)⇠L(x) + i⇠L(x)lµ (30)

Dµ⇠R = (@µ � igVµ)⇠R(x) + i⇠R(x)rµ (31)

Here L 2 SU(3)L, R 2 SU(3)R and U(x) 2 SU(3)V ,

and we have implemented the global SU(3)L ⇥ SU(3)R
as local symmetries, by introducing lµ and rµ as gauge

fields of the local SU(3)L⇥SU(3)R gauge symmetries and

identifying them as the gauge bosons of any additional

dark gauge symmetries.

Then the chiral Lagrangian for dark pions and vector



Conclusion
• Hidden (dark) QCD models with CSI make an interesting 

possibility to study the origin of EWSB, (C)DM


• WIMP scenario is still viable, and will be tested to some 
extent by precise measurements of the Higgs signal 
strength and by discovery of the singlet scalar, which is 
however a formidable task unless we are very lucky


• SIMP scenario using 3->2 scattering via WZW term is 
interesting, but there are a few issues which ask for 
further study (dark resonance could play an important role 
for thermal relic and kinetic contact with the SM sector)


