Gribov copies in the quark propagator

Gerhard Kalusche, Dale Lawlor and Jon-Ivar Skullerud

Department of Theoretical Physics, National University of Ireland Maynooth, Maynooth, Co Kildare, Ireland

Introduction

In QCD, gauge-fixing is not unique. This leads to the appearance of Gribov copies, which are multiple gauge field configurations that satisfy the same gauge-fixing condition, but still belong to the same gauge orbit. There have been a number of lattice studies investigating the impact of Gribov copies on gluon and ghost propagator such as [1]. In contrast, to our knowledge, no studies on the effect of Gribov copies on the quark propagator had previously been carried out. This poster contains results from a study on Gribov copies in the quark propagator [2, 3].

Gribov Copy Results

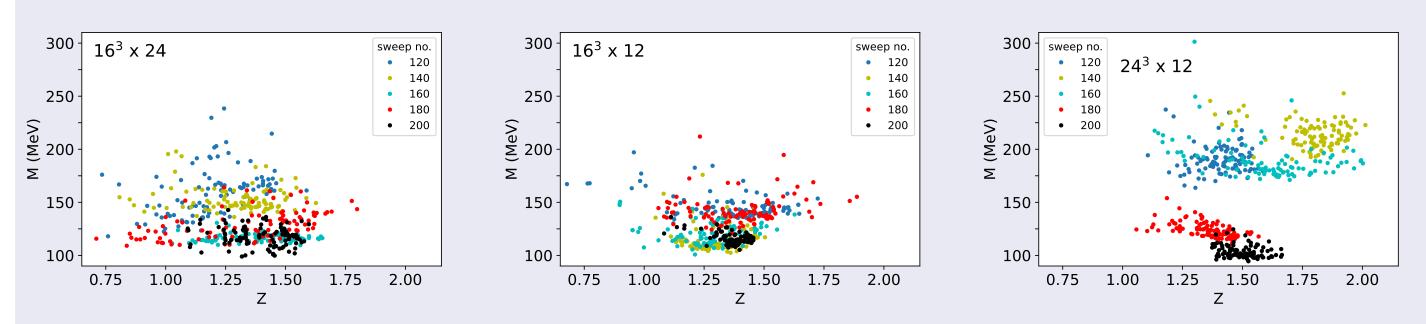


Figure: The quark mass function M(p) and wave function Z(p) at four-momentum $K(p) \approx 500 \,\text{MeV}$, for the three lattice volumes. Different colours represent the 5 different gauge configurations; each point represents a Gribov copy, of which there are 100.

Computational Setup

β	κ	<i>a</i> (fm)	$m_\pi/m_ ho$	$m_q \; ({\rm MeV})$	$N_s N$	$_{\tau} V (\mathrm{fm}^3)$	T (MeV)
1.9	0.1680	0.178(6)	0.805(9)	56	24 1	2 78	94
1.9	0.1680	0.178(6)	0.805(9)	56	16 1	2 23	94
1.9	0.1680	0.178(6)	0.805(9)	56	16 2	4 23	47

Table: Simulation parameters: gauge coupling β , hopping parameter κ , lattice spacing a, pseudoscalar-to-vector mass ratio m_{π}/m_{ρ} , subtracted bare quark mass m_q , spatial and temporal extent N_s , N_{τ} , lattice volume V and temperature T.

- Simulated QCD with gauge group SU(2) (QC₂D) using a Wilson gauge action and $N_f = 2$ Wilson fermions [4, 5].
- Three different lattice volumes have been used to assess temperature and volume effects.
- The lattice configurations have been fixed to Landau gauge by maximising the functional $F[U;g] = \sum_{x,\mu} U^g_{\mu}(x)$ using a standard overrelaxation algorithm (with convergence precision 10^{-12}).
- Different Gribov copies have been obtained by repeating this procedure 100 times after a random gauge transformation, this has been done for 5 different gauge configurations for each of the three lattice volumes.

