A quantum computing study of the static potential in (2+1)D QED

In collaboration with Arianna Crippa and Karl Jansen (DESY)

Enrico Rinaldi – 2024/08/21 – Lead Research Scientist at

QCHSC2024, Cairns

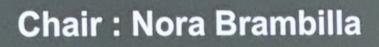
A quantum computing study ...

- A new paradigm for scientific computing (overview by Karl Jansen)
- Quantum algorithms work by manipulating quantum states in Hilbert space and measuring them
- Represent the full wavefunction of a quantum many-body system
- Can do unitary time evolution of such wavefunction
- Digital quantum computing implements unitary operators as sequence of gates

- · A new paradigm for scientific computing (overview by Karl Jansen)
- Quantum algorithms work by manipulating quantum states in Hilbert space and measuring them
- Represent the full wavefunction of a quantum many-body system
- Can do unitary time evolution of such wavefunction
- Digital quantum computing implements unitary operators as sequence of gates

THE XVIth OUARK CONFINEMENT AND HADRON SPECTRUM CONFERENCE

19-24 AUGUST 2024 **Cairns Convention Centre**



Karl Jansen: Quantum Computing: a future perspective for scientific computing

- · A new paradigm for scientific computing (overview by Karl Jansen)
- Quantum algorithms work by manipulating quantum states in Hilbert space and measuring them
- Represent the full wavefunction of a quantum many-body system
- Can do unitary time evolution of such wavefunction
- Digital quantum computing implements unitary operators as sequence of gates

THE XVIth OUARK CONFINEMENT AND HADRON SPECTRUM CONFERENCE

19-24 AUGUST 2024 **Cairns Convention Centre**

Chair : Nora Brambilla

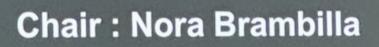
Karl Jansen: Quantum Computing: a future perspective for scientific computing

$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$

- · A new paradigm for scientific computing (overview by Karl Jansen)
- Quantum algorithms work by manipulating quantum states in Hilbert space and measuring them
- Represent the full wavefunction of a quantum many-body system
- Can do unitary time evolution of such wavefunction
- Digital quantum computing implements unitary operators as sequence of gates

THE XVIth OUARK CONFINEMENT AND HADRON SPECTRUM CONFERENCE

19-24 AUGUST 2024 **Cairns Convention Centre**



Karl Jansen: Quantum Computing: a future perspective for scientific computing

$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$

 $|\Psi(t_1)\rangle = U|\Psi(t_0)\rangle$

- · A new paradigm for scientific computing (overview by Karl Jansen)
- Quantum algorithms work by manipulating quantum states in Hilbert space and measuring them
- Represent the full wavefunction of a quantum many-body system
- Can do unitary time evolution of such wavefunction
- Digital quantum computing implements unitary operators as sequence of gates

THE XVIth OUARK CONFINEMENT AND HADRON SPECTRUM CONFERENCE

19-24 AUGUST 2024 **Cairns Convention Centre**

Karl Jansen: Quantum Computing: a future perspective for scientific computing

$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$

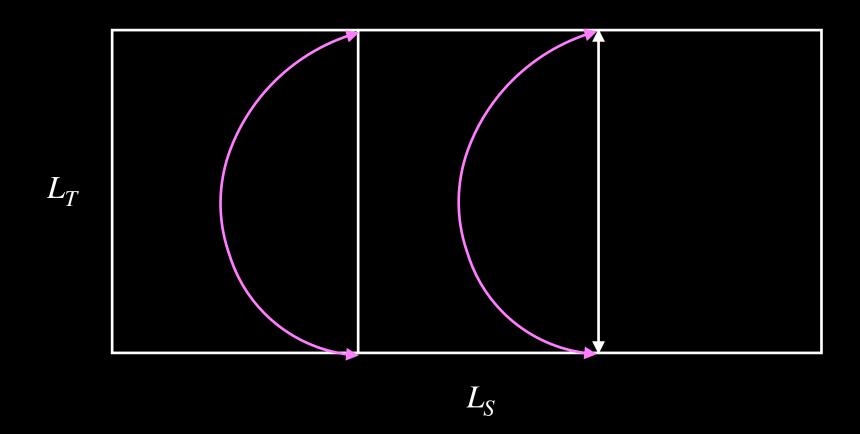
 $|\Psi(t_1)\rangle = U|\Psi(t_0)\rangle$

 $U = e^{-iHt} \equiv \bigcup_{i} U_i$

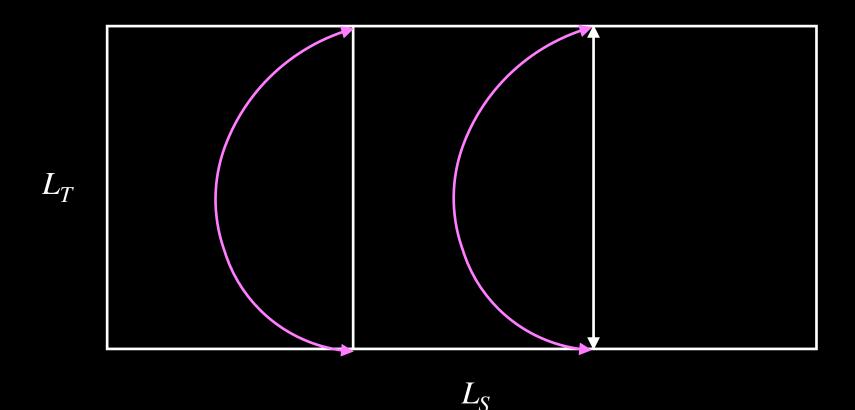
... of the static potential ...

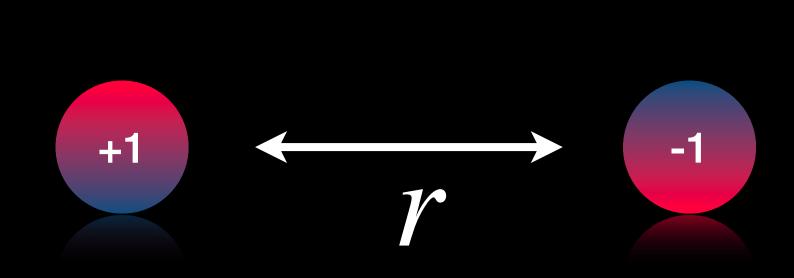
- In Path Integral Monte Carlo we extract this by computing Wilson Loops of various dimensions
- In quantum computing we have direct access to the Hamiltonian and the states of the system!
- By changing the distance between static charges we can study the force between them
- The potential V(r) is the energy of the ground state with 2 opposite static charges

- In Path Integral Monte Carlo we extract this by computing Wilson Loops of various dimensions
- In quantum computing we have direct access to the Hamiltonian and the states of the system!
- By changing the distance between static charges we can study the force between them
- The potential V(r) is the energy of the ground state with 2 opposite static charges

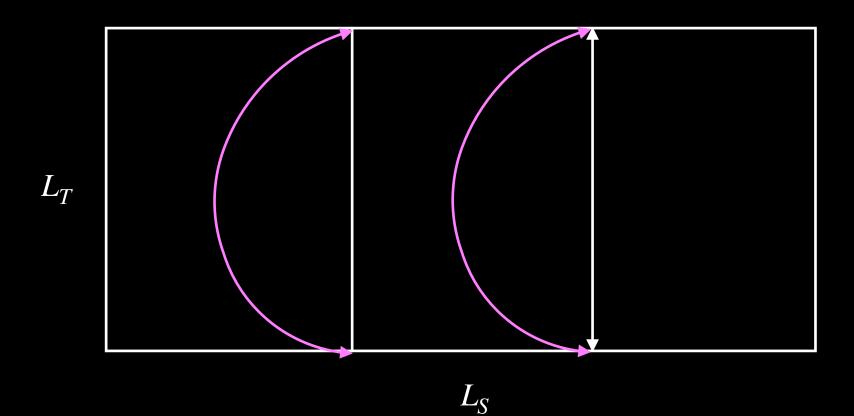


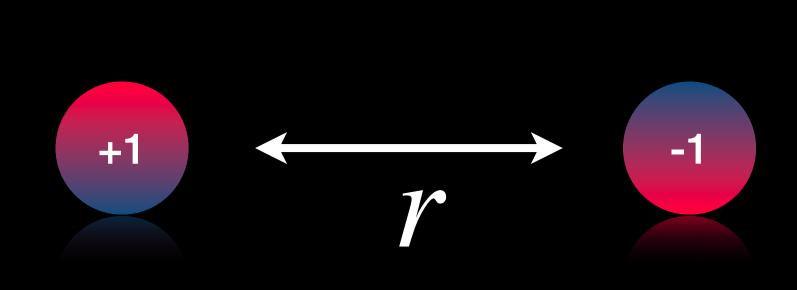
- In Path Integral Monte Carlo we extract this by computing Wilson Loops of various dimensions
- In quantum computing we have direct access to the Hamiltonian and the states of the system!
- By changing the distance between static charges we can study the force between them
- The potential V(r) is the energy of the ground state with 2 opposite static charges





- In Path Integral Monte Carlo we extract this by computing Wilson Loops of various dimensions
- In quantum computing we have direct access to the Hamiltonian and the states of the system!
- By changing the distance between static charges we can study the force between them
- The potential V(r) is the energy of the ground state with 2 opposite static charges





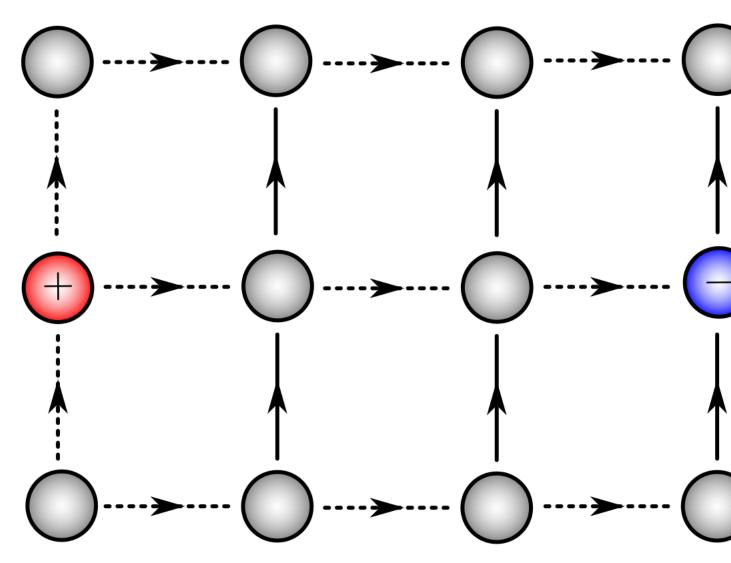
$V(r) = \langle \Psi_0(r) | \hat{H} | \Psi_0(r) \rangle$

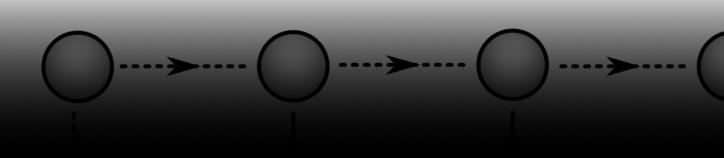
... in (2+1)D QED

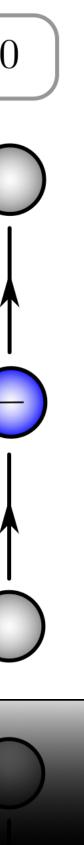
Hamiltonian Lattice QED In 2 spatial dimensions

- We use the Kogut–Susskind Hamiltonian formalism of lattice gauge theory. Time is continuous.
- The Hilbert space is defined as the tensor product of the local Hilbert spaces of each degree of freedom on the lattice
- A state is a superposition of amplitudes for each possible configuration of degrees of freedom on the lattice
 - Site: fermion Electron
 - Link: gauge Electric field

$$\bigcirc Q = -1$$
 $\bigoplus Q = 1$ $\bigcirc Q = 1$



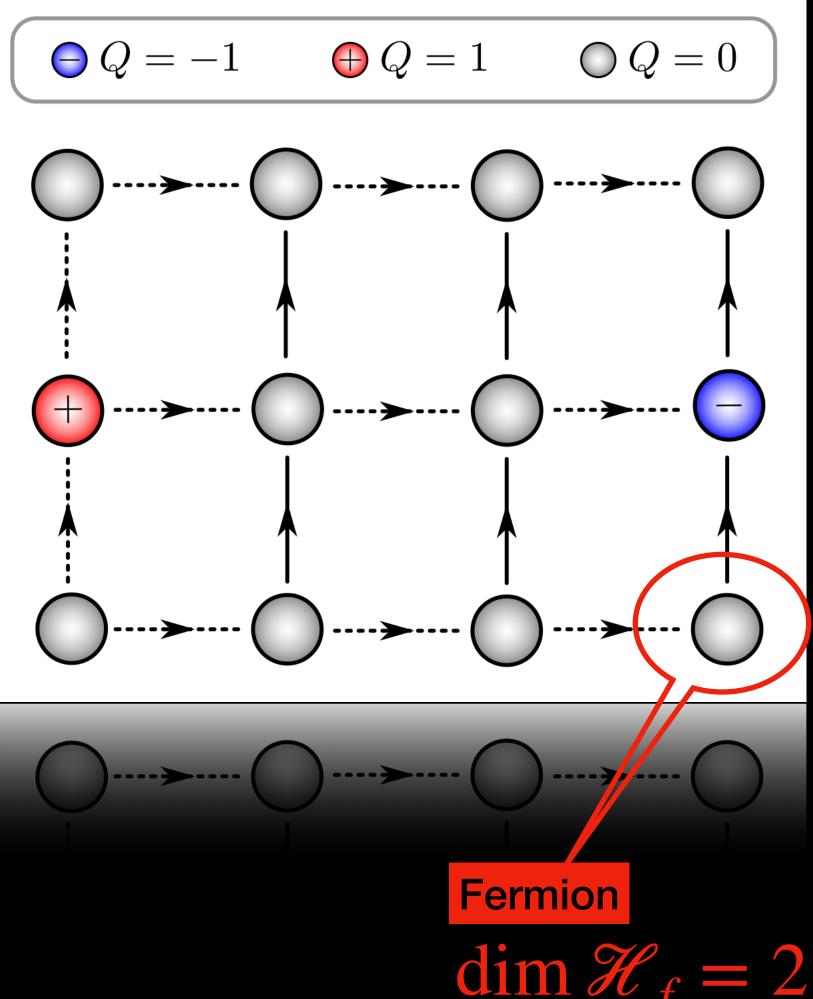




Hamiltonian Lattice QED In 2 spatial dimensions

- · We use the Kogut-Susskind Hamiltonian formalism of lattice gauge theory. Time is continuous.
- The Hilbert space is defined as the tensor product of the local Hilbert spaces of each degree of freedom on the lattice
- A state is a superposition of amplitudes for each possible configuration of degrees of freedom on the lattice
 - Site: fermion Electron
 - Link: gauge Electric field

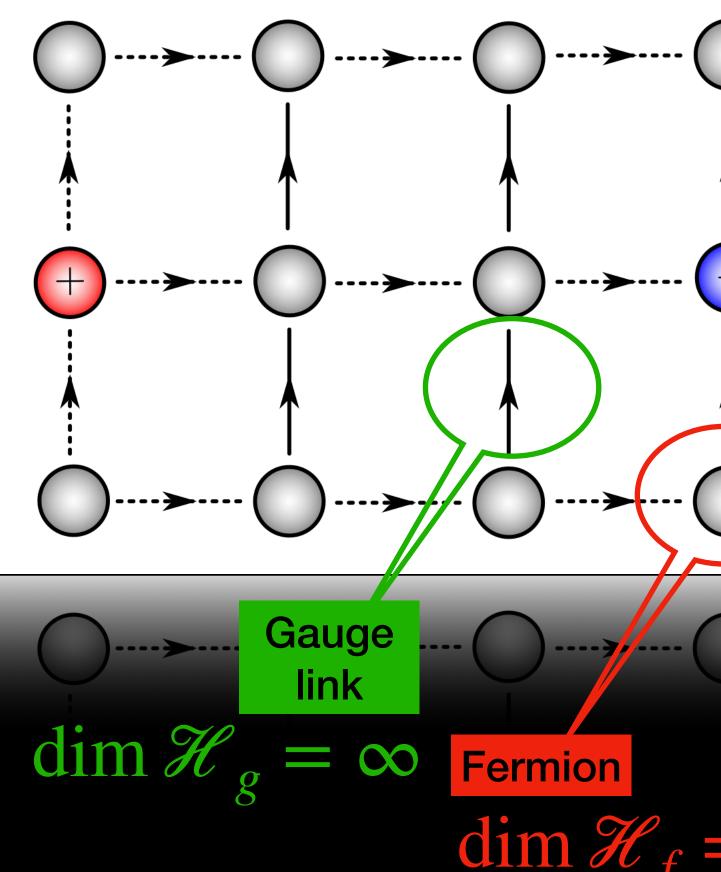
$$\bigcirc Q = -1$$
 $\bigoplus Q = 1$ $\bigcirc Q =$



Hamiltonian Lattice QED In 2 spatial dimensions

- We use the Kogut-Susskind Hamiltonian formalism of lattice gauge theory. Time is continuous.
- The Hilbert space is defined as the tensor product of the local Hilbert spaces of each degree of freedom on the lattice
- A state is a superposition of amplitudes for each possible configuration of degrees of freedom on the lattice
 - Site: fermion Electron
 - Link: gauge Electric field

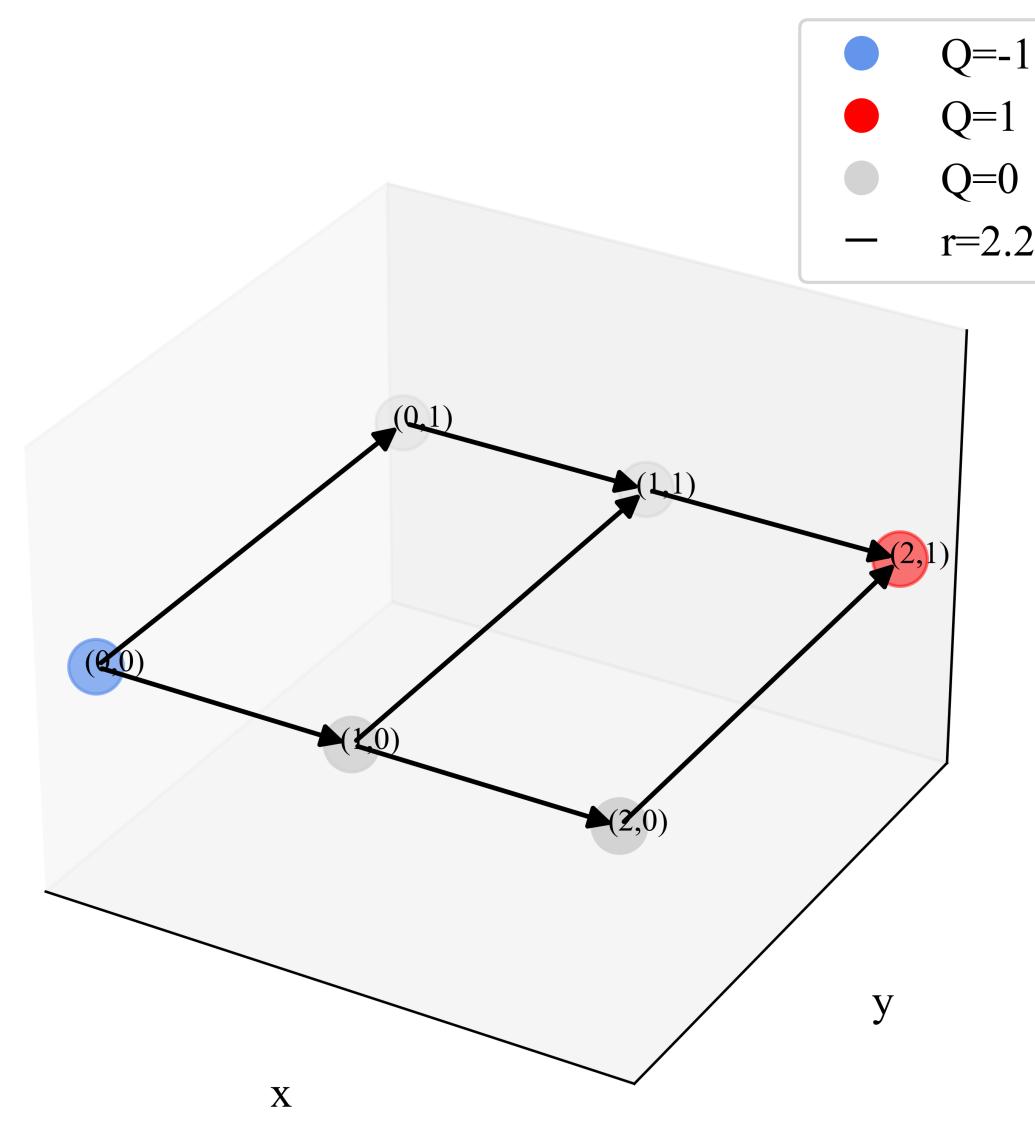
$$\Theta Q = -1$$
 $\Theta Q = 1$ $\Theta Q = 0$

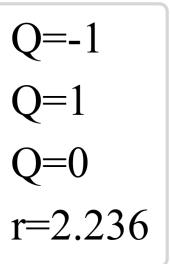


QED on qubits Electric and Magnetic terms

$$\hat{H}_{E} = \frac{g^{2}}{2} \sum_{\vec{n}} \left(\hat{E}_{\vec{n},x}^{2} + \hat{E}_{\vec{n},y}^{2} \right)$$
$$\downarrow$$
$$\hat{E}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = e_{\vec{n}} \left| e_{\vec{n}} \right\rangle$$

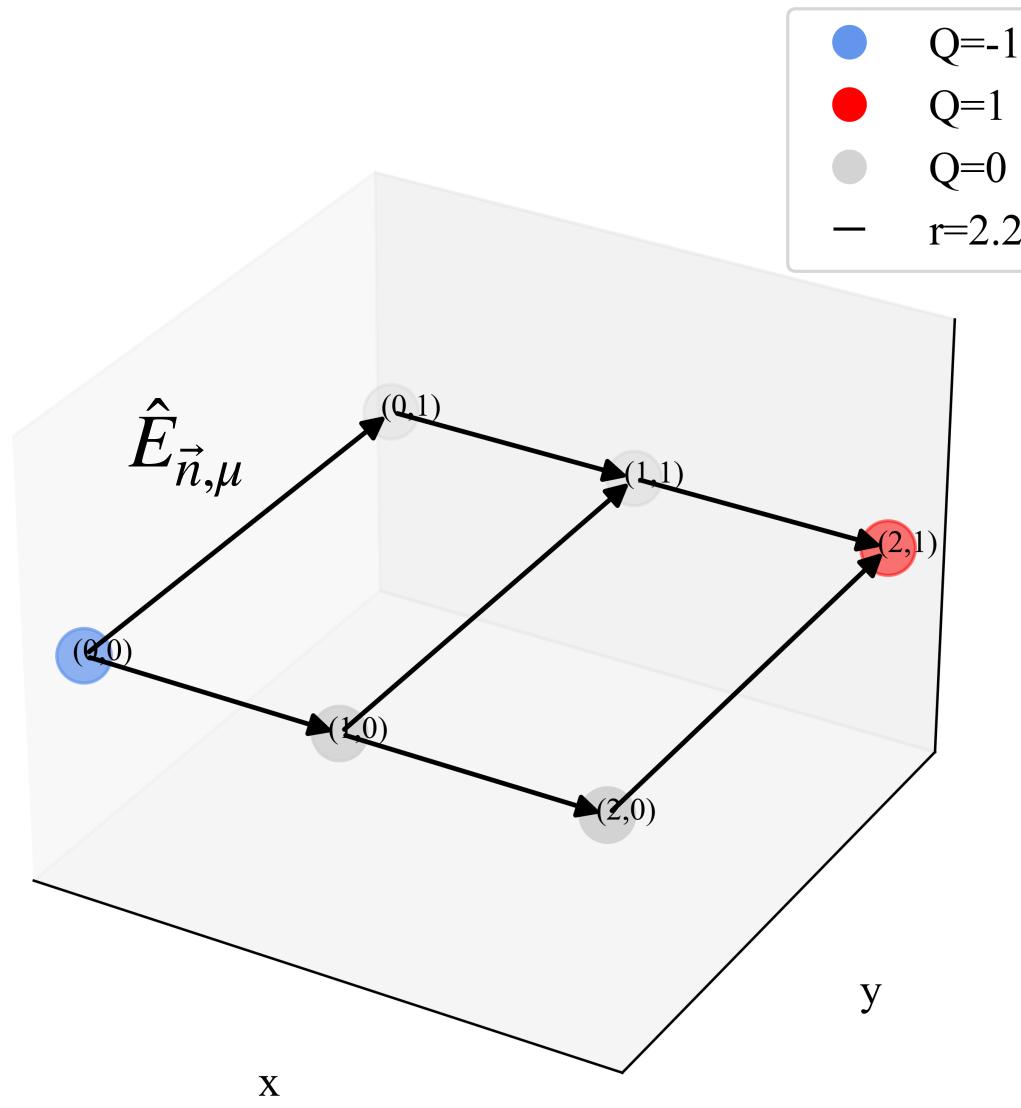
$$\hat{H}_{B} = -\frac{1}{2g^{2}} \sum_{\vec{n}} \left(\hat{U}_{\vec{n},x} \hat{U}_{\vec{n}+x,y} \hat{U}_{\vec{n}+y,x}^{\dagger} \hat{U}_{\vec{n},y}^{\dagger} + \dots \right)$$
$$\hat{U}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = \left| e_{\vec{n}} - 1 \right\rangle$$



