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Numerical inference tasks

§ Given a (scalar) function f with a vector of parameters θ, one might want to:

Optimise

θMax “ max
θ

f pθq

Explore

draw/sample θ „ f

Integrate
ż

f pθqdV
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(incomplete) list of techniques

§ Optimisers
§ Gradient descent (ADAM, BFGS)
§ simplex method (Nelder-Mead)
§ Genetic algorithms (Diver)

§ Samplers
§ Metropolis-Hastings (PyMC, MontePython)
§ Hamiltonian Monte Carlo (Stan, blackjax)
§ Ensemble sampling (emcee, zeus).
§ Variational Inference (Pyro, NIFTY)

§ Integrators
§ Nested sampling (MultiNest, dynesty)
§ Thermodynamic integration
§ Sequential Monte Carlo (pocomc)
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MCMC

Nested sampling
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MCMC
§ Single “walker”

§ Explores posterior

§ Fast, if proposal matrix is tuned

§ Parameter estimation, suspiciousness
calculation

§ Channel capacity optimised for generating
posterior samples

Nested sampling
§ Ensemble of “live points”

§ Scans from prior to peak of likelihood

§ Slower, no tuning required

§ Parameter estimation, model comparison,
tension quantification

§ Channel capacity optimised for computing
partition function
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Nested sampling: numerical Lebesgue integration

0. Start with N random samples over the space.

i. Delete outermost sample, and replace with a
new random one at higher integrand value.

§ The “live points” steadily contract around
the peak(s) of the function.

§ Discarded “dead points” can be weighted to
form posterior, prior, or anything in between.

§ Estimates the density of states and
partition function logZpβq.

§ The evolving ensemble of live points allows:
§ implementations to self-tune,
§ exploration of multimodal functions,
§ global and local optimisation.
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The nested sampling zoo [2205.15570]

MultiNest [0809.3437]

UltraNest [2101.09604]
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PolyChord [1506.00171]

NeuralNest [1903.10860]

nessai [2102.11056]
nora [2305.19267]
jaxnest [2012.15286]

DNest [1606.03757]

ProxNest [2106.03646]
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dynesty [1904.02180]
<wh260@cam.ac.uk> willhandley.co.uk/talks 5 / 11

https://arxiv.org/abs/2205.15570
https://arxiv.org/abs/0809.3437
https://arxiv.org/abs/2101.09604
https://arxiv.org/abs/2306.16923
https://arxiv.org/abs/1506.00171
https://arxiv.org/abs/1903.10860
https://arxiv.org/abs/2102.11056
https://arxiv.org/abs/2305.19267
https://arxiv.org/abs/2012.15286
https://arxiv.org/abs/1606.03757
https://arxiv.org/abs/2106.03646
https://arxiv.org/abs/1904.02180
mailto:wh260@cam.ac.uk
https://www.willhandley.co.uk/talks


Cross sections & Bayesian detection
Applications of nested sampling

David Yallup

PDRA

§ Nested sampling for cross section
computation/event generation σ “

ż

Ω
dΦ|M|2.

§ Nested sampling can explore the phase space Ω
and compute integral blind with comparable
efficiency to HAAG/RAMBO [2205.02030].

§ Bayesian sparse reconstruction [1809.04598]
applied to bump hunting allows evidence-based
detection of signals in phenomenological
backgrounds [2211.10391].
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Lattice field theory
Applications of nested sampling

David Yallup

PDRA

§ Consider standard field theory Lagrangian:

Z pβq “

ż

Dϕe´βSpϕq, Spϕq “

ż

dxµLpϕq

§ Discretize onto spacetime grid.

§ Compute partition function
§ NS unique traits:

§ Get full partition function for free
§ allows for critical tuning
§ avoids critical slowing down

§ Applications in lattice gravity, QCD,
condensed matter physics
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Fast estimation of small p-values [2106.02056](PRL)
Applications of nested sampling

Andrew Fowlie

§ p-value: Ppλ ą λ˚|H0q – probability that test
statistic λ is at least as great as observed λ˚.

§ Computation of a tail probability from sampling
distribution of λ under H0.

§ For gold-standard 5σ, this is very expensive to
simulate directly („ 109 by definition).

§ Need insight/approximation to make efficient.

§ Nested sampling is tailor-made for this, just make
switch: X Ø p, L Ø λ, θ Ø x .

§ The only real conceptual shift is switching the
integrator from parameter- to data-space.
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Quantification of fine tuning [2101.00428] [2205.13549]
Applications of nested sampling

GAMBIT
dm-cosmo WG

§ Example: Cosmological constraints on decaying
axion-like particles [2205.13549]. (Also vary

cosmology, τn and nuisance params)

§ Data: CMB, BBN, FIRAS, SMM, BAO.

§ Standard profile likelihood fit shows ruled out
regions and best-fit point.

§ Nested sampling scan:
§ Quantifies amount of parameter space ruled out

with Kullback-Liebler divergence DKL.
§ Identifies best fit region as statistically irrelevant

from information theory/Bayesian.
§ No evidence for decaying ALPs. Fit the data

equally well: but more constrained parameters
create Occam penalty.
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Model comparison Z “ PpD|Mq

§ Bayesian model comparison allows mathematical derivation of key philosophical principles.

Viewed from data-space D:

Popper’s falsificationism
§ Prefer models that make bold predictions.

§ if proven true, model more likely correct.

§ Falsificationism comes from normalisation

Viewed from parameter-space θ:

Occam’s razor
§ Models should be as simple as possible

§ . . . but no simpler

§ Occam’s razor equation:

logZ “ xlogLyP ´ DKL

§ “Occam penalty”: KL divergence between
prior π and posterior P.

DKL „ log
Prior volume

Posterior volume
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Conclusions
github.com/handley-lab

§ Nested sampling is a multi-purpose numerical tool for:
§ Numerical integration

ş

f pxqdV ,
§ Exploring/scanning/optimising a priori unknown functions,
§ Quantifying fine-tuning with Bayesian theory

§ It is applied widely across cosmology & particle physics.

§ It’s unique traits as the only numerical Lebesgue integrator
mean with compute it will continue to grow in importance.
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