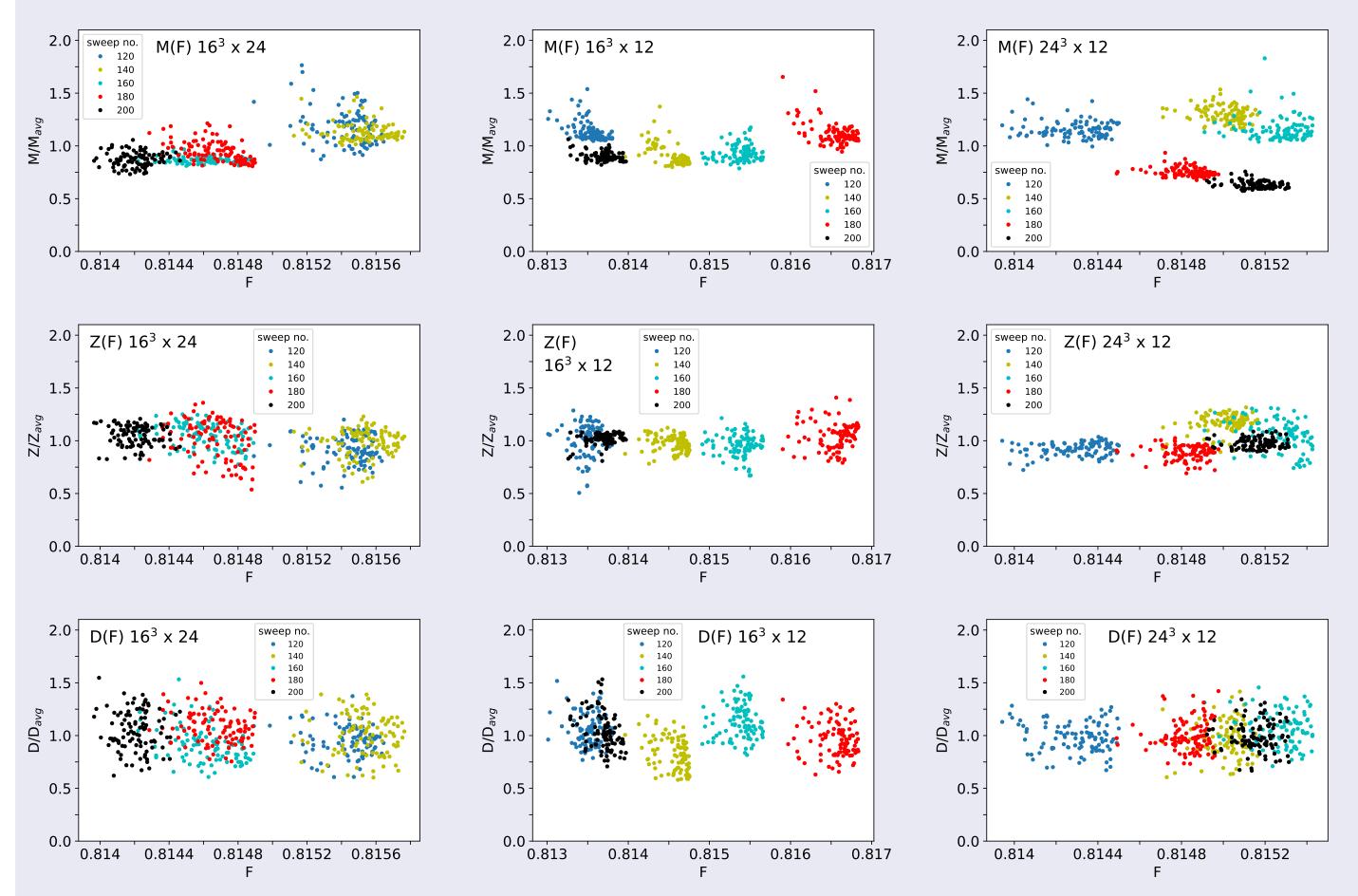


Figure: The quark mass function M(p) (top), wave function Z(p) (middle) and gluon propagator D(p) (bottom) at four-momentum $K(p) \approx 500$ MeV, for each of the three lattice volumes, versus the gauge fixing functional F. Different colours represent different gauge configurations, while each dot represents a Gribov copy.