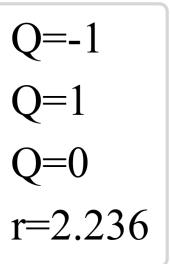


QED on qubits **Electric and Magnetic terms**

$$\hat{H}_{B} = -\frac{1}{2g^{2}} \sum_{\vec{n}} \left(\hat{U}_{\vec{n},x} \hat{U}_{\vec{n}+x,y} \hat{U}_{\vec{n}+y,x}^{\dagger} \hat{U}_{\vec{n},y}^{\dagger} + \dots \right)$$
$$\hat{U}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = \left| e_{\vec{n}} - 1 \right\rangle$$



erm



QED on qubits **Electric and Magnetic terms**

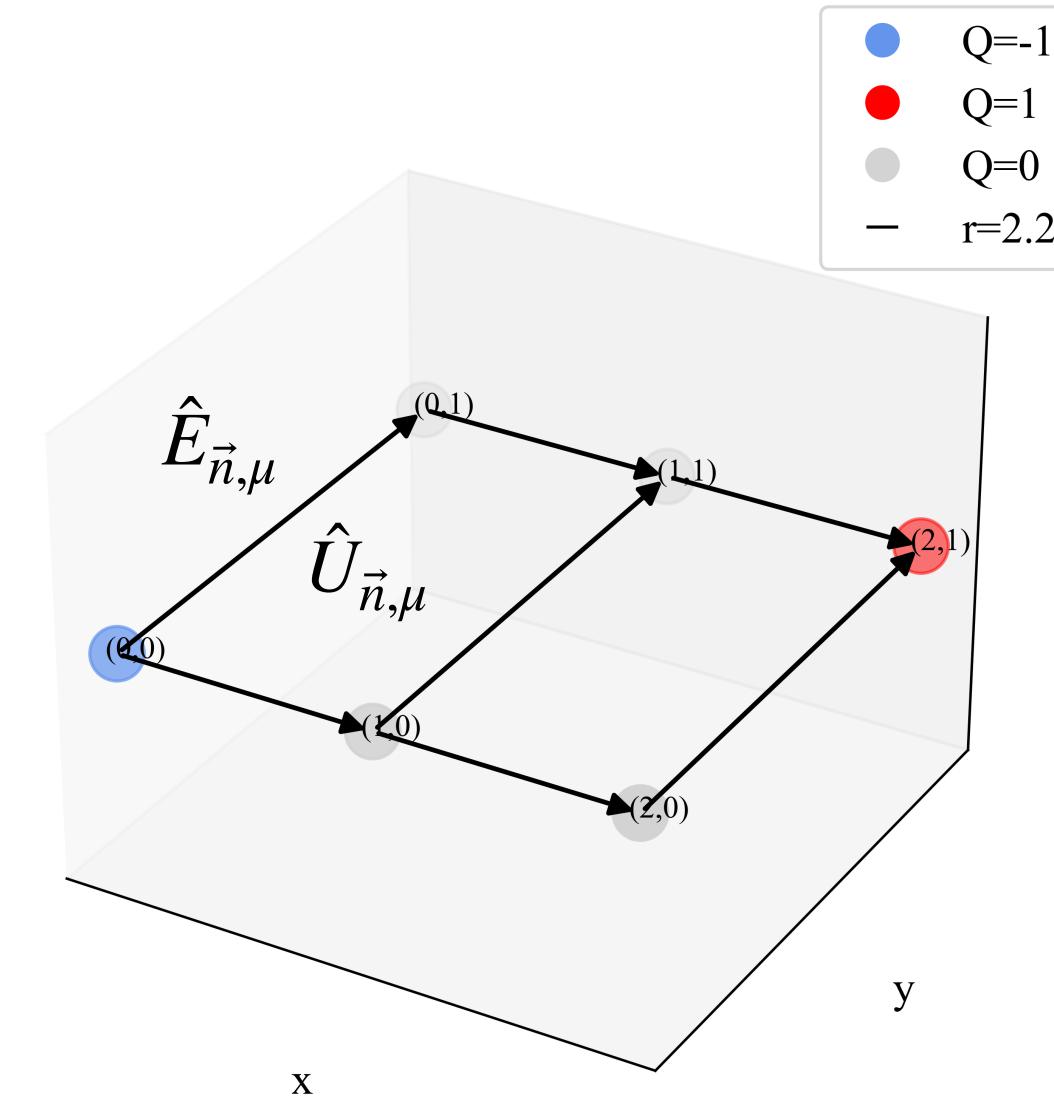
$$\hat{H}_{E} = \frac{g^{2}}{2} \sum_{\vec{n}} \left(\hat{E}_{\vec{n},x}^{2} + \hat{E}_{\vec{n},y}^{2} \right) \quad \text{Electric term}$$

$$\hat{L}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = e_{\vec{n}} \left| e_{\vec{n}} \right\rangle$$

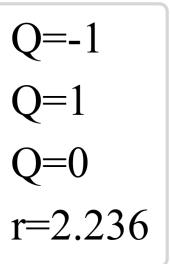
$$\hat{H}_{B} = -\frac{1}{2g^{2}} \sum_{\vec{n}} \left(\hat{U}_{\vec{n},x} \hat{U}_{\vec{n}+x,y} \hat{U}_{\vec{n}+y,x}^{\dagger} \hat{U}_{\vec{n},y}^{\dagger} + \dots \right)$$

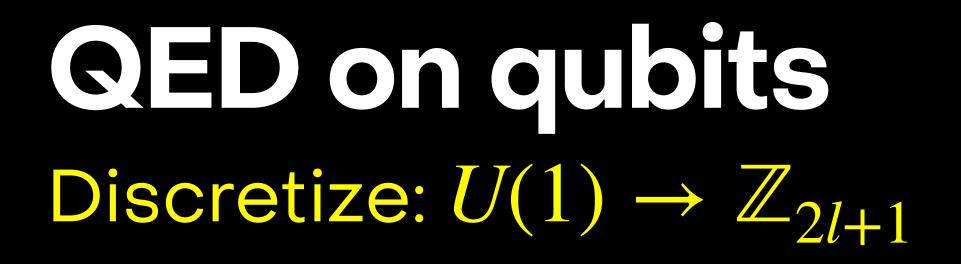
$$Magnetic t$$

$$\hat{U}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = \left| e_{\vec{n}} - 1 \right\rangle$$



erm



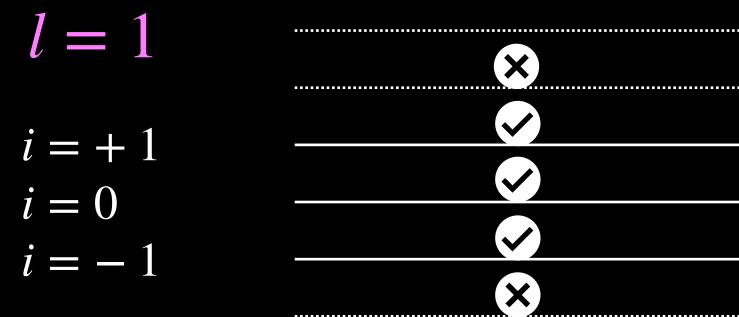


$$\hat{E}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = e_{\vec{n}} \left| e_{\vec{n}} \right\rangle$$

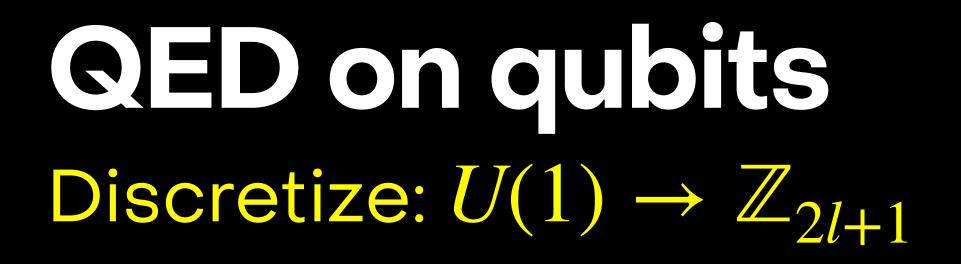
$$\swarrow$$

$$|e_{\vec{n}}\rangle = |-l_{\vec{n}}\rangle, |-l+1_{\vec{n}}\rangle, ..., |-1_{\vec{n}}\rangle, |0_{\vec{n}}\rangle,$$

Encoding to qubits:
l = 1 We need 2 qubits to represent 4
 states. 1 state is "unphysical"



$|+1_{\vec{n}}\rangle, |l-1_{\vec{n}}\rangle, |l_{\vec{n}}\rangle$

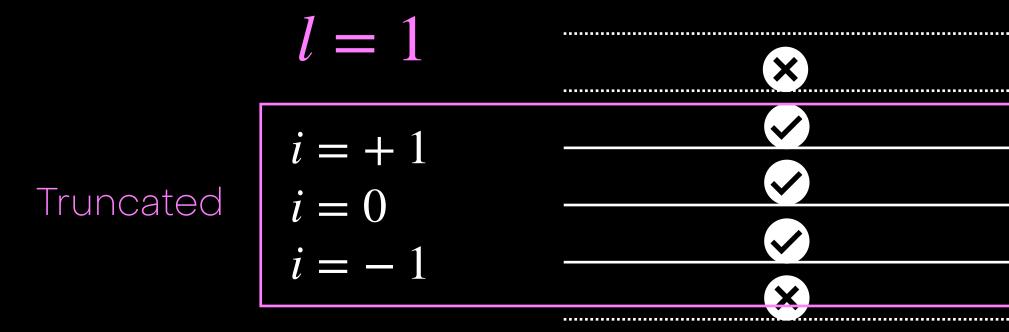


$$\hat{E}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = e_{\vec{n}} \left| e_{\vec{n}} \right\rangle$$

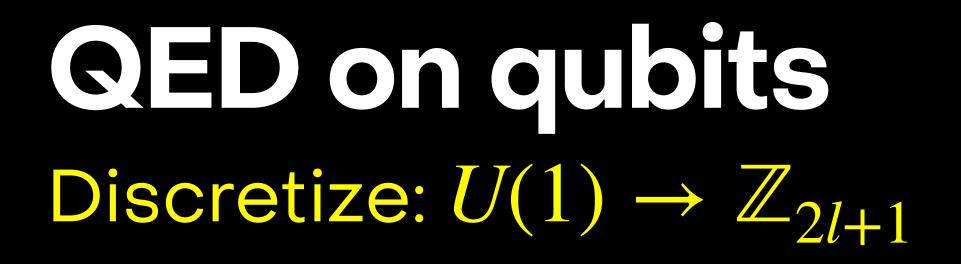
$$\swarrow$$

$$|e_{\vec{n}}\rangle = |-l_{\vec{n}}\rangle, |-l+1_{\vec{n}}\rangle, ..., |-1_{\vec{n}}\rangle, |0_{\vec{n}}\rangle,$$

Encoding to qubits: We need 2 qubits to represent 4 l = 1states. 1 state is "unphysical"



$|+1_{\vec{n}}\rangle, |l-1_{\vec{n}}\rangle, |l_{\vec{n}}\rangle$

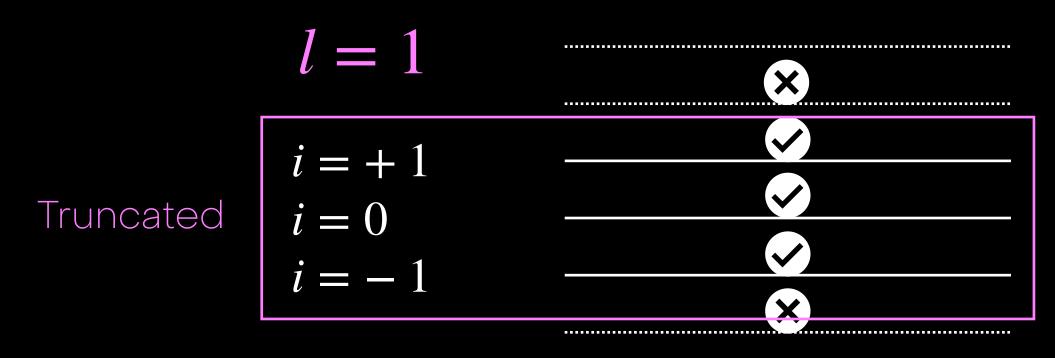


$$\hat{E}_{\vec{n},\mu} \left| e_{\vec{n}} \right\rangle = e_{\vec{n}} \left| e_{\vec{n}} \right\rangle$$

$$\swarrow$$

$$|e_{\vec{n}}\rangle = |-l_{\vec{n}}\rangle, |-l+1_{\vec{n}}\rangle, ..., |-1_{\vec{n}}\rangle, |0_{\vec{n}}\rangle,$$

Encoding to qubits: We need 2 qubits to represent 4 l = 1states. 1 state is "unphysical"



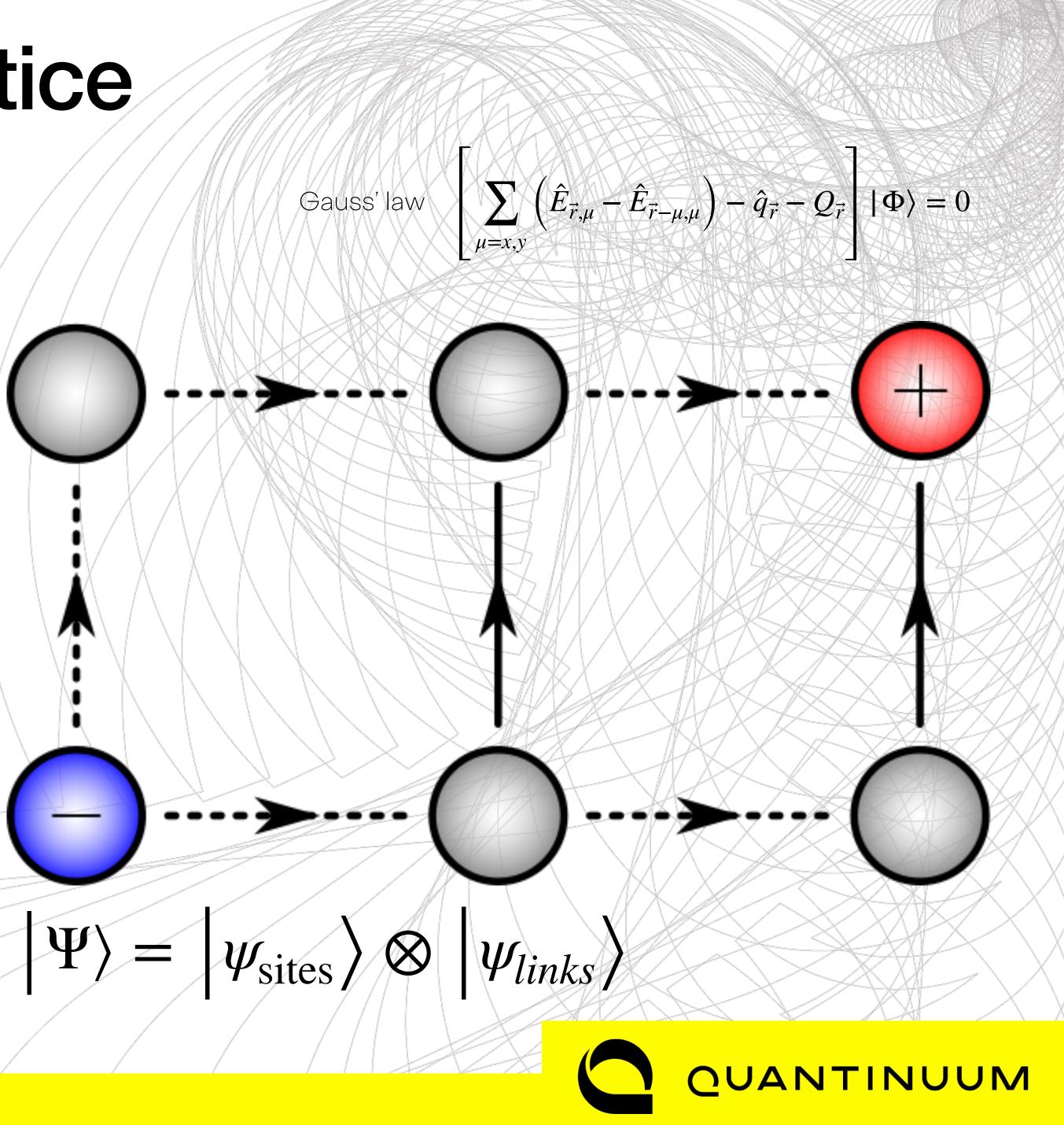
$|+1_{\vec{n}}\rangle, |l-1_{\vec{n}}\rangle, |l_{\vec{n}}\rangle$

Gray Encoding

$ i angle_{ m phys}$	i angle
$ {-1} angle_{ m phys}$	00 angle
$ 0 angle_{ m phys}$	01 angle
$ {+1} angle_{ m phys}$	11 angle
Unphysical	10 angle

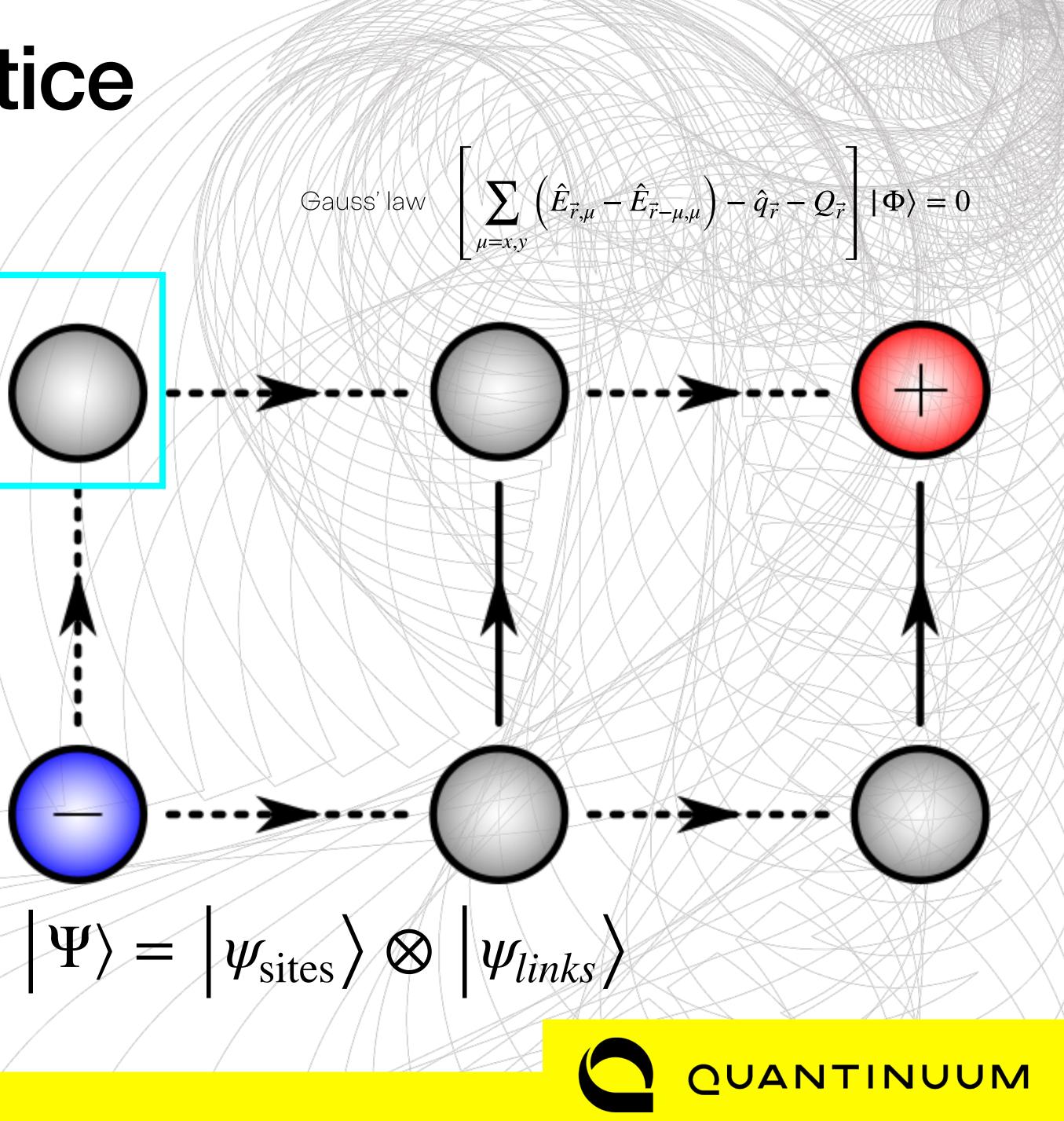
Example on a 3×2 lattice

- Using Gauss' law we reduce the number of dynamical degrees of freedom: 6 sites, 2 links
- We use <u>1 qubit for each site</u>
- We use <u>2 qubits for each link</u>
- Any state of this lattice QED theory is defined on 10 qubits
- This classically requires manipulating a vector with $2^{10} = 1024$ complex components



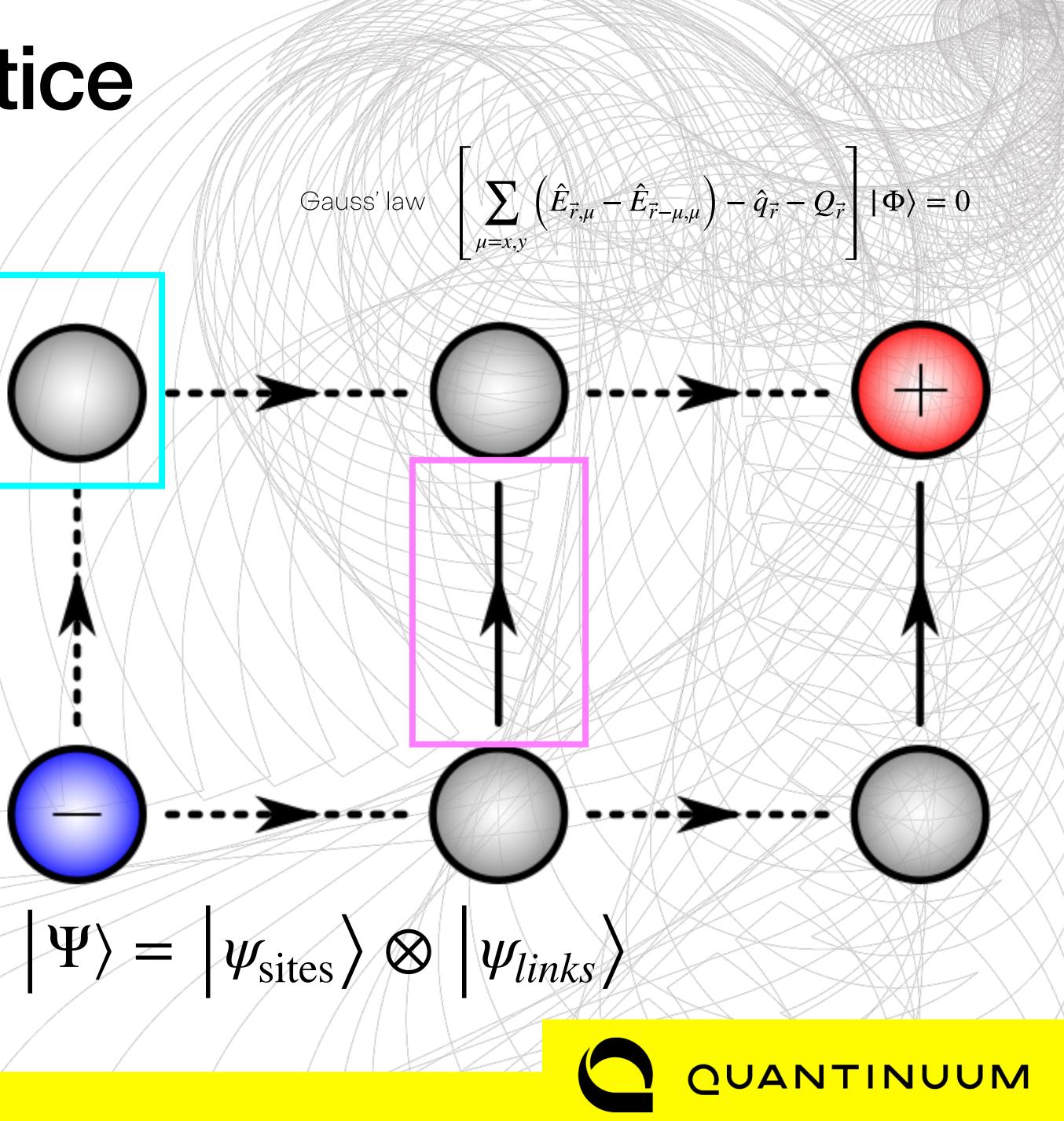
Example on a 3×2 lattice

- Using Gauss' law we reduce the number of dynamical degrees of freedom: 6 sites, 2 links
- We use <u>1 qubit for each site</u>
- We use <u>2 qubits for each link</u>
- Any state of this lattice QED theory is defined on 10 qubits
- This classically requires manipulating a vector with $2^{10} = 1024$ complex components



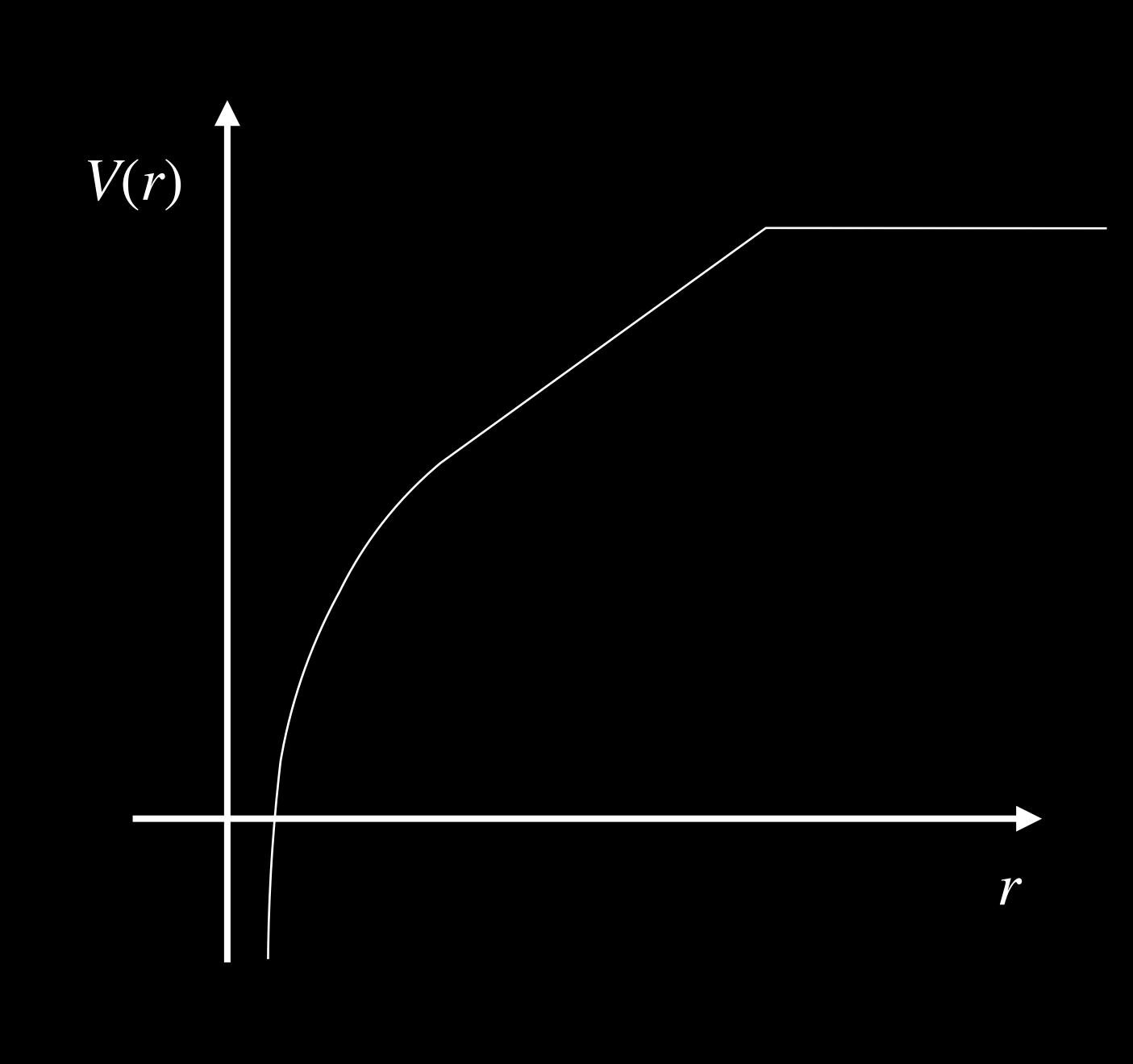
Example on a 3×2 lattice

- Using Gauss' law we reduce the number of dynamical degrees of freedom: 6 sites, 2 links
- We use <u>1 qubit for each site</u>
- We use <u>2 qubits for each link</u>
- Any state of this lattice QED theory is defined on 10 qubits
- This classically requires manipulating a vector with $2^{10} = 1024$ complex components



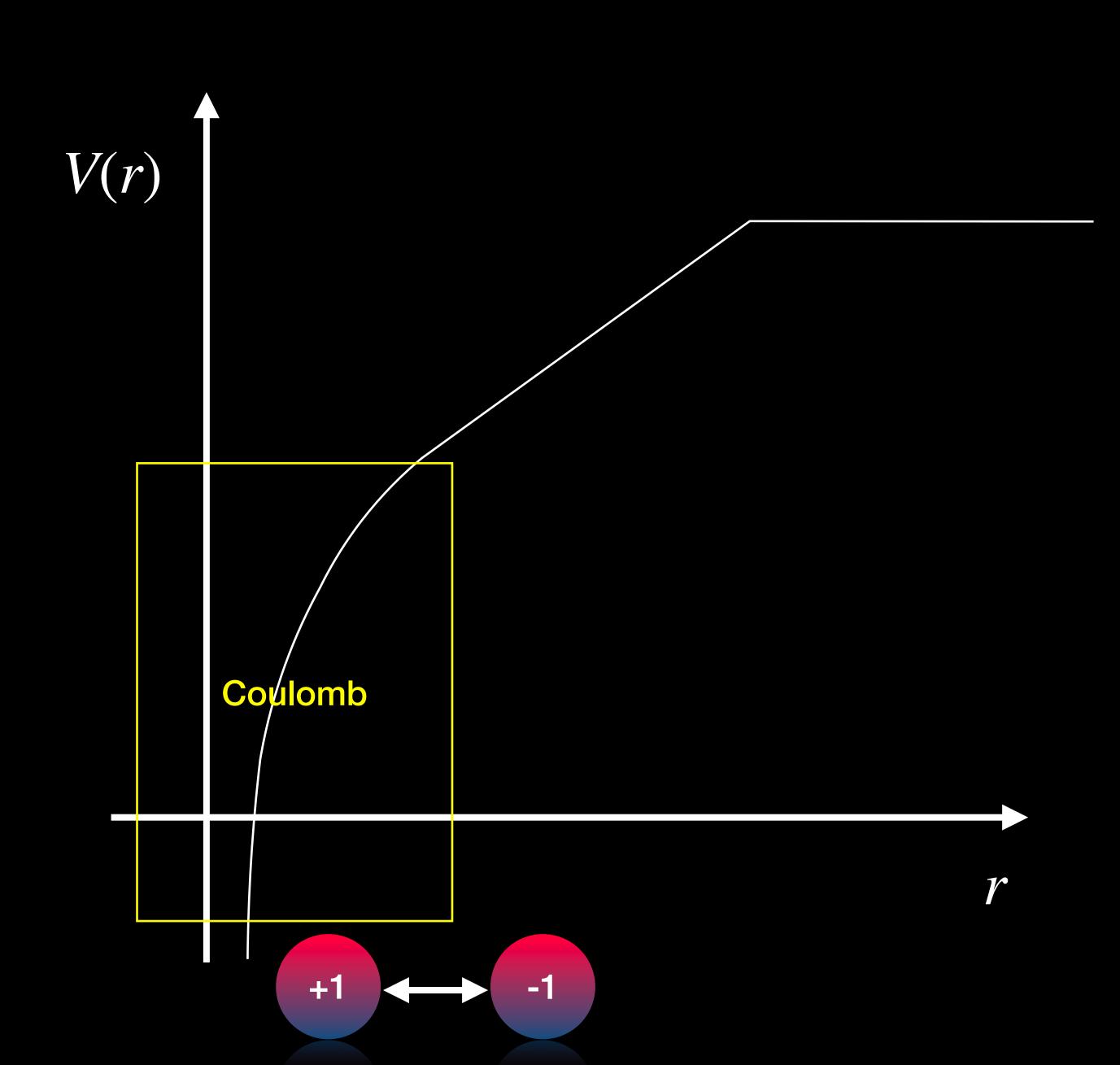
 $V(r) = V_0 + \alpha \log r + \sigma r$

- On the lattice we can change r by changing the lattice spacing a
- The lattice spacing a depends non-perturbatively on the coupling constant g
 - $\cdot V(r) \rightarrow V(g)$



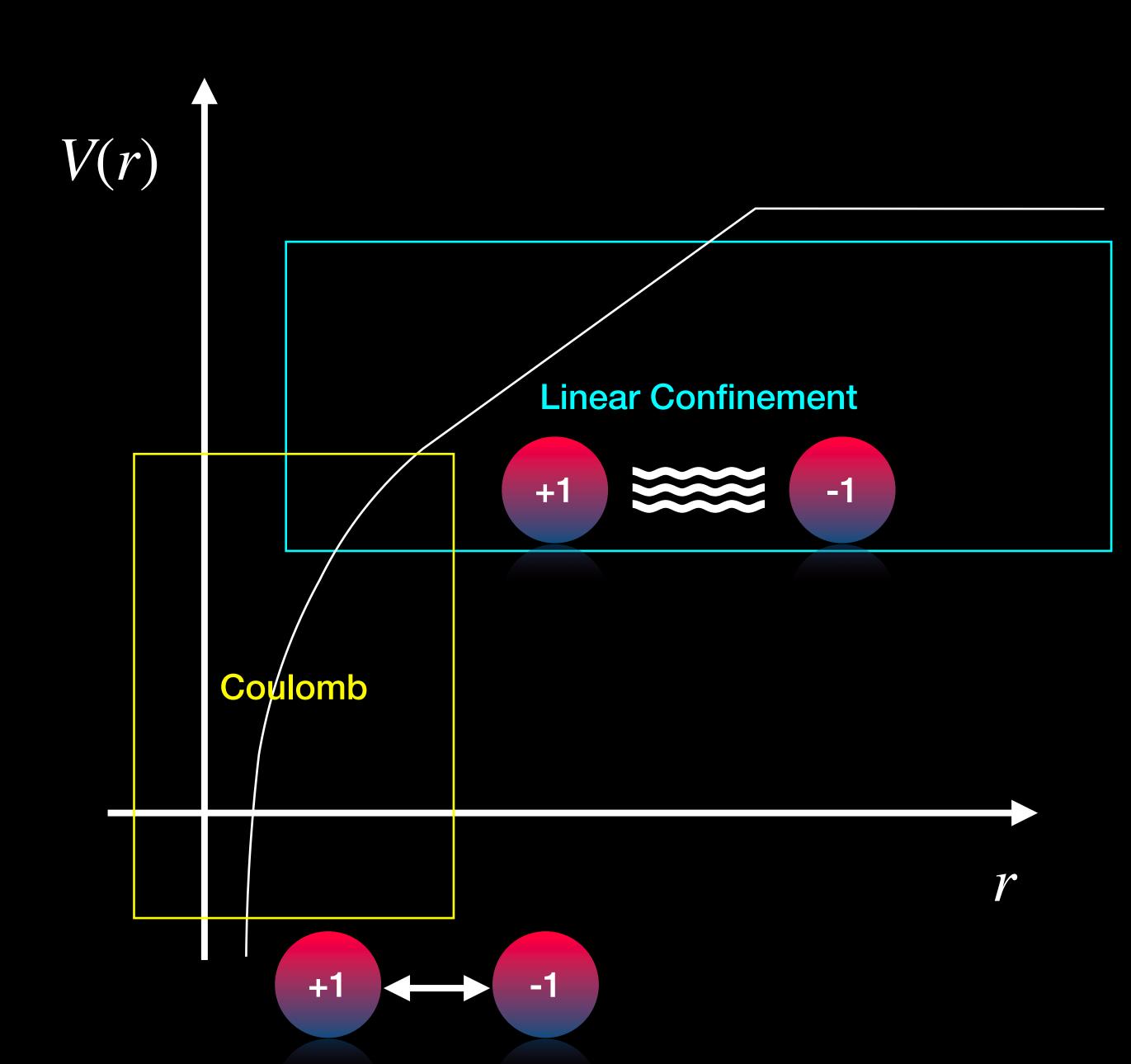
$$V(r) = V_0 + \alpha \log r + \sigma r$$

- On the lattice we can change r by changing the lattice spacing a
- The lattice spacing a depends non-perturbatively on the coupling constant g
 - $\cdot V(r) \rightarrow V(g)$



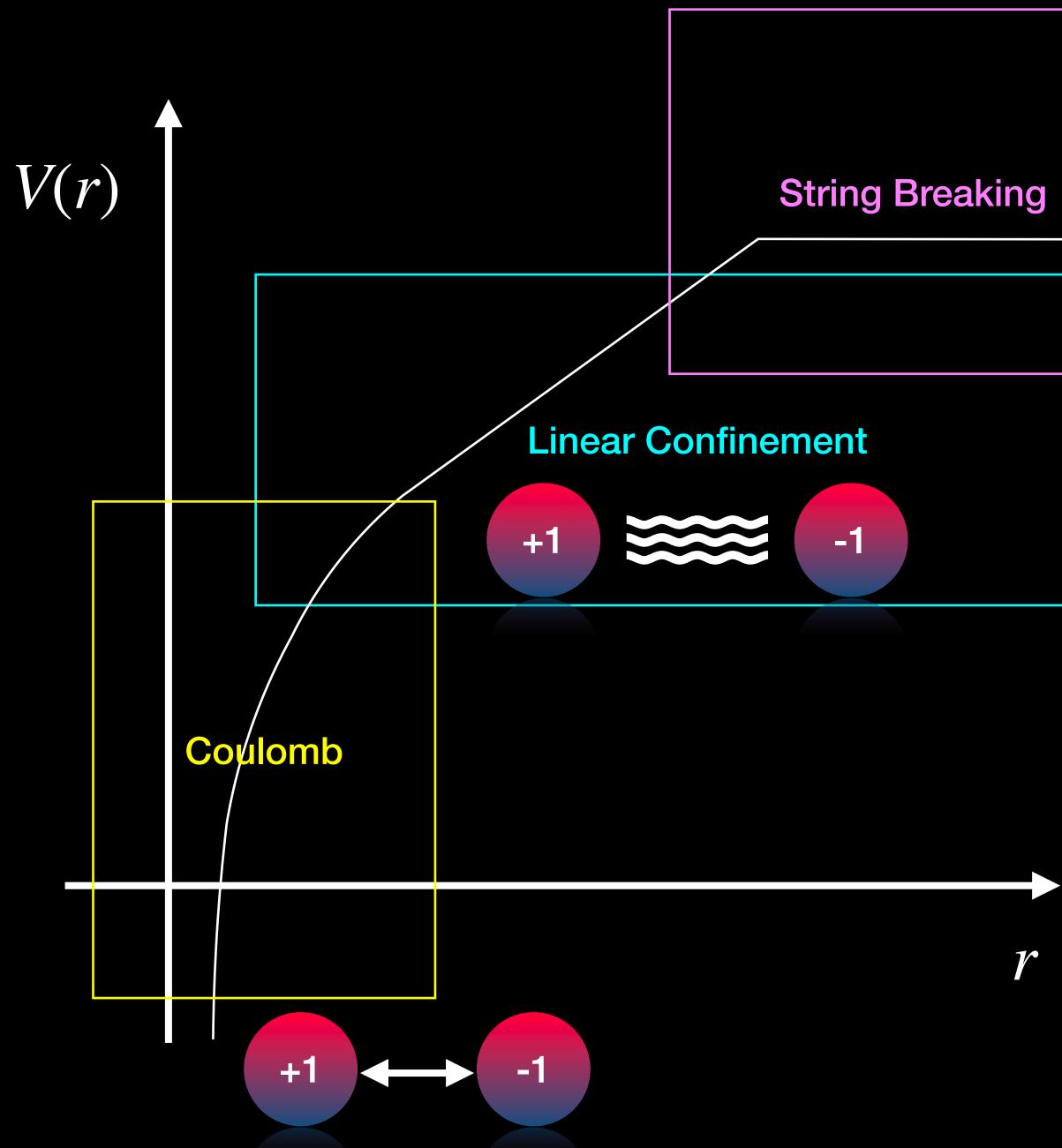
$$V(r) = V_0 + \alpha \log r + \sigma r$$

- On the lattice we can change r by changing the lattice spacing a
- The lattice spacing a depends non-perturbatively on the coupling constant g
 - $\cdot V(r) \rightarrow V(g)$



$$V(r) = V_0 + \alpha \log r + \sigma r$$

- On the lattice we can change r by changing the lattice spacing a
- The lattice spacing a depends non-perturbatively on the coupling constant g
 - $\cdot V(r) \rightarrow V(g)$



Ig	

- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

$| \Psi(\theta) \rangle = C(\theta) | \Psi_0 \rangle$

- · The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

$\left| \Psi(\theta) \right\rangle = C(\theta) \left| \Psi_0 \right\rangle$

- The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

Initial State $|0...0\rangle$

- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

$\left| \Psi(\theta) \right\rangle = C(\theta) \left| \Psi_0 \right\rangle$

- The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

$| \Psi(\theta) \rangle = C(\theta) | \Psi_0 \rangle$

- The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

$\left| \Psi(\theta) \right\rangle = C(\theta) \left| \Psi_0 \right\rangle$

- The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

Ansatz Circuit

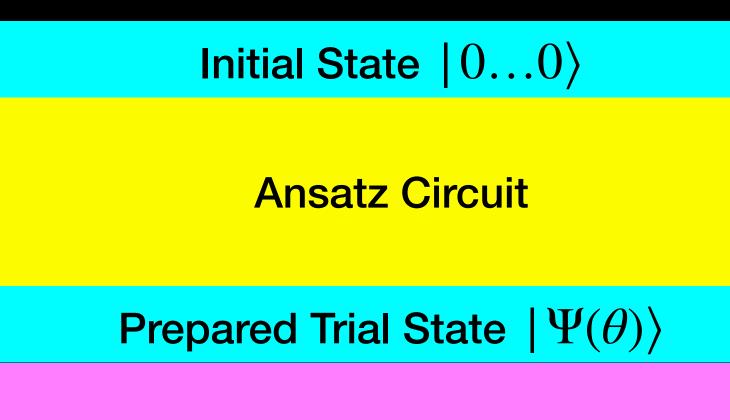
Prepared Trial State $|\Psi(\theta)\rangle$