Quark Propagator

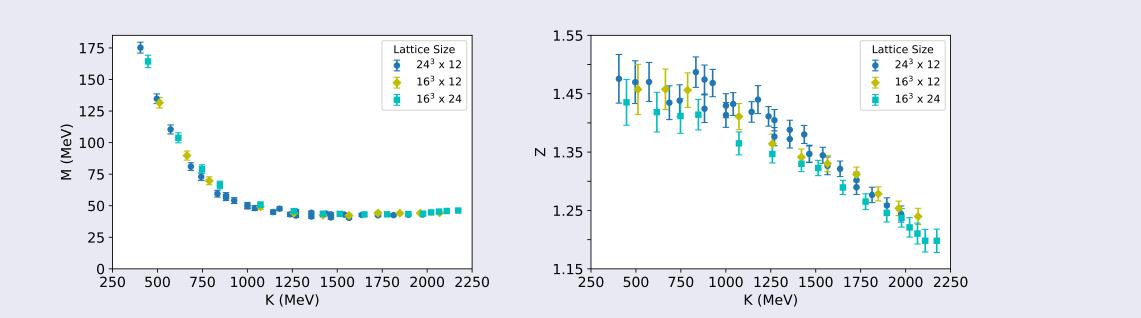
• The tree-level lattice fermion propagator with the Wilson action is given by

$$S(p) = \frac{1}{i \not k(p) + m_0 + \frac{a}{2}Q^2(p)}, \qquad (1)$$

where we have introduced the lattice momentum variables

$$K_{\mu}(p) = rac{1}{a} \sin(ap_{\mu}), \qquad \qquad Q_{\mu}(p) = rac{2}{a} \sin\left(rac{ap_{\mu}}{2}
ight), \qquad \qquad (2)$$

• The non-perturbative propagator is given by


$$S(p) = \frac{Z(p^2)}{i \not k(p) + M(p^2)},$$
(3)

where Z(p) is the wave function and M(p) is the tree-level corrected mass function, defined as

$$M(p) = \frac{i \operatorname{Tr} \left[k(p) S(p) \right]}{K^2(p) \operatorname{Tr} \left(S(p) \right)} \frac{m}{m + \frac{a}{2}Q^2(p)},$$

where *m* is the subtracted bare quark mass.

Factor Results

Conclusions

- The Gribov noise is somewhat smaller for the quark propagator than for the gluon propagator, for all 3 lattice volumes
- In the quark propagator;
 - In the 16³ spatial volumes, the Gribov noise is comparable to the gauge noise
 - In the 24³ volume, it is significantly smaller, with the Gribov noise more significant for Z(p) than for M(p)
- We see no clear evidence of any temperature dependence, as the results for the $16^3 \times 24$ and $16^3 \times 12$ are very similar
- No correlation was found between the form factors
- We find no evidence of any correlation between the values of the quark or gluon propagator and the gauge fixing functional

References

(4)

- Axel Maas. "Dependence of the propagators on the sampling of Gribov copies inside the first Gribov region of Landau gauge". Annals Phys. 387 (2017), pp. 29-61.
- Gerhard Kalusche, Dale Lawlor, and Jon-Ivar Skullerud. "Gribov copies in the quark propagator". (May 2024). arXiv: 2405.17301 [hep-lat].

Figure: The tree-level corrected mass function M(p) (left) and wave function Z(p) (right) versus four-momentum K(p) for all three lattice volumes, each averaged over 50 configurations. The data have been cylinder cut to reduce lattice artefacts.

- The mass function exhibits a clear infrared enhancement signalling dynamical chiral symmetry breaking
- The wave function Z(p) is enhanced in the infrared, unlike what has been found in SU(3) with various fermion formulations
- We do not find any strong temperature or finite-volume effects in either quantity

- Gerhard Kalusche, Dale Lawlor, and Jon-Ivar Skullerud. *QuarkGribovCopies*. 3 Version v1.0. May 2024. URL: https://doi.org/10.5281/zenodo.11209167.
- Seamus Cotter, Pietro Giudice, Simon Hands, and Jon-Ivar Skullerud. "Towards the |4| phase diagram of dense two-color matter". *Phys.Rev.* D87 (2013), p. 034507.
- Tamer Boz, Pietro Giudice, Simon Hands, and Jon-Ivar Skullerud. "Dense two-color 5 QCD towards continuum and chiral limits". Phys. Rev. D 101.7 (2020), p. 074506.

Acknowledgements

GK acknowledges support from a Maynooth University SPUR fellowship. DL is supported by Maynooth University's John and Pat Hume Scholarship. We wish to acknowledge the Irish Centre for High-End Computing (ICHEC) and the STFC DiRAC HPC Facility (www.dirac.ac.uk) for the provision of computational facilities and support.