Cost function $E(\theta) = \langle \psi | \hat{H} | \psi \rangle$

- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

$\Psi(\theta) = C(\theta) |\Psi_0\rangle$

- The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

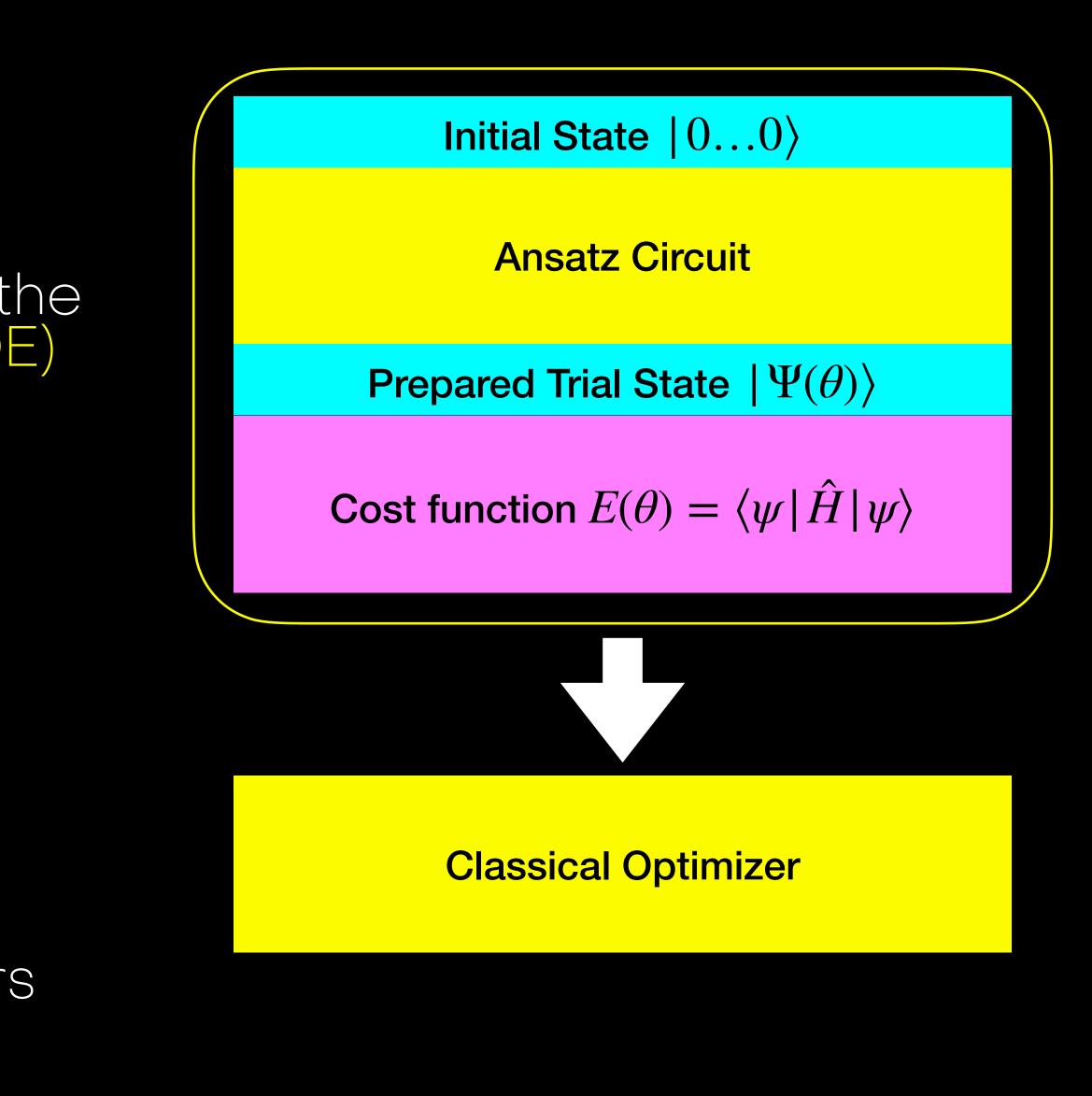


Cost function $E(\theta) = \langle \psi | \hat{H} | \psi \rangle$

- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

$\Psi(\theta) = C(\theta) |\Psi_0\rangle$

- The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

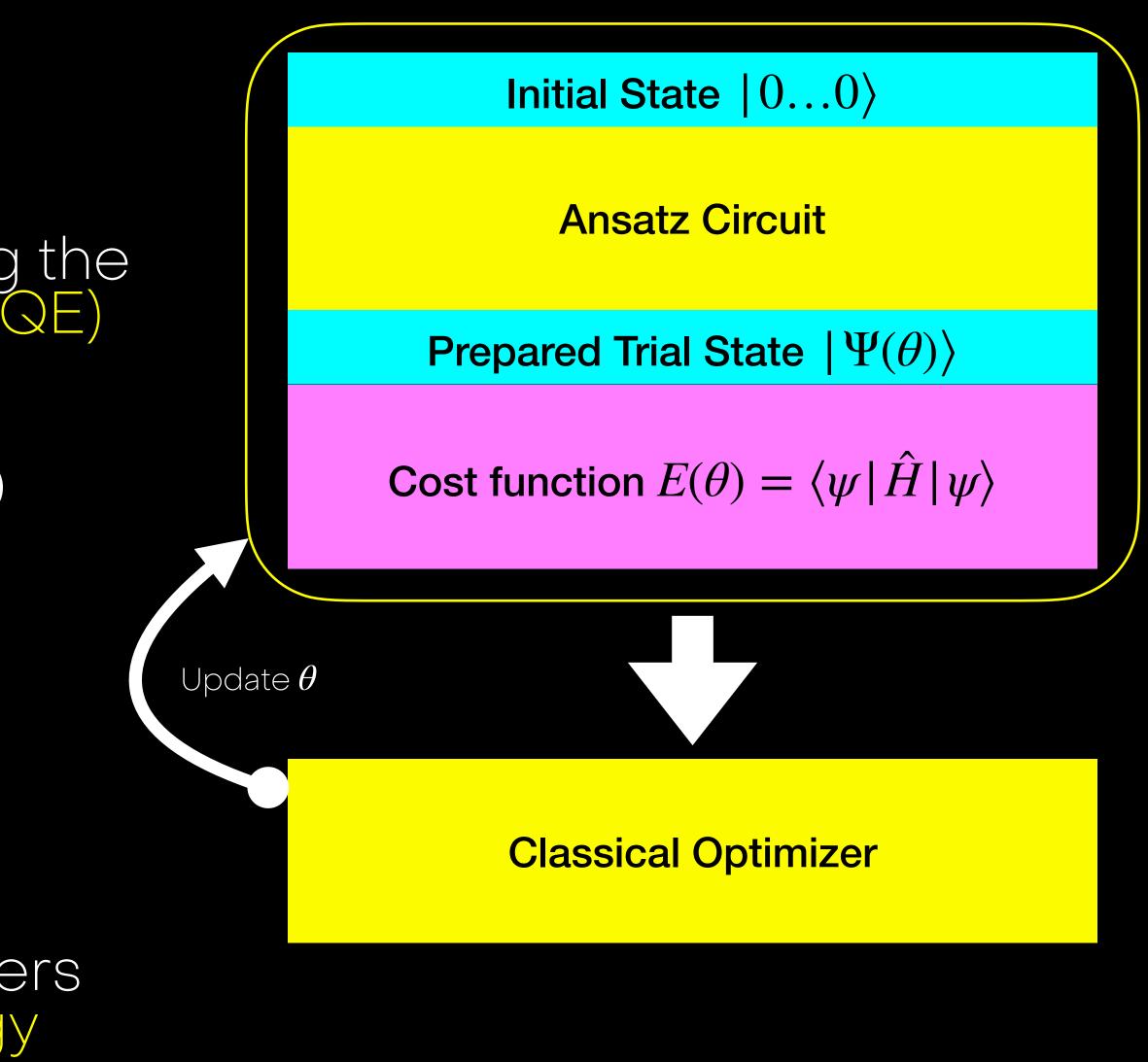


State Preparation With variational methods

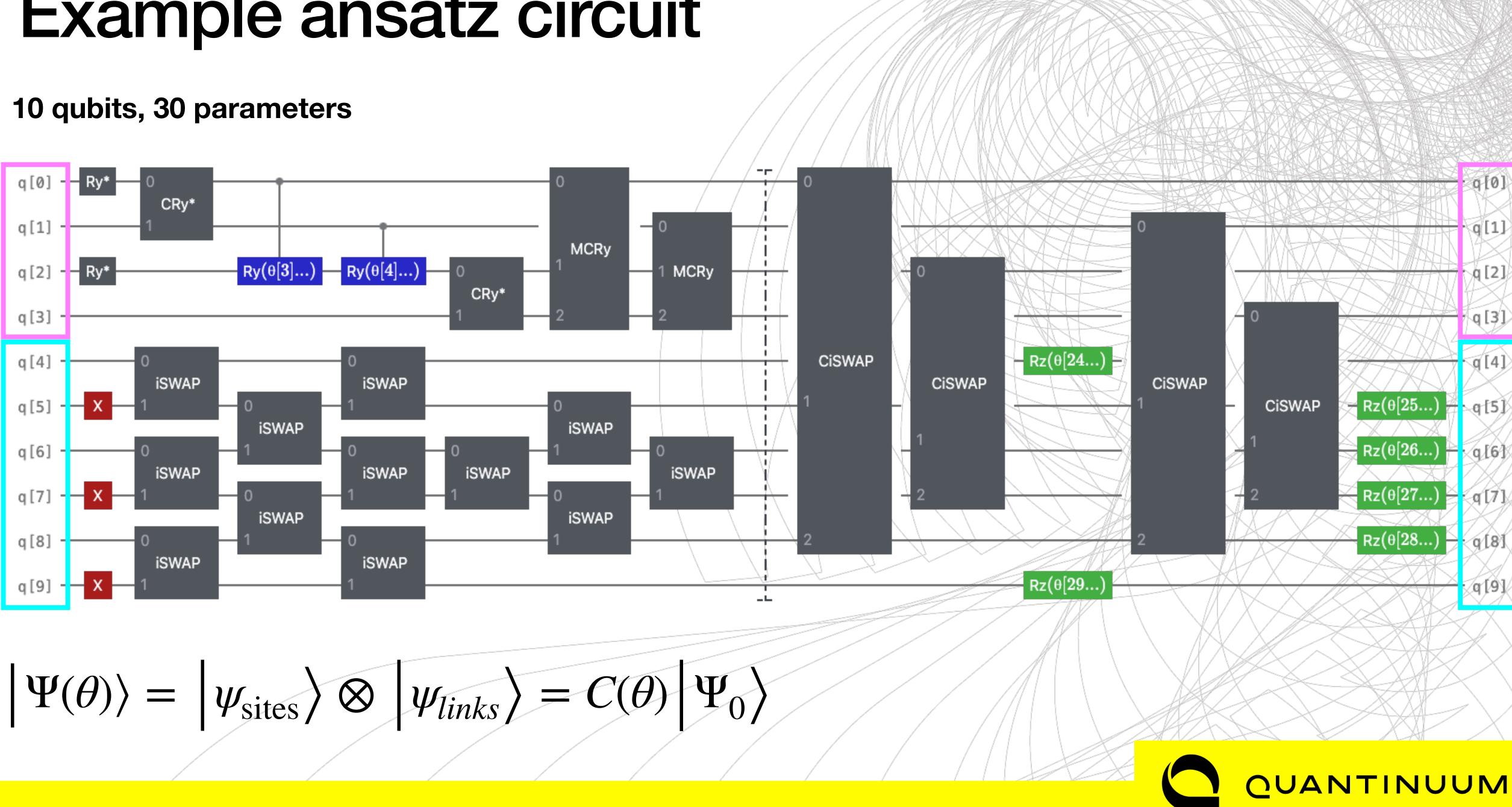
- The ground state is prepared using the variational quantum eigensolver (VQE)
- A trial state is obtained using a parametrized quantum circuit $C(\theta)$ acting on some initial state

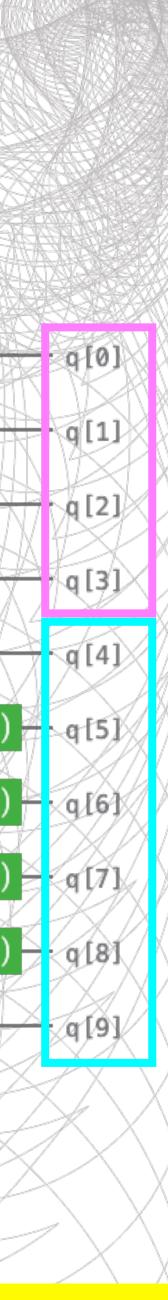
$\Psi(\theta) = C(\theta) |\Psi_0\rangle$

- The expectation value of the Hamiltonian is measured
- An optimizer updates the parameters towards the minimum of the energy landscape

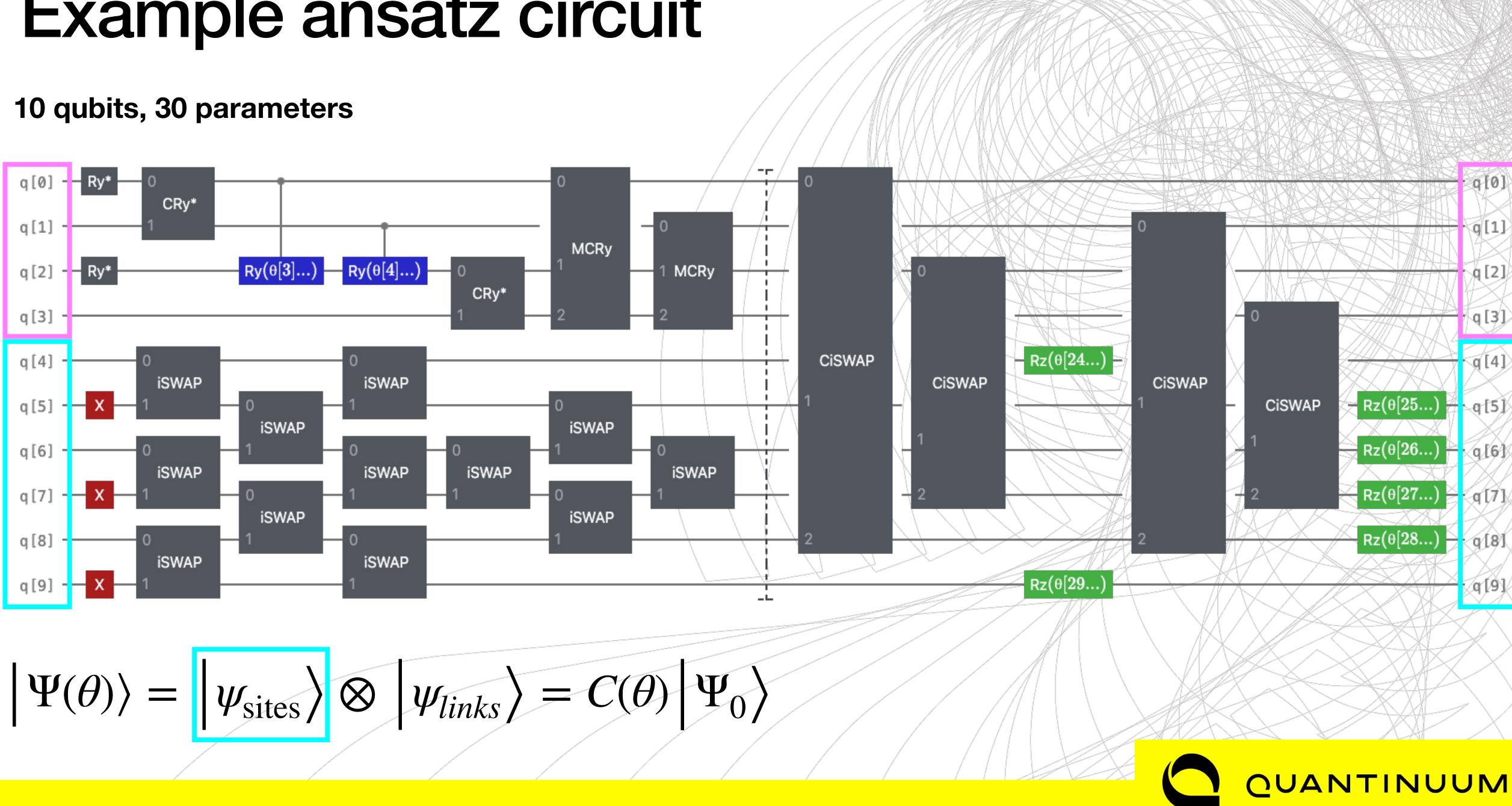


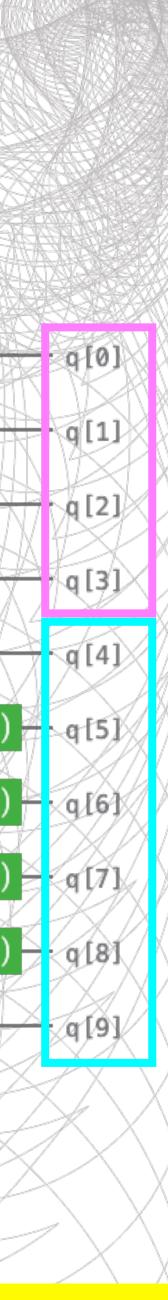
Example ansatz circuit



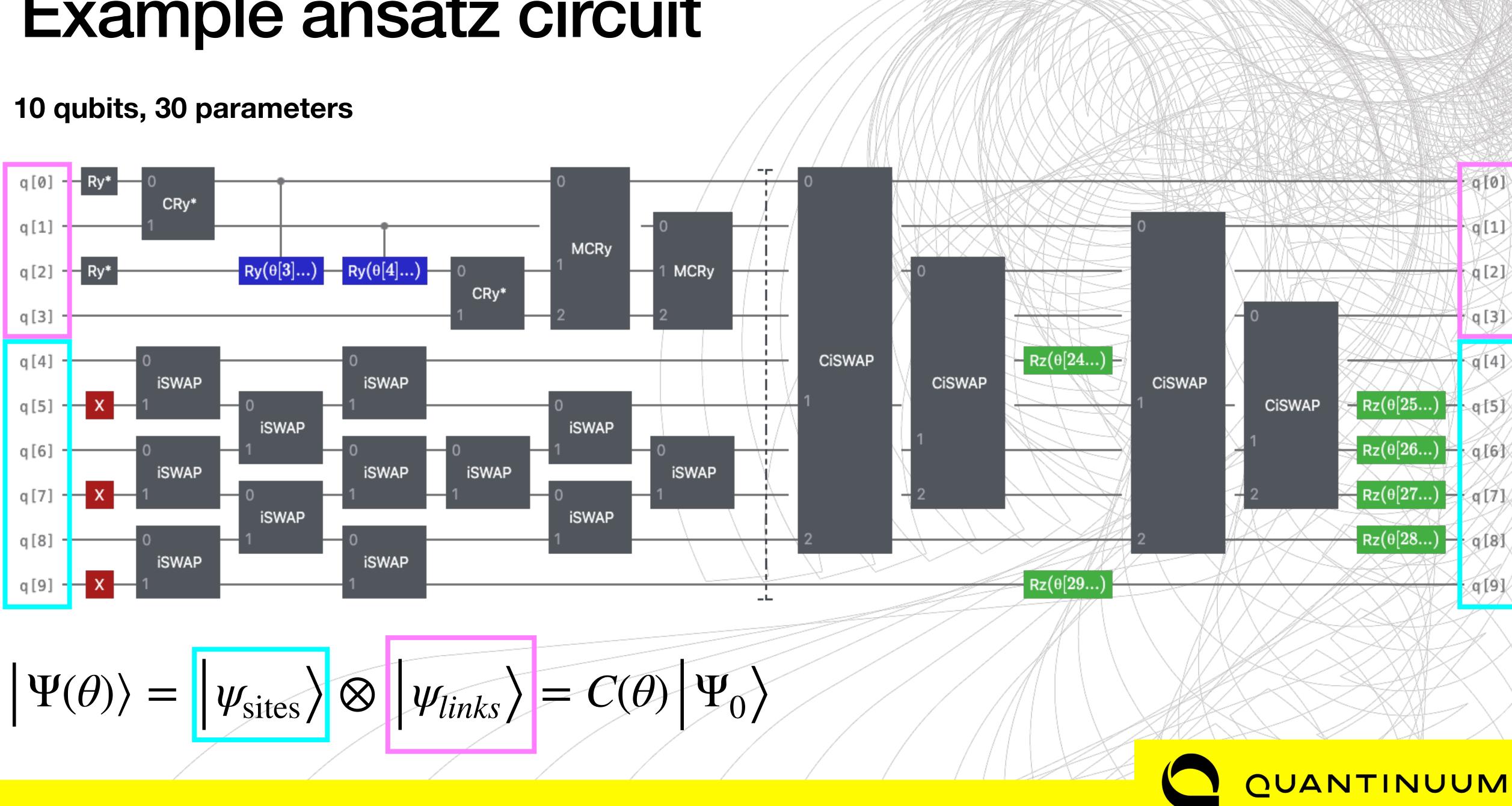


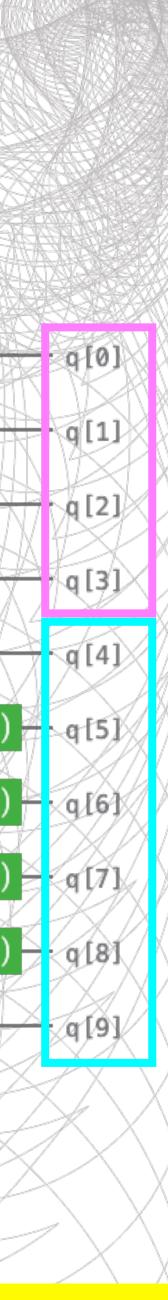
Example ansatz circuit

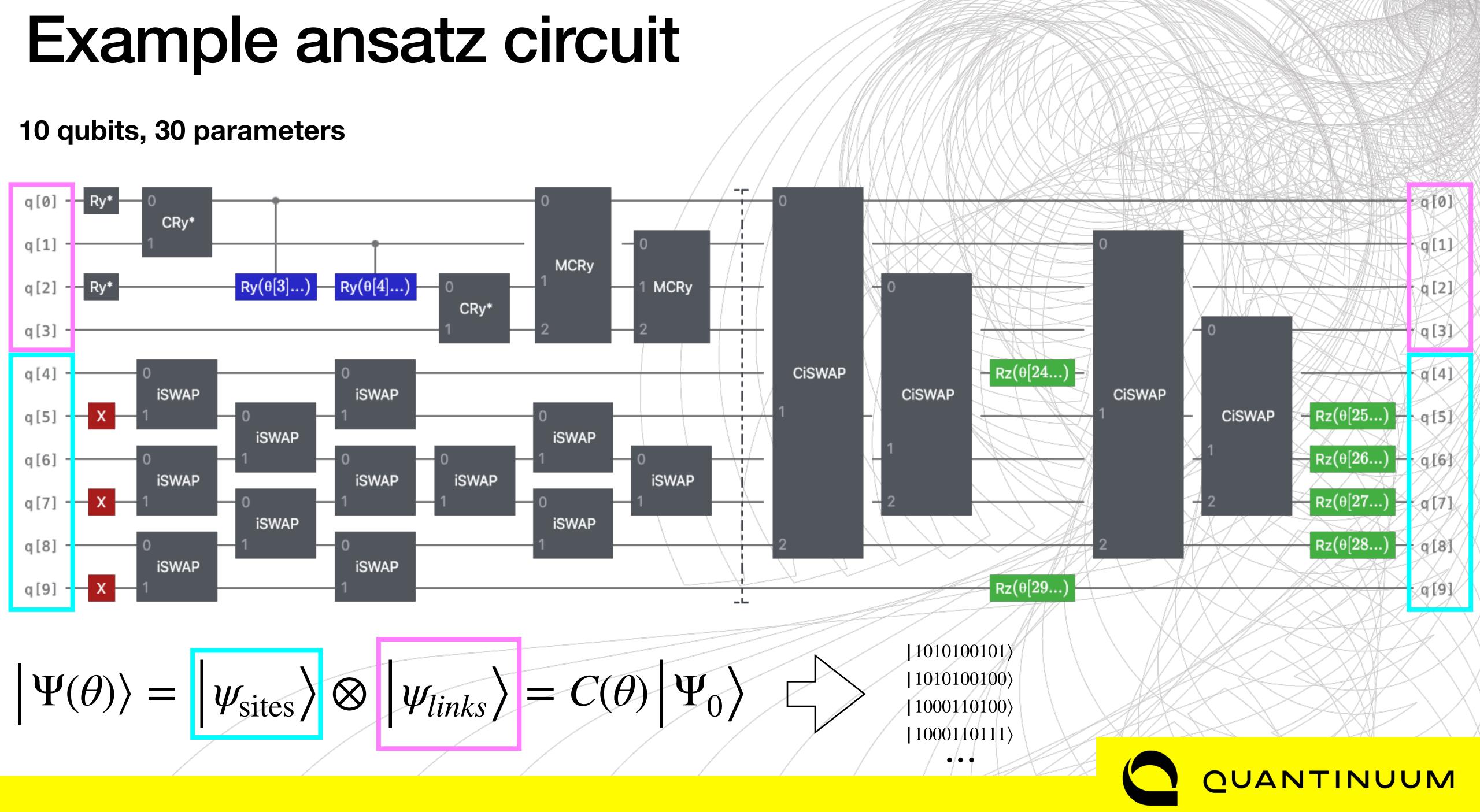




Example ansatz circuit





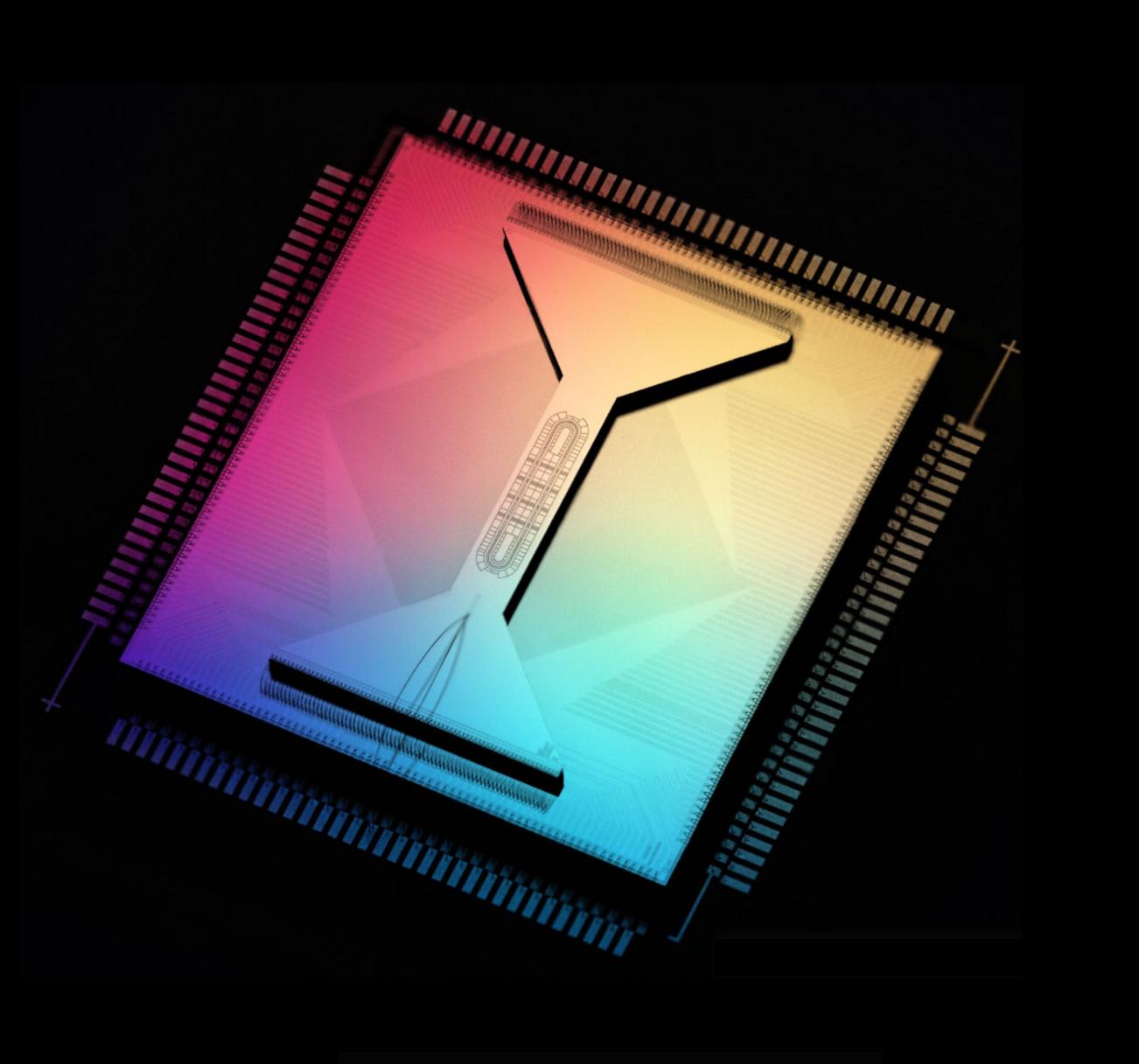


Quantinuum H-series Quantum Hardware

Most benchmarked quantum computer

Lowest-error commercial quantum device

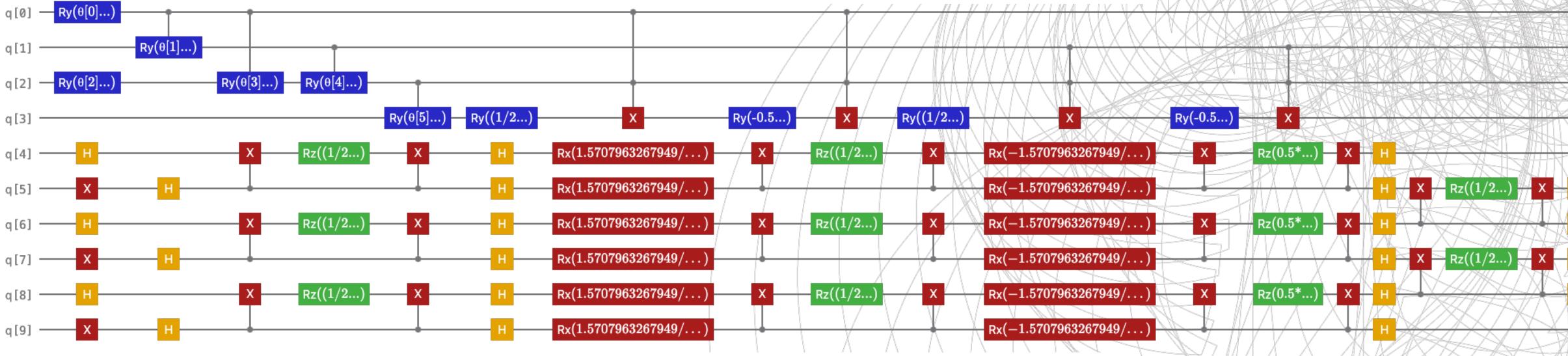
20 and 56 qubits on trapped ions

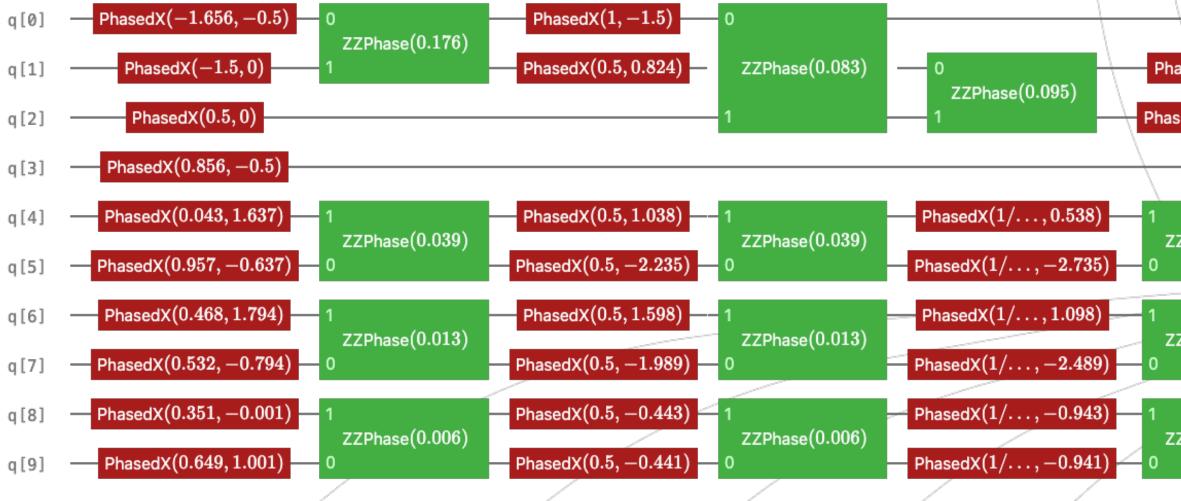


single-qubit gate fidelity

99.914(3)% two-qubit gate fidelity

Example of gate decomposition



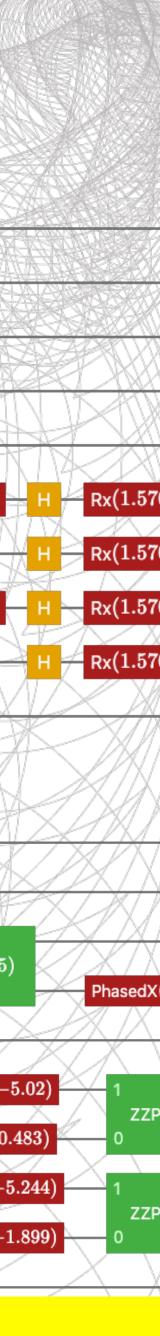


{H, X, Rz, Rx, Ry, CNOT}: ≈ 115 2-qubit gates

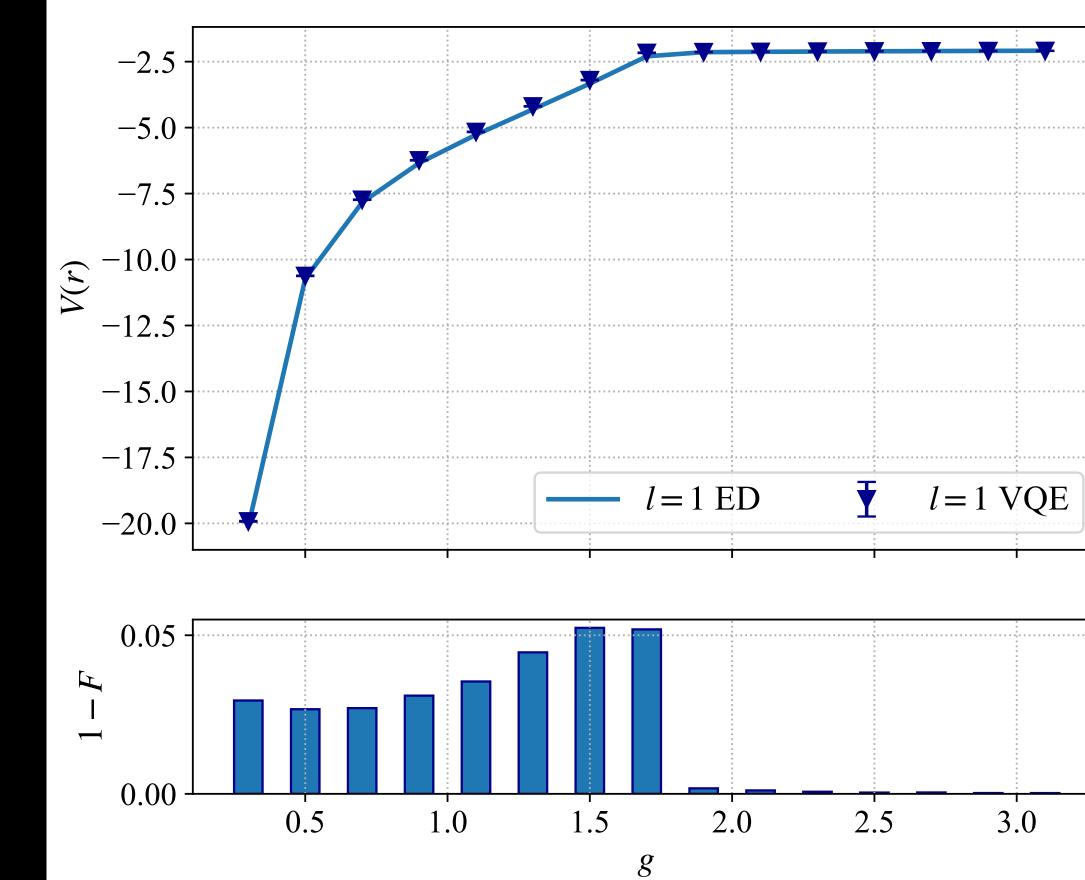
H-series Native Gates: ≈ 80 2-qubit gates

<u>\ \/</u>					
ly(1, 2, 224)	$A \wedge A$	V V U			
hasedX $(1, 2.324)$			ZZPhase(0.5)	VH X H	X XAA
$\operatorname{asedX}(0.5,-2.68)$ -	0 ZZPhase(0.5)	PhasedX $(1, -4.18)$			0 ZZPhase(0.5)
		PhasedX(0.318, -0.682)		PhasedX(-0.25, -1.905)	Kar va
ZZPhase(0.039)	PhasedX(0.886, 0.713)		$A \rightarrow $	$\mathbb{X} \times \mathbb{Z}$	EXXV
	PhasedX $(0.2, -4.769)$	1	PhasedX $(0.5, -4.52)$	1	PhasedX $(1/, -$
	PhasedX(0.753, 1.151)	ZZPhase(0.049)	PhasedX(0.5, 0.983)	ZZPhase(0.049)	PhasedX(1/,0
ZZPhase(0.013)	PhasedX(0.281, -4.544)	1	PhasedX(0.5, -4.744)		PhasedX $(1/, -5)$
		ZZPhase(0.061)	1 Del	ZZPhase(0.061)	Z Z AHZ
ZZPhase(0.006)	← PhasedX(0.145, −1.383) ←	0	PhasedX(0.5, -1.399)	∠ 0≥	PhasedX(1/, -1
	PhasedX $(0.57, -1.684)$	/// \			
		////			

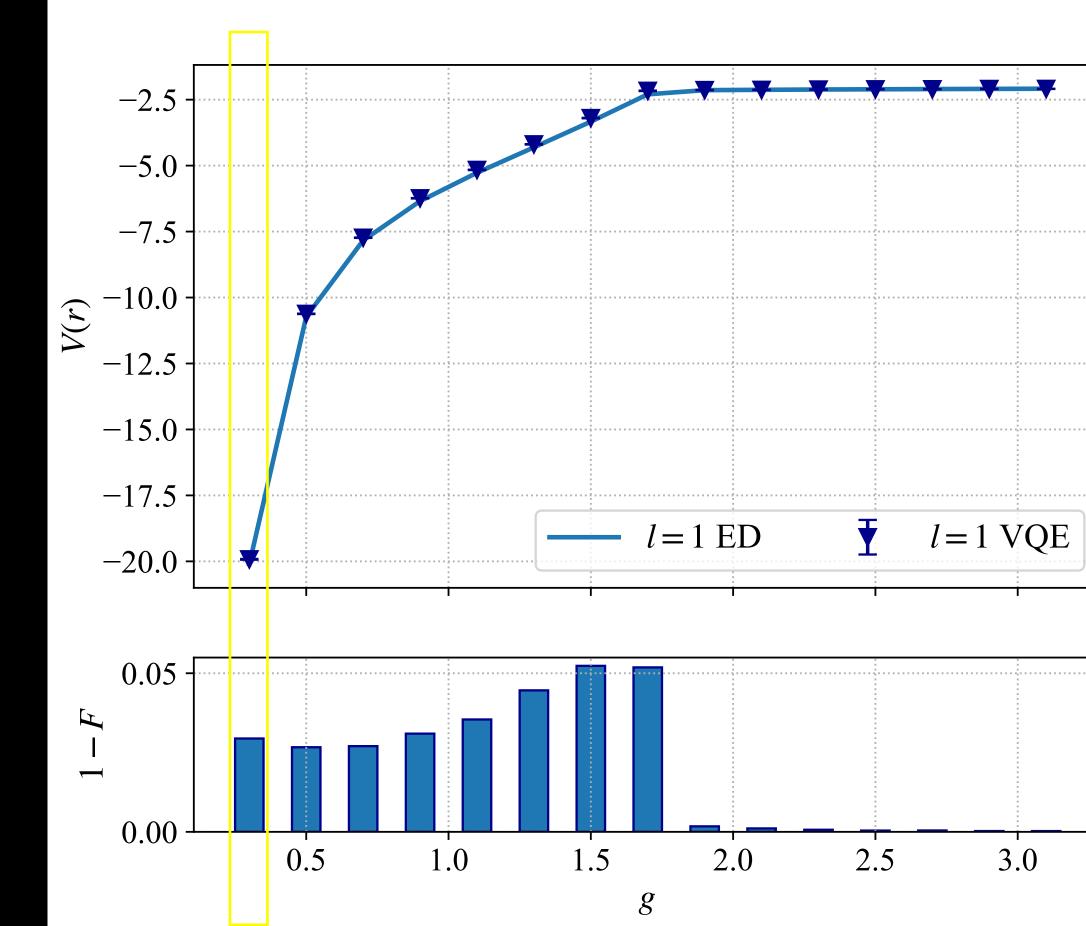
K A



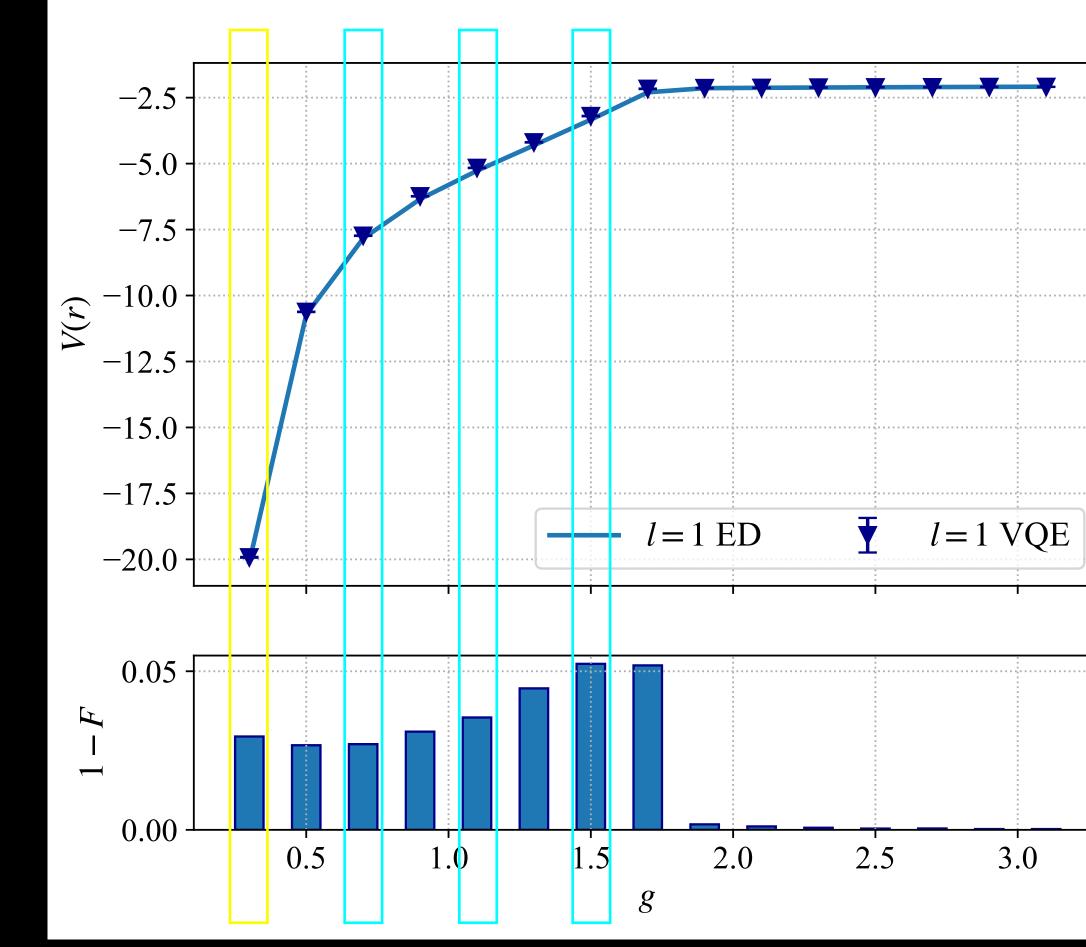
- A quantum state of 10 qubits can be represented with classical memory on a laptop and the Hamiltonian can be easily written as a matrix
- Use exact diagonalization (ED) to find the ground state and its energy
- Use VQE to find the optimal parameters for the ground state circuit



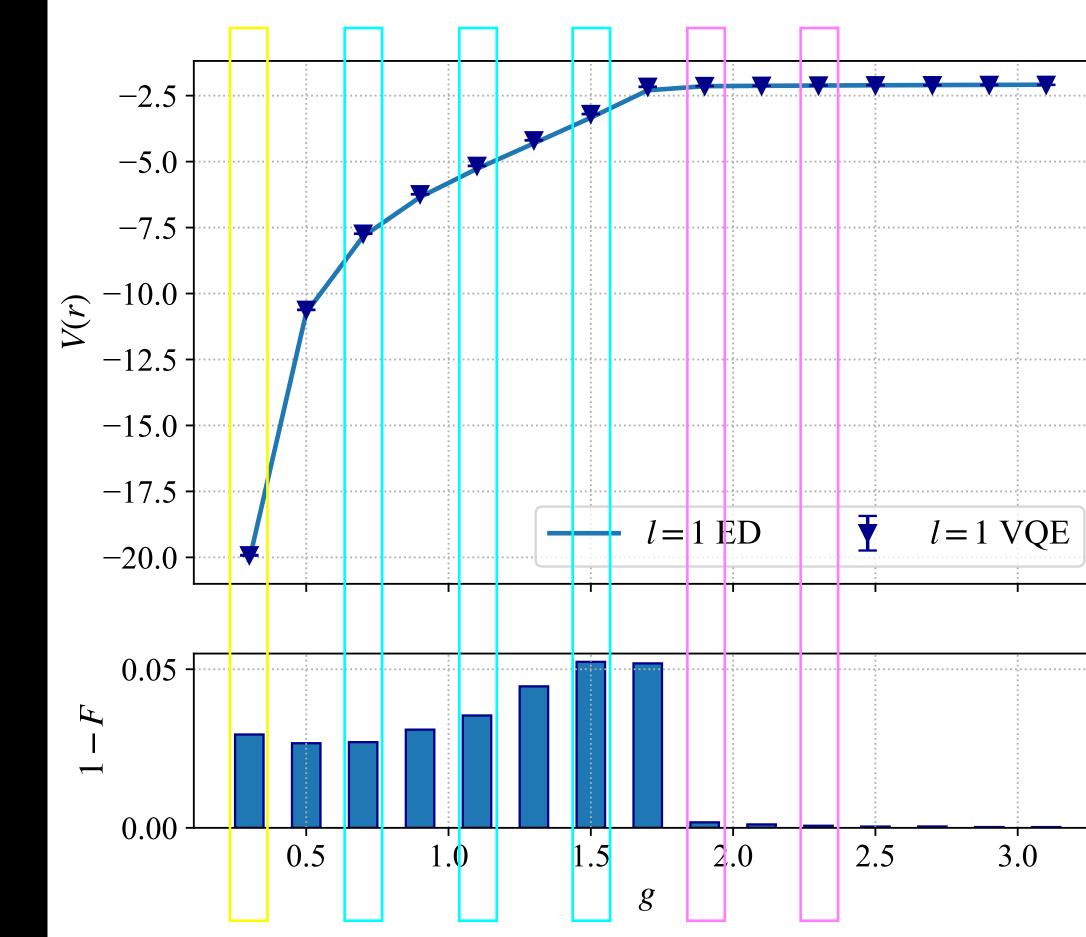
- A quantum state of 10 qubits can be represented with classical memory on a laptop and the Hamiltonian can be easily written as a matrix
- Use exact diagonalization (ED) to find the ground state and its energy
- Use VQE to find the optimal parameters for the ground state circuit



- A quantum state of 10 qubits can be represented with classical memory on a laptop and the Hamiltonian can be easily written as a matrix
- Use exact diagonalization (ED) to find the ground state and its energy
- Use VQE to find the optimal parameters for the ground state circuit



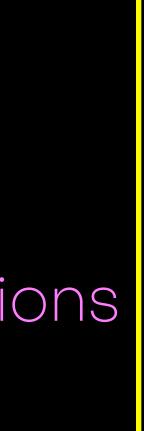
- A quantum state of 10 qubits can be represented with classical memory on a laptop and the Hamiltonian can be easily written as a matrix
- Use exact diagonalization (ED) to find the ground state and its energy
- Use VQE to find the optimal parameters for the ground state circuit



•

- Given the optimal parameters for the ansatz circuit at each coupling we can:
 - Simulate the circuit classically without measuring
 - Simulate the circuit classically with measurements
 - Simulate the circuit classically with measurements and noisy operations
 - Emulate the circuit on a trapped ion device •
 - Run the circuit on a trapped ion device •

- Given the optimal parameters for the ansatz circuit at each coupling we can:
 - Simulate the circuit classically without measuring
 - · Simulate the circuit classically with measurements
 - \cdot Simulate the circuit classically with measurements and noisy operations
 - · Emulate the circuit on a trapped ion device
 - · Run the circuit on a trapped ion device



- Given the optimal parameters for the ansatz circuit at each coupling we can:
 - Simulate the circuit classically without measuring
 - Simulate the circuit classically with measurements
 - Simulate the circuit classically with measurements and noisy operations •
 - Emulate the circuit on a trapped ion device
 - Run the circuit on a trapped ion device

 $H1-1E \leftrightarrow H1-1$

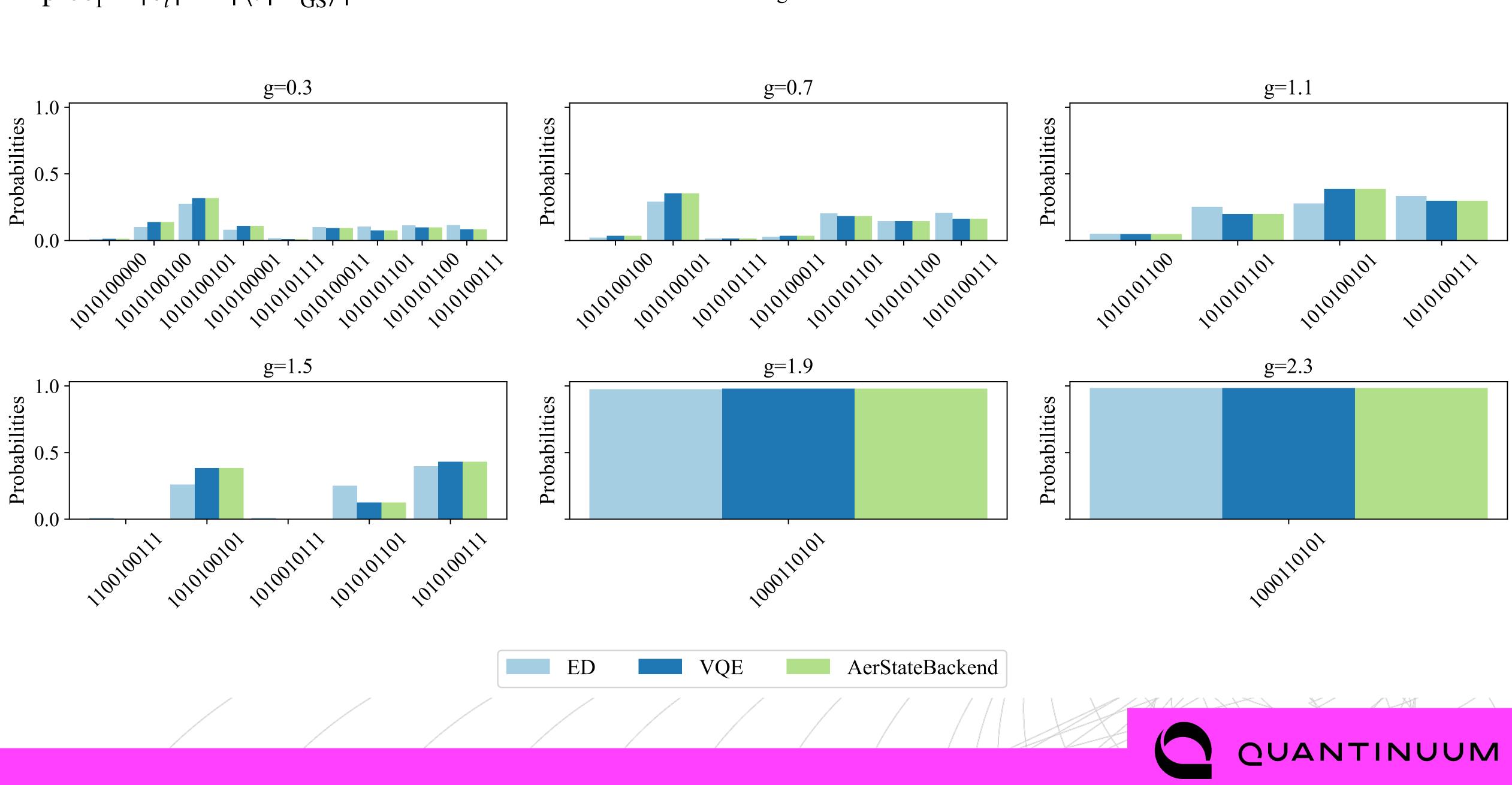
- Given the optimal parameters for the ansatz circuit at each coupling we can:
 - Simulate the circuit classically without measuring
 - Simulate the circuit classically with measurements
 - Simulate the circuit classically with measurements and noisy operations •
 - Emulate the circuit on a trapped ion device
 - Run the circuit on a trapped ion device

$$\left|\Psi_{\rm GS}\right\rangle = \sum_{i}^{2^N} c_i \left|i\right\rangle$$

 $H1-1E \leftrightarrow H1-1$

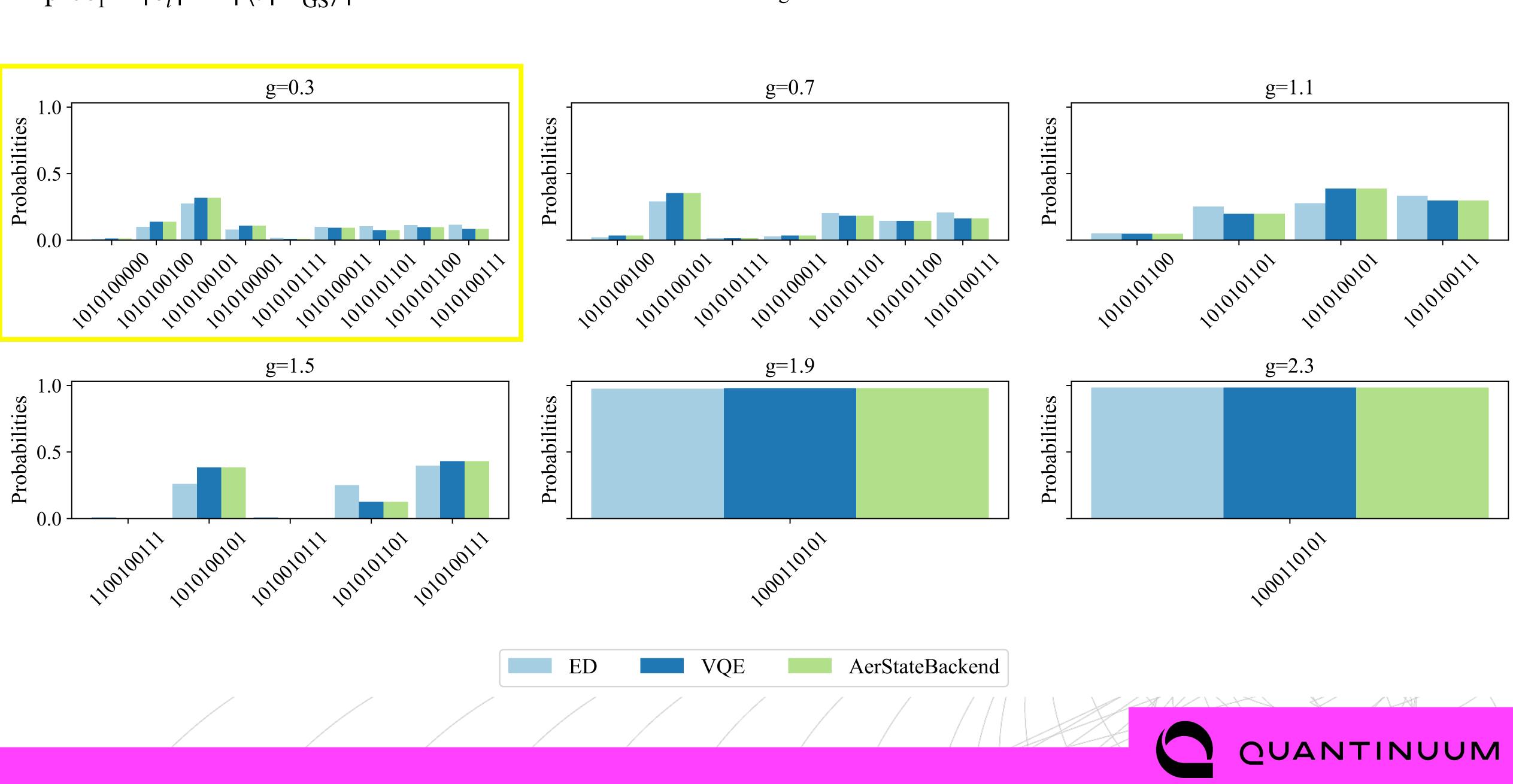
 $\text{prob}_{i} = |c_{i}|^{2} = |\langle i | \Psi_{\text{GS}} \rangle|^{2}$

$$\text{prob}_{i} = |c_{i}|^{2} = |\langle i | \Psi_{\text{GS}} \rangle|^{2}$$



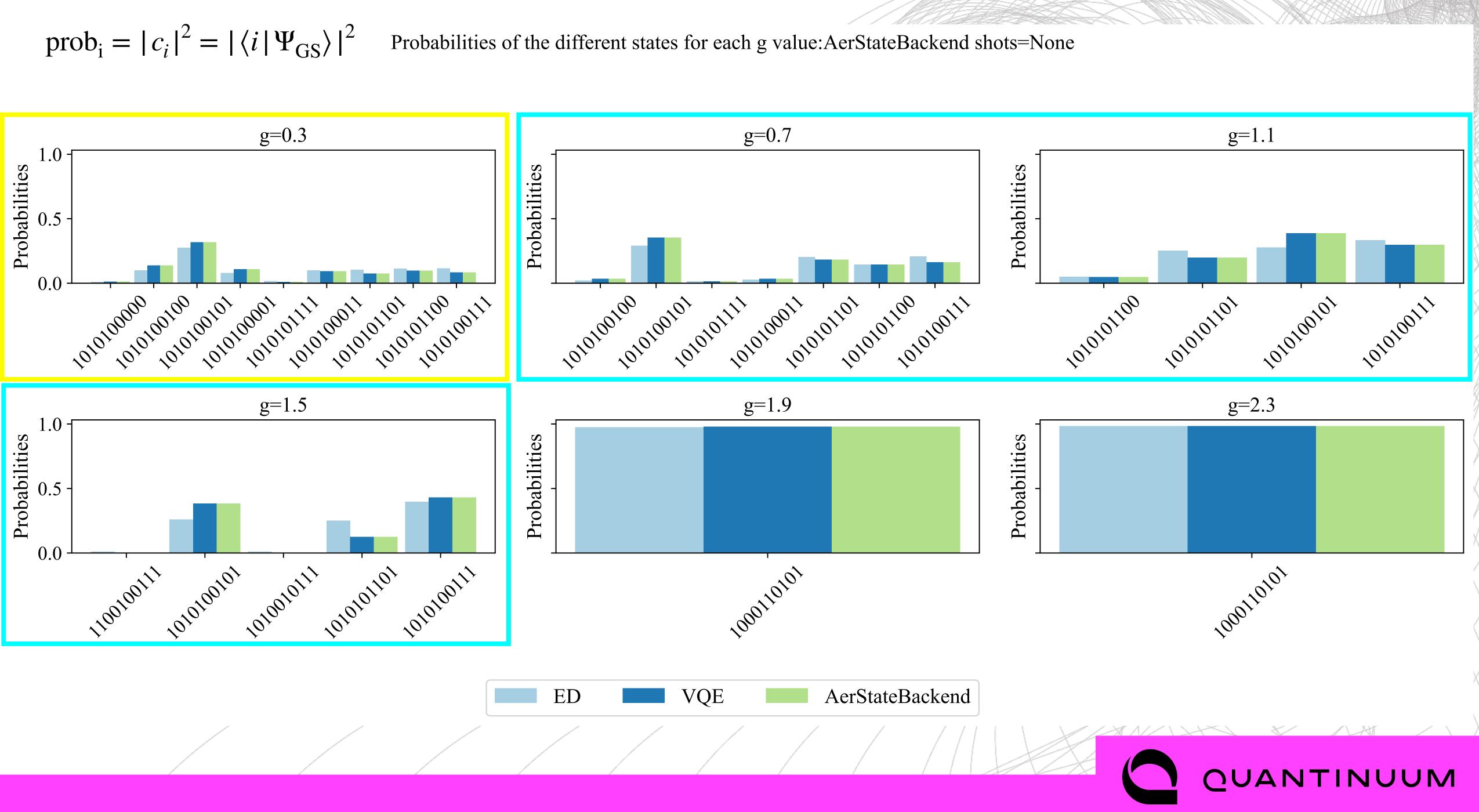
Probabilities of the different states for each g value:AerStateBackend shots=None

$$\text{prob}_{i} = |c_{i}|^{2} = |\langle i | \Psi_{\text{GS}} \rangle|^{2}$$

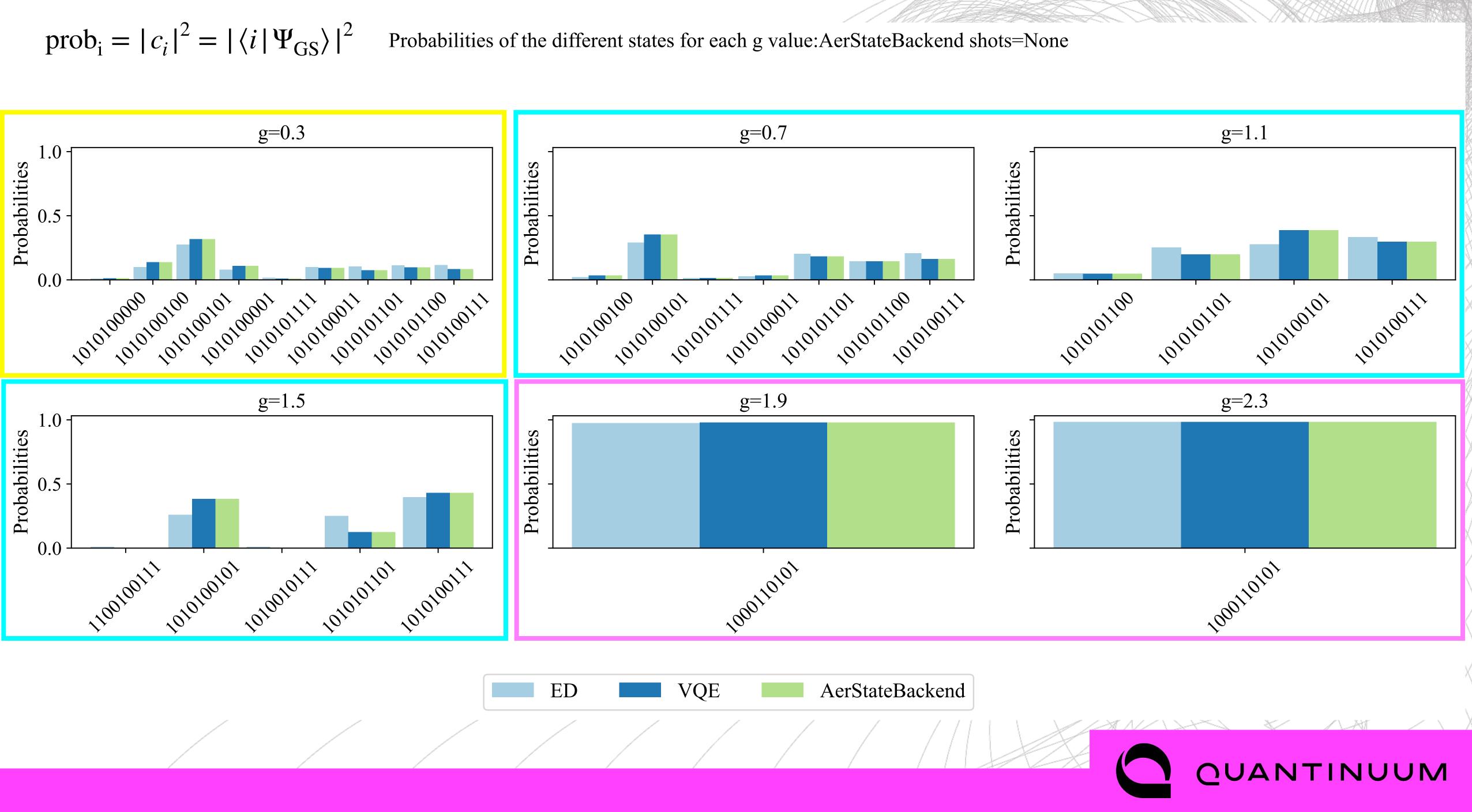


Probabilities of the different states for each g value:AerStateBackend shots=None

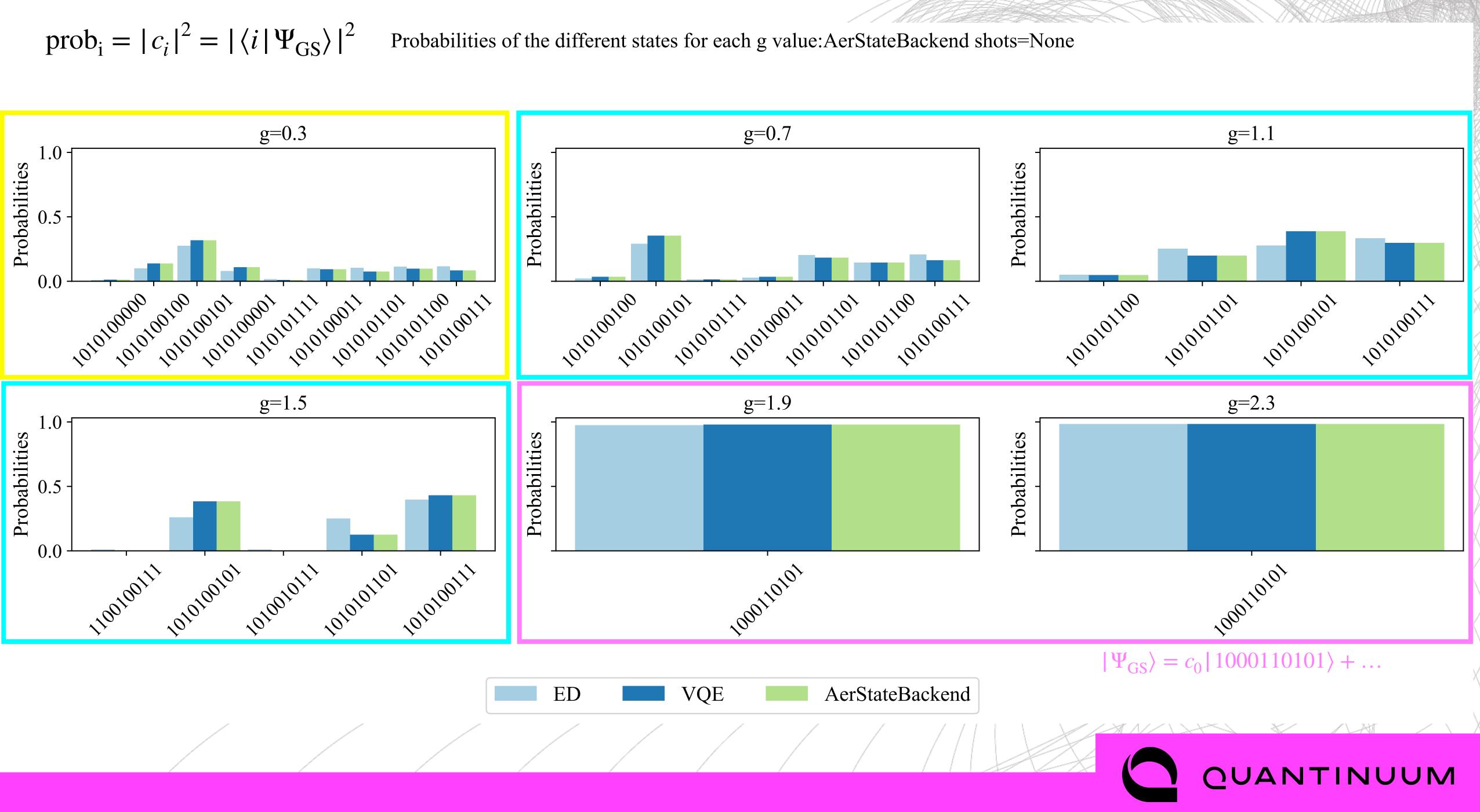
$$\text{prob}_{i} = |c_{i}|^{2} = |\langle i | \Psi_{\text{GS}} \rangle|^{2}$$

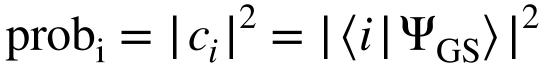


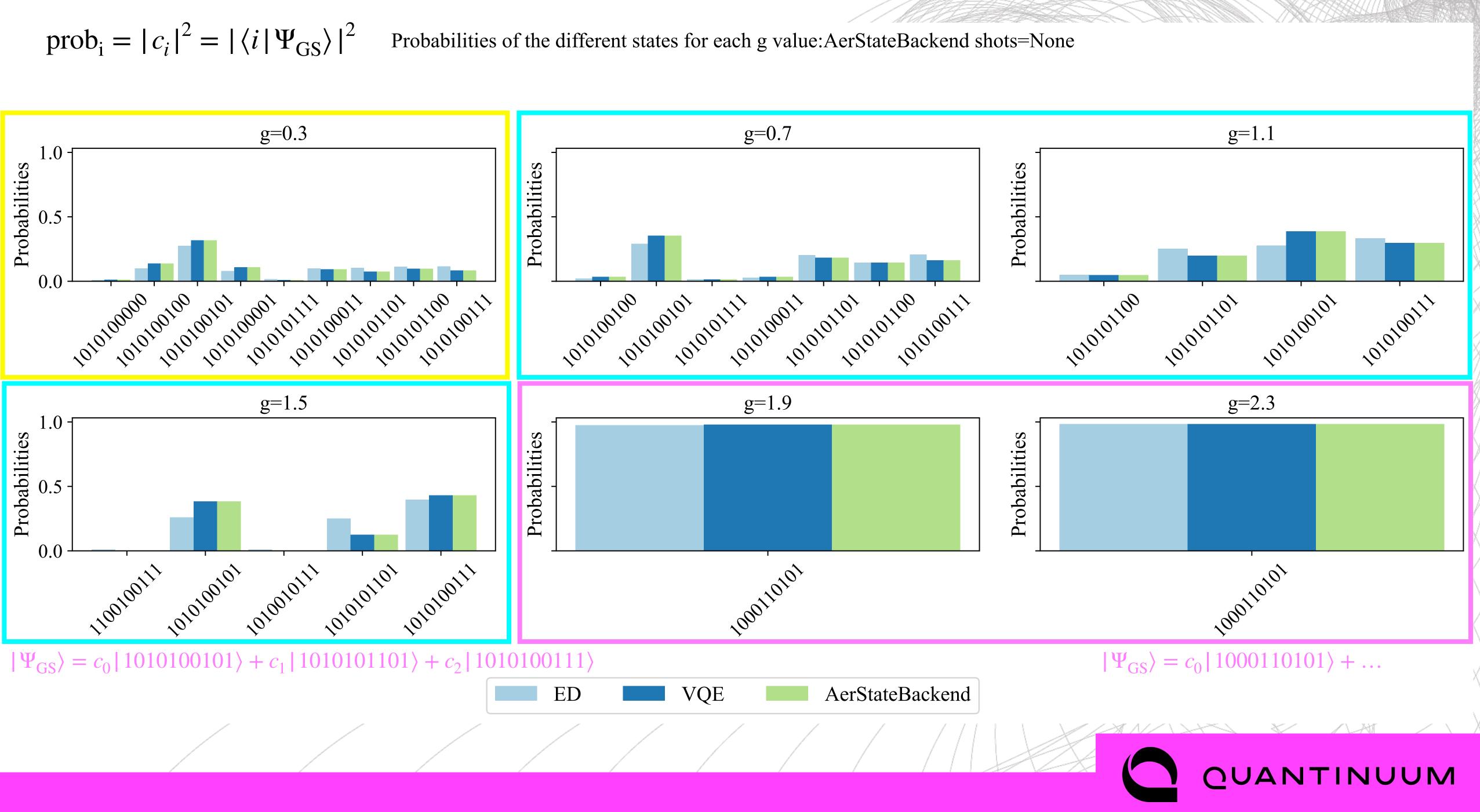
$$\text{prob}_{i} = |c_{i}|^{2} = |\langle i | \Psi_{\text{GS}} \rangle|^{2}$$

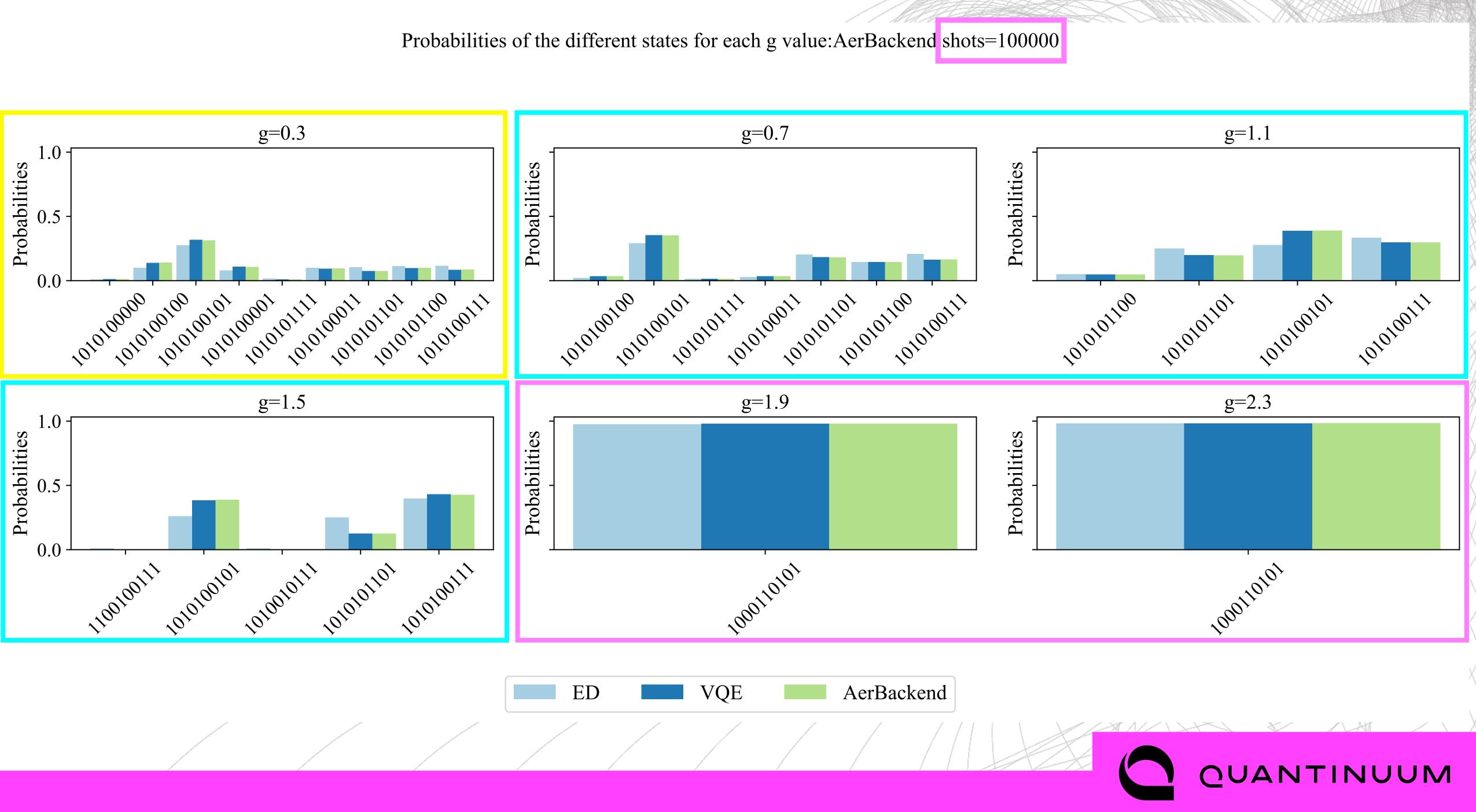


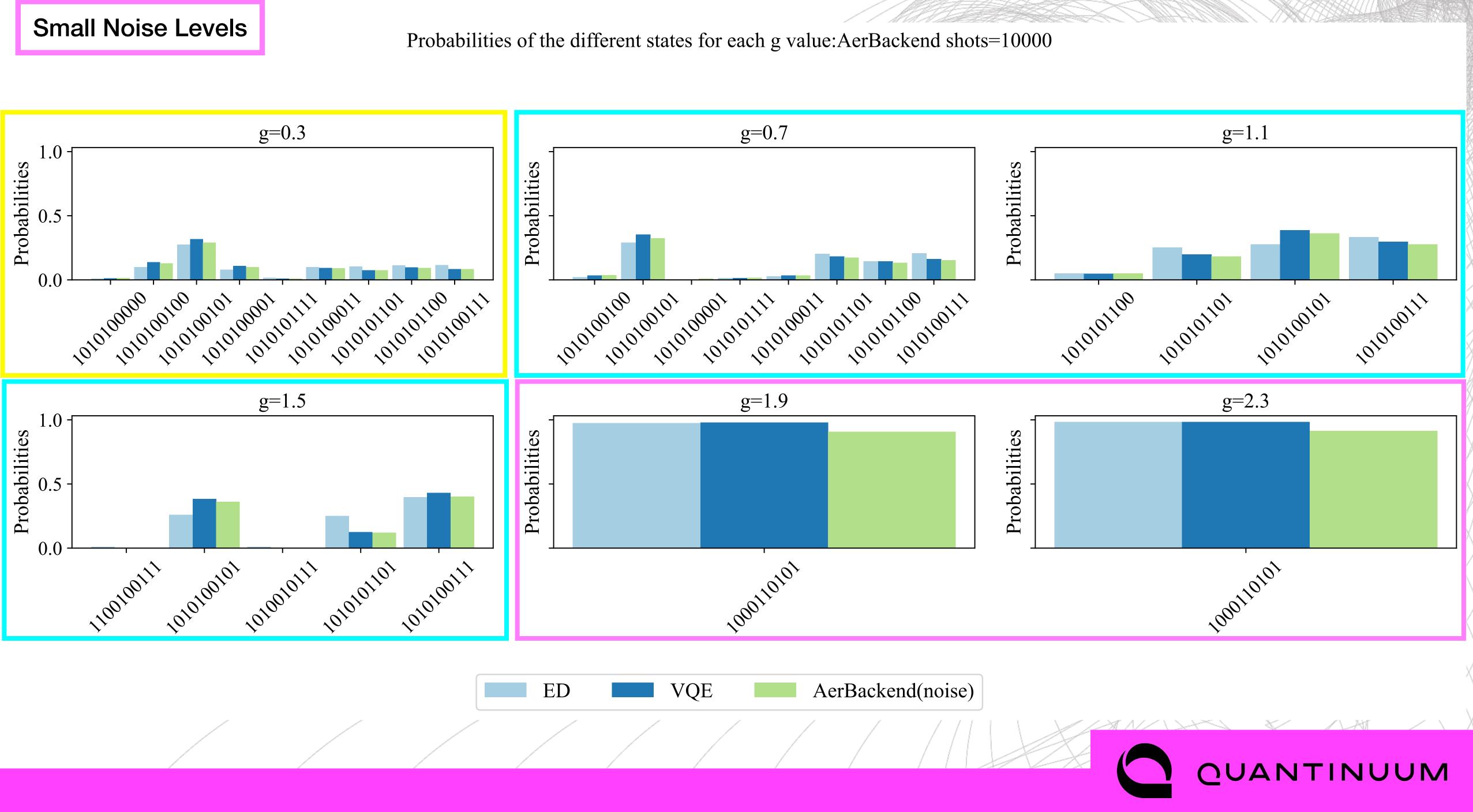
$$\text{prob}_{i} = |c_{i}|^{2} = |\langle i | \Psi_{\text{GS}} \rangle|^{2}$$

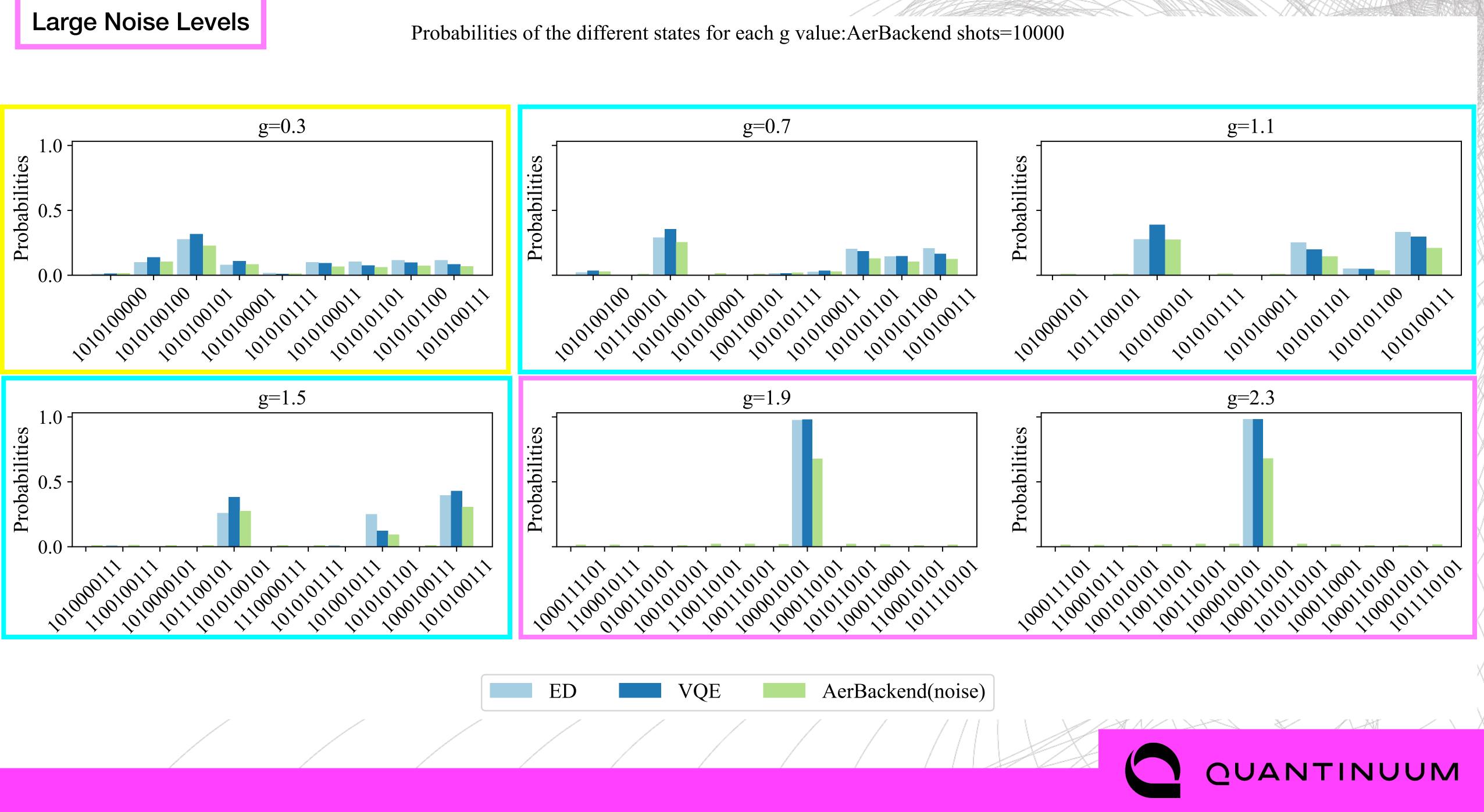


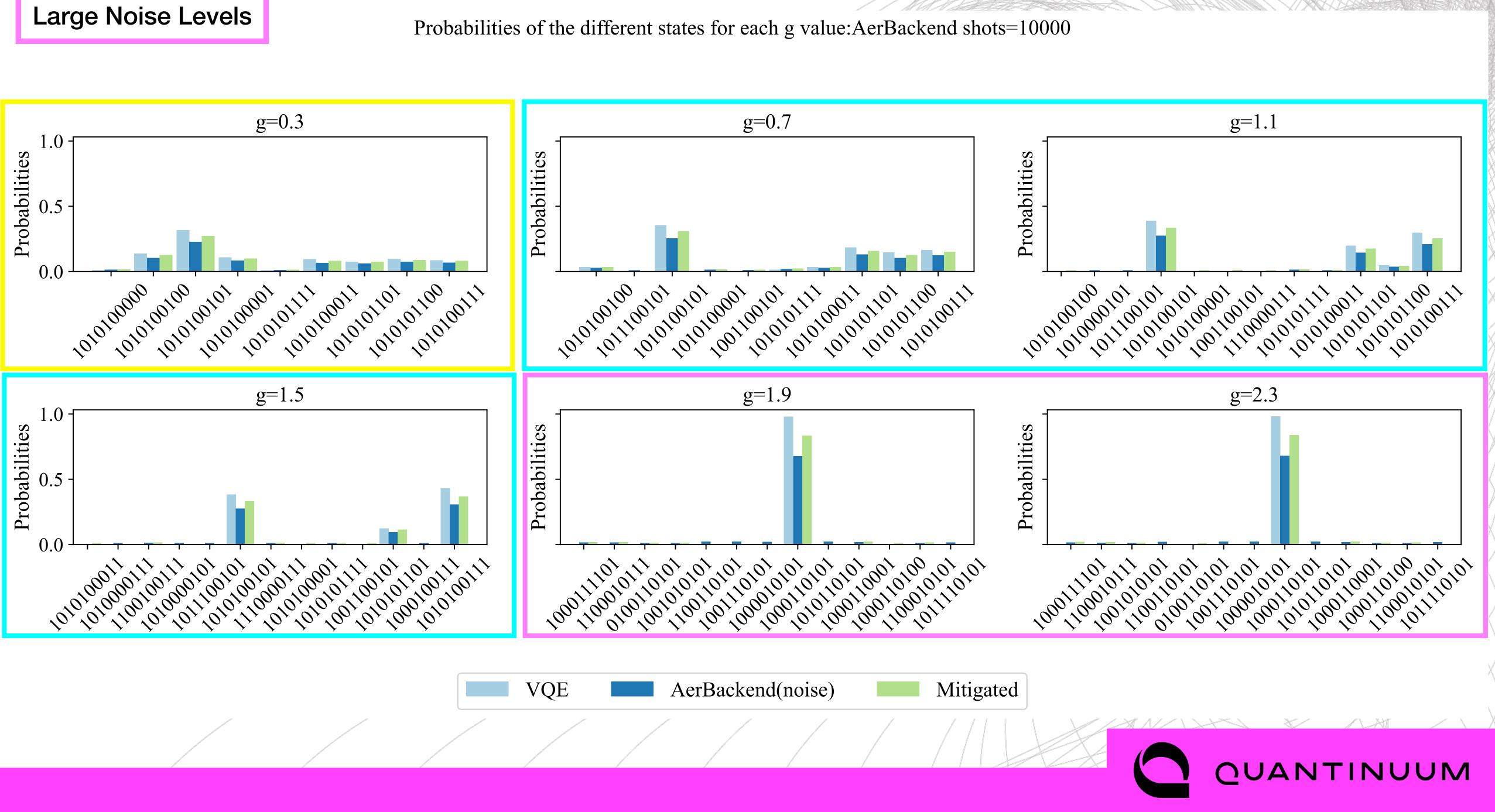


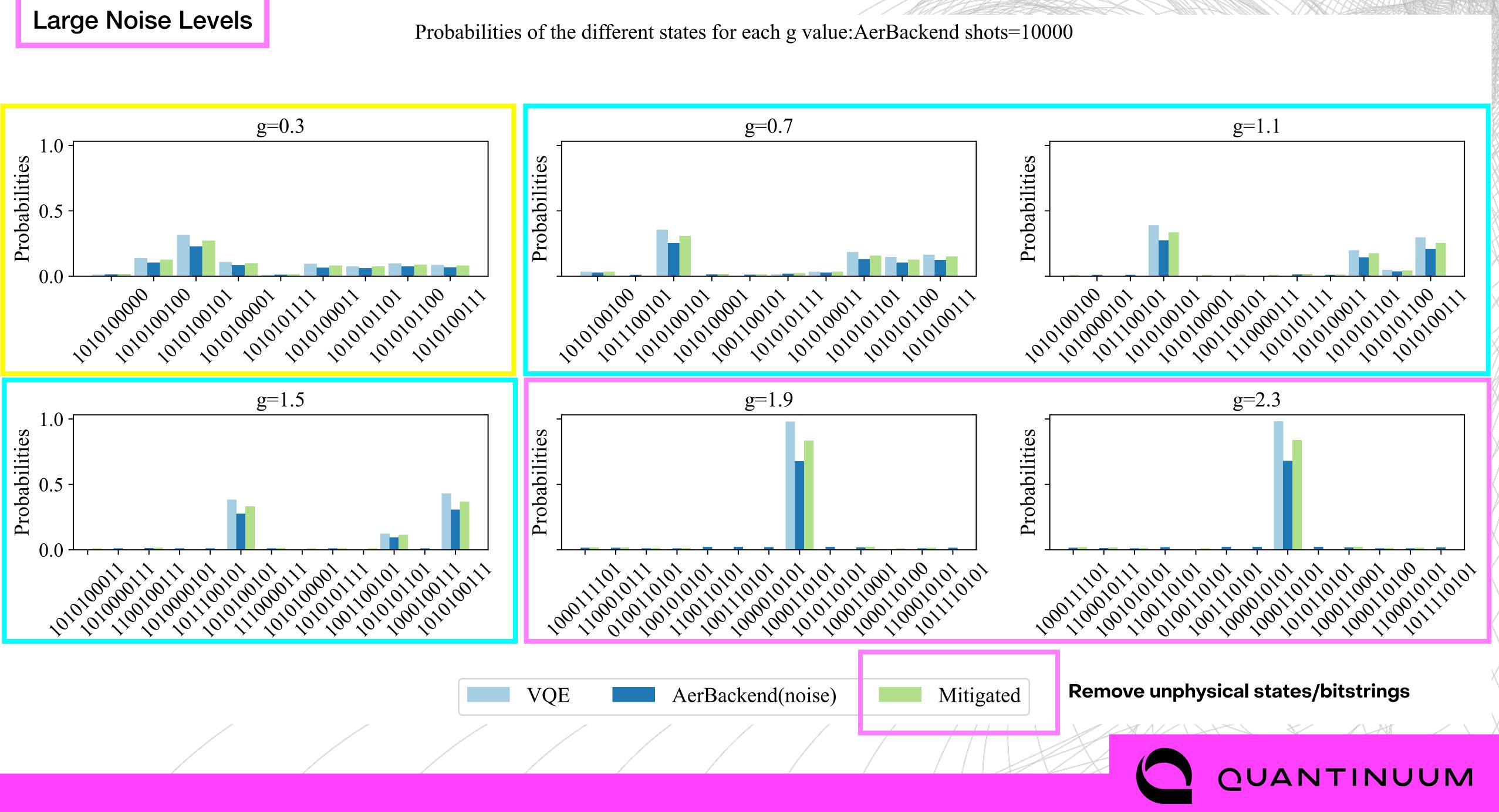


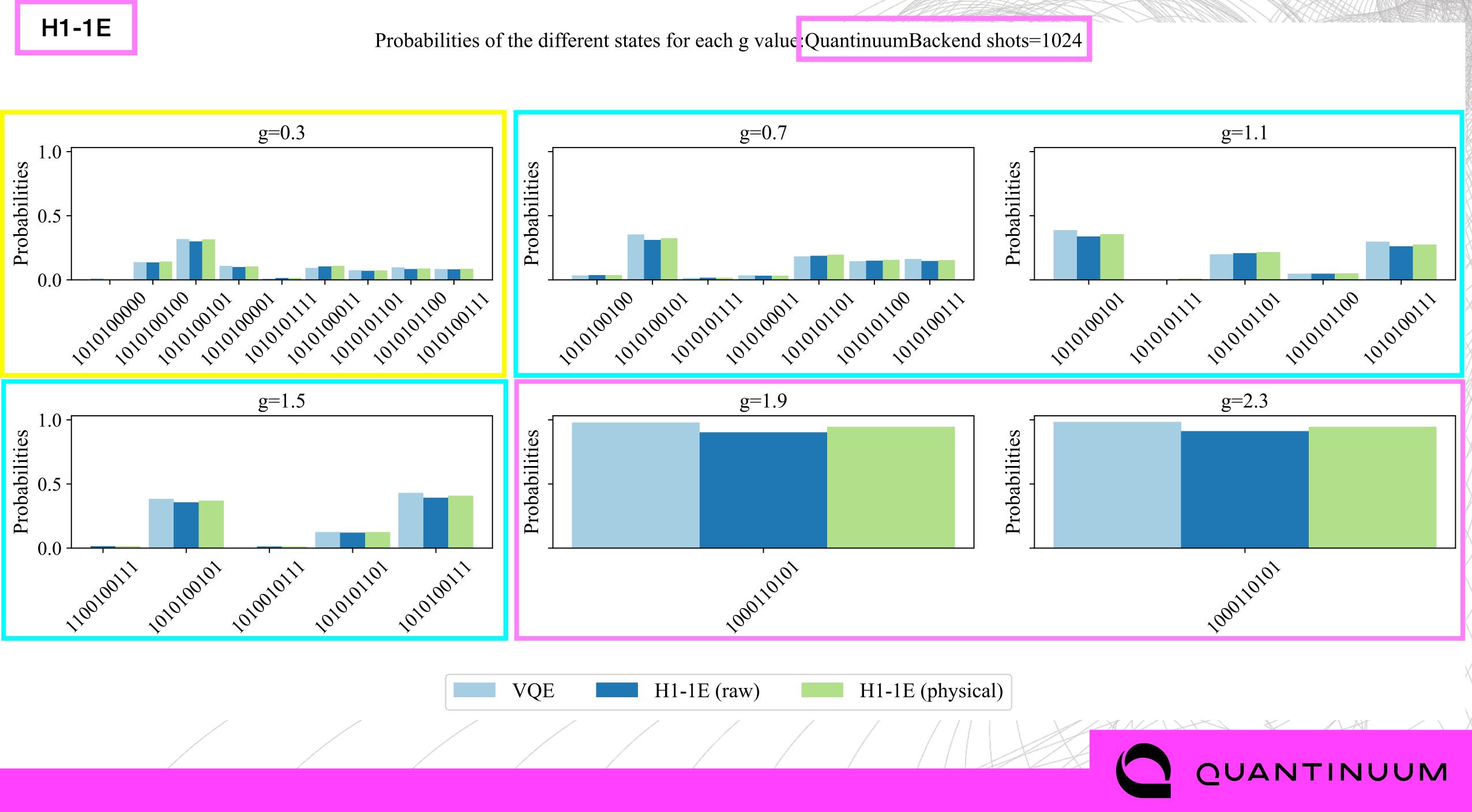


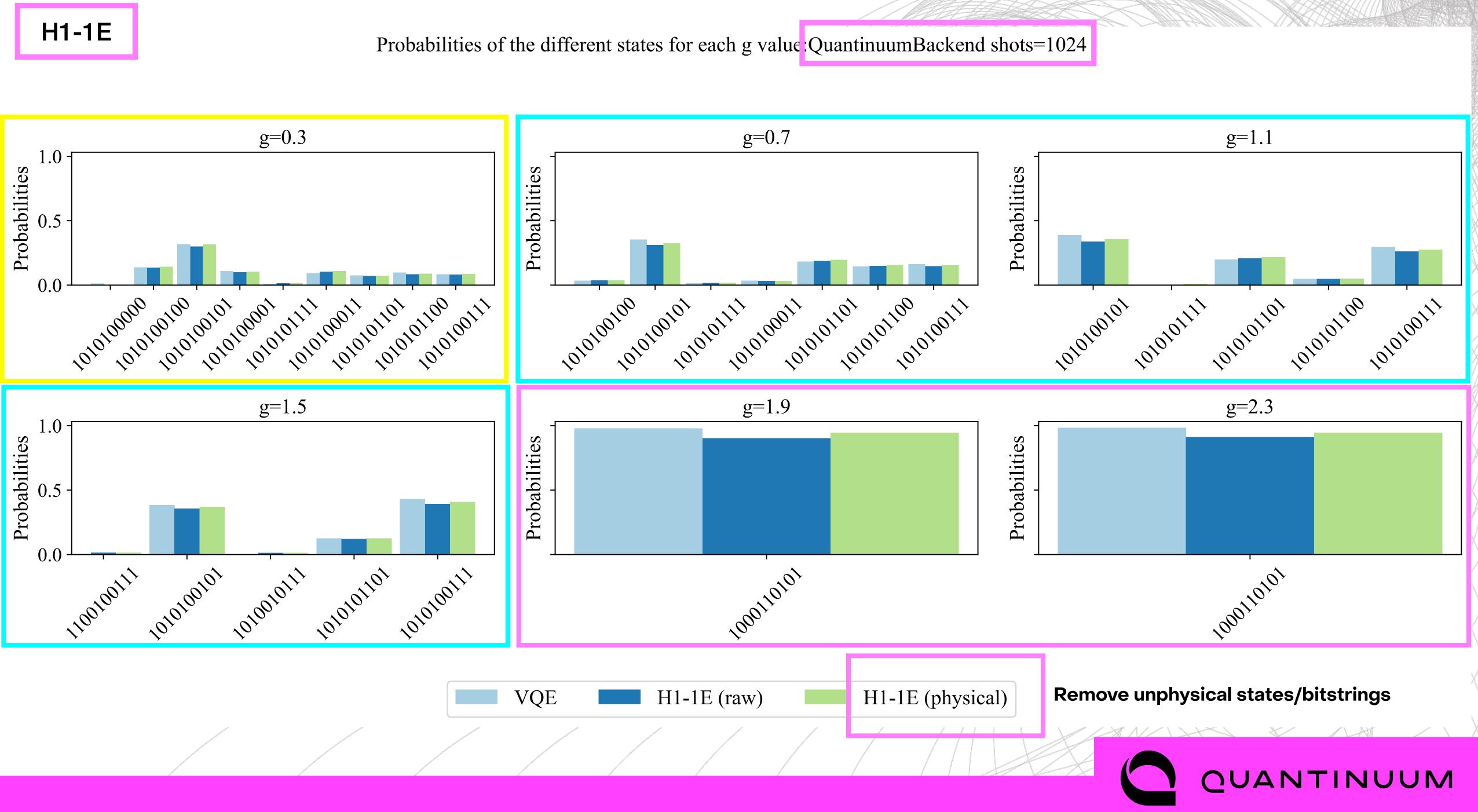


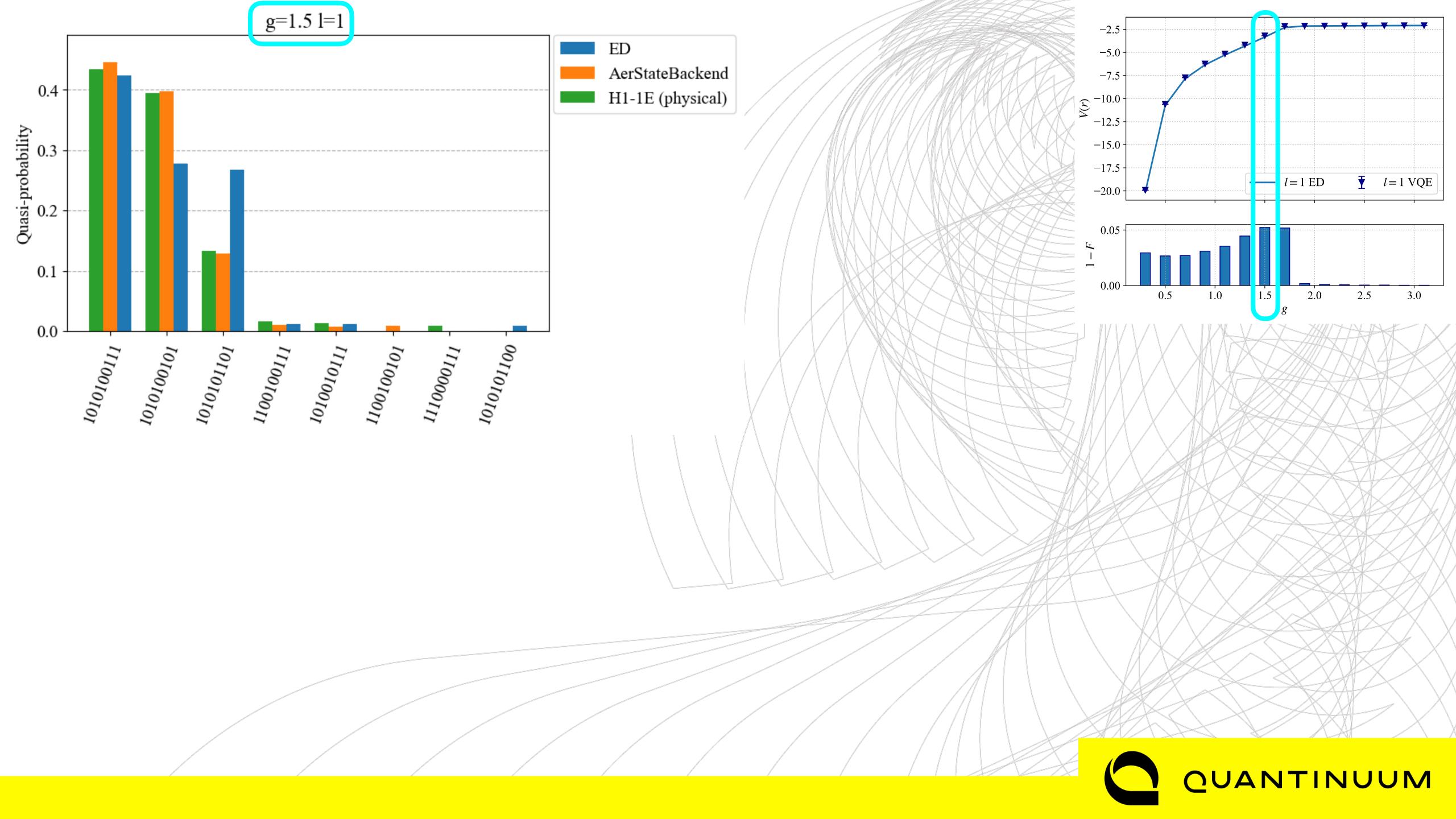


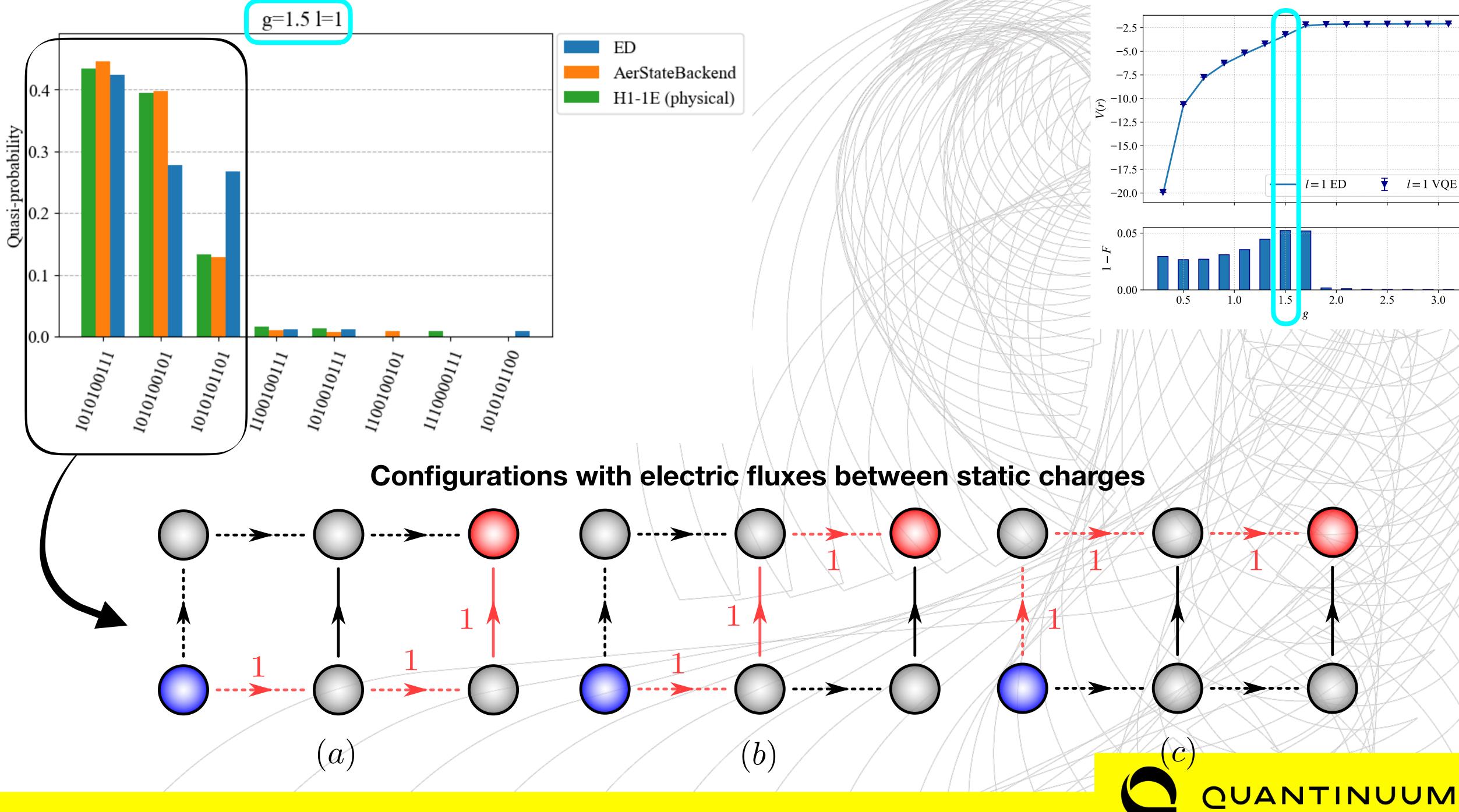


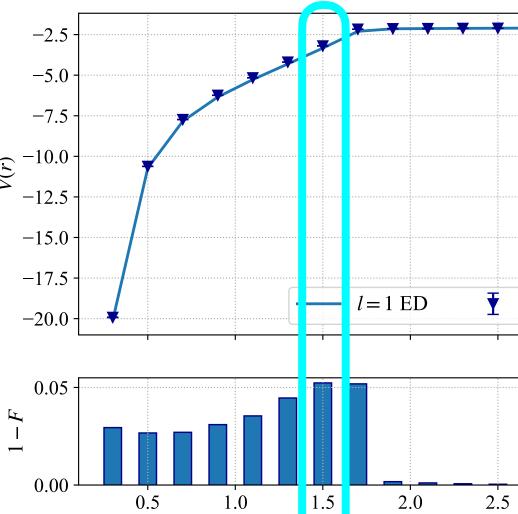


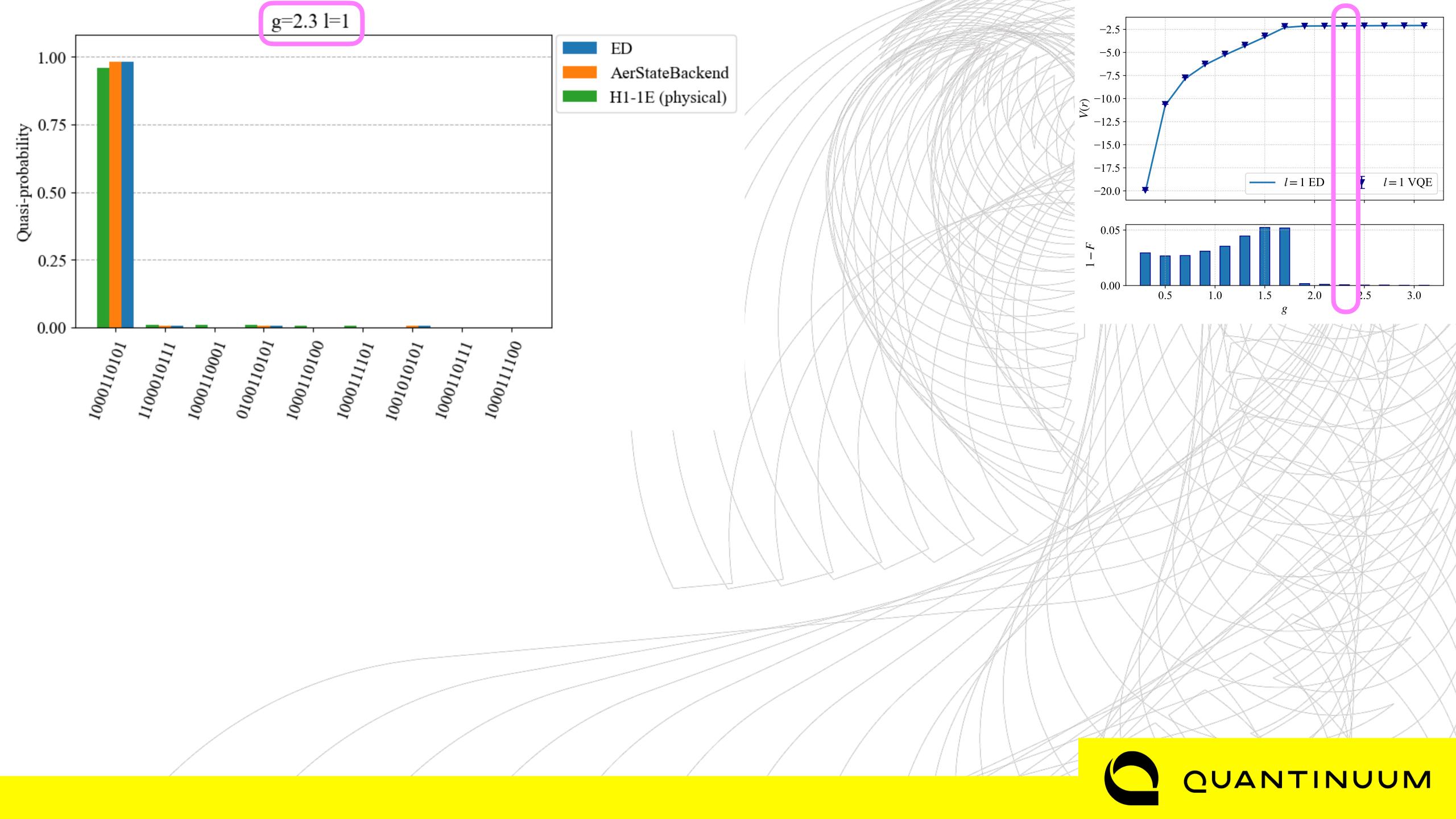


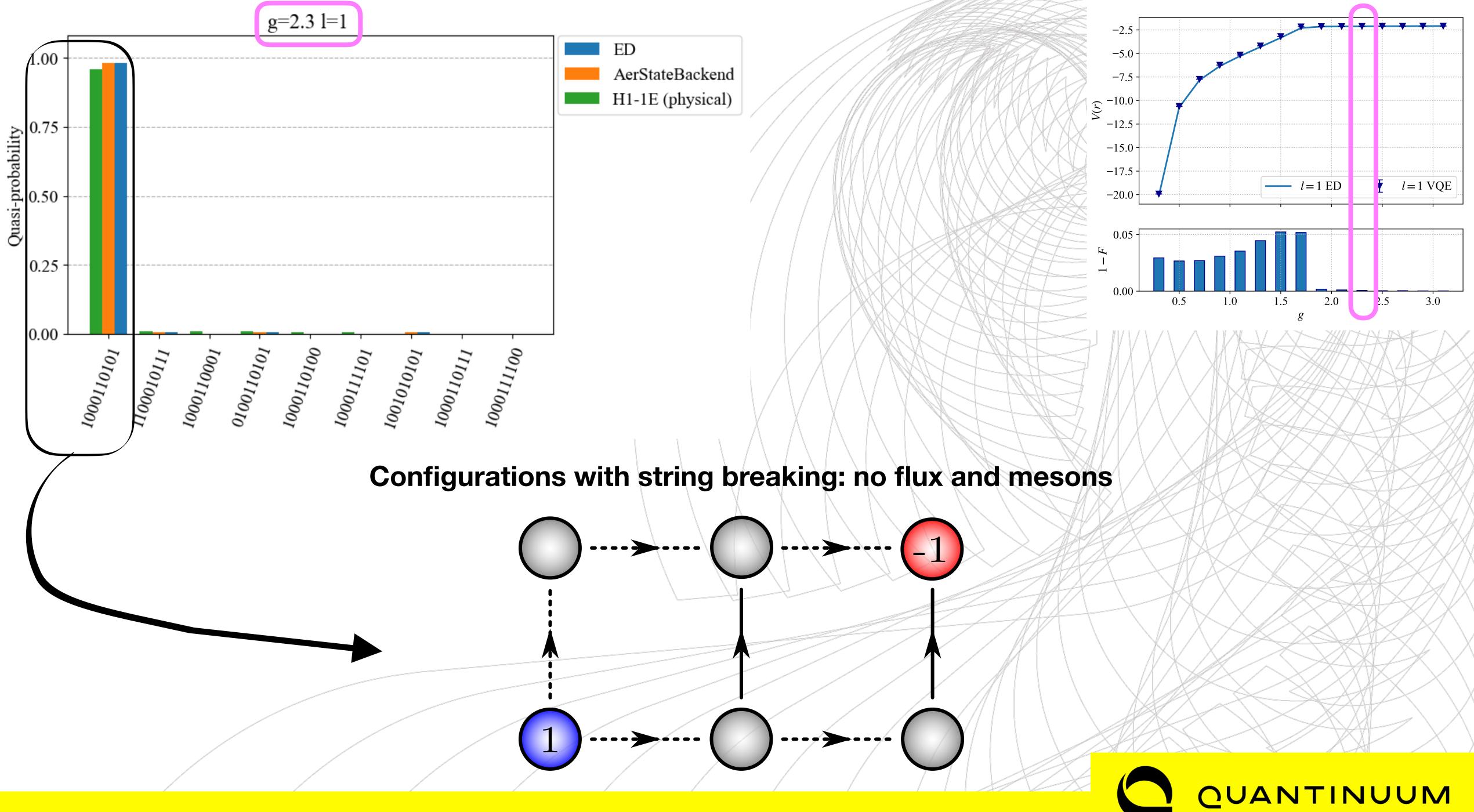






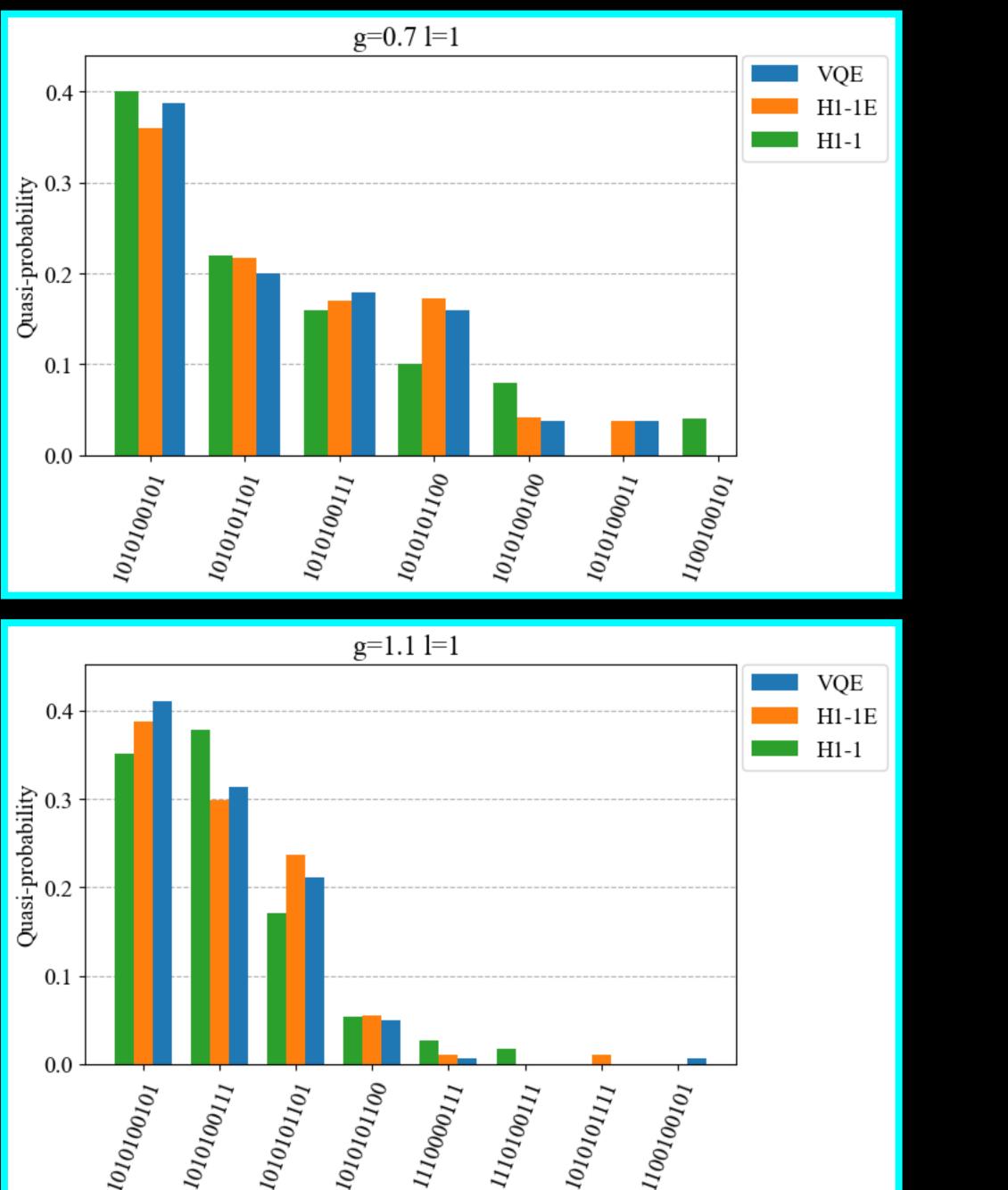


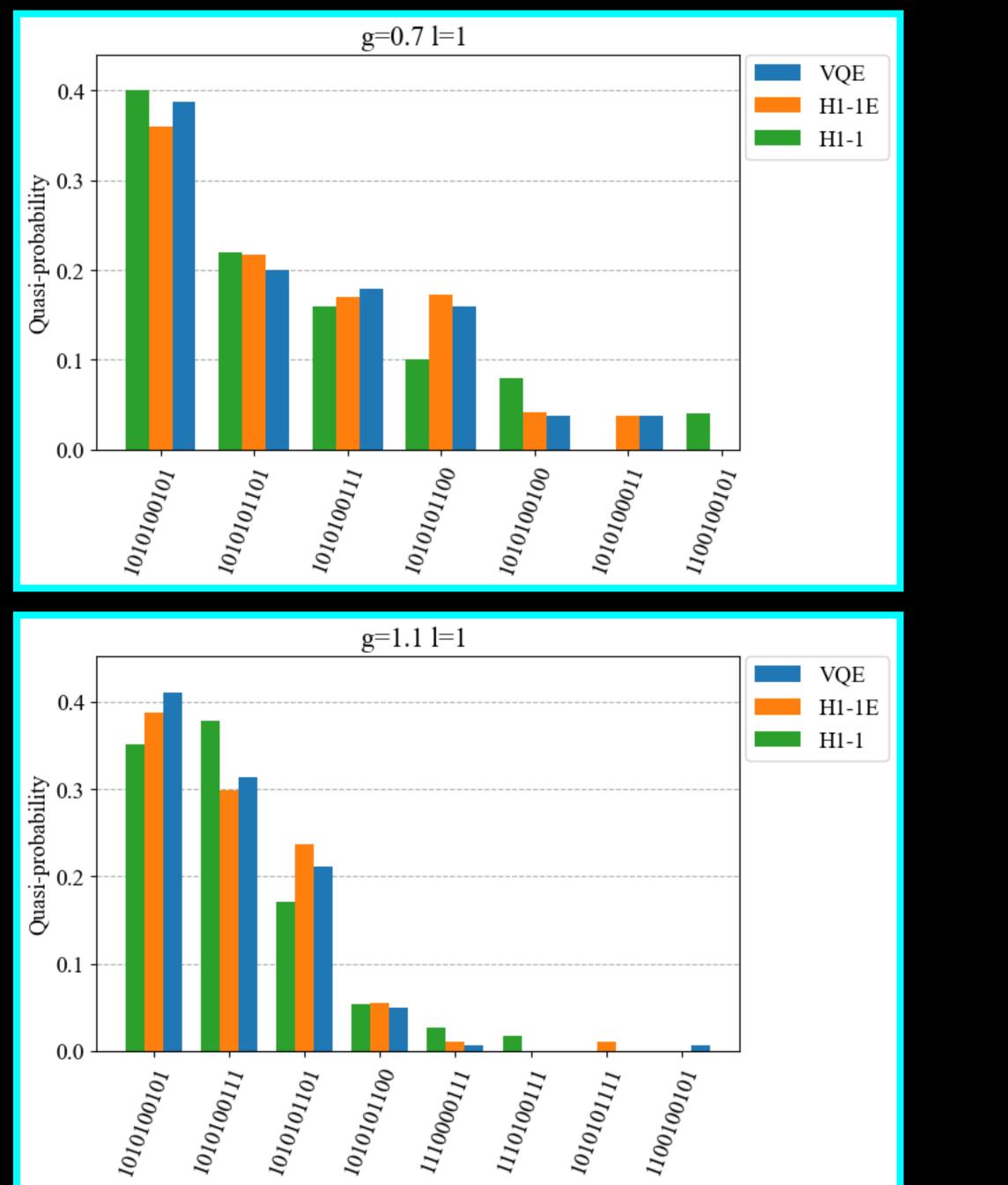




Real Hardware Results compared to Emulator

- 128 shots on H1-1
- No error mitigation! •





Conclusions And future directions

- We demonstrated on real quantum hardware a calculation of the • confining potential of (2+1)D QED in the Hamiltonian formulation
- · Access to the ground state, even in a variational sense, allows us to visualize the confining fluxes between static charges
- String breaking and the formation of "mesons" is observed
- Scaling up the quantum state preparation step is important to fully leverage the computational power of quantum hardware
- To get more details and see other applications of this method go see Karl Jansen's poster at 18:30

