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A quantum computing study …



Quantum computing
For Lattice Gauge Theory

• A new paradigm for scientific 
computing (overview by Karl Jansen) 

• Quantum algorithms work by 
manipulating quantum states in Hilbert 
space and measuring them 

• Represent the full wavefunction of a 
quantum many-body system 

• Can do unitary time evolution of such 
wavefunction 

• Digital quantum computing implements 
unitary operators as sequence of gates
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… of the static potential …



The potential energy
Between two static charges

• In Path Integral Monte Carlo we extract this 
by computing Wilson Loops of various 
dimensions 

• In quantum computing we have direct 
access to the Hamiltonian and the states of 
the system! 

• By changing the distance between static 
charges we can study the force between 
them 

• The potential  is the energy of the 
ground state with 2 opposite static charges
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… in (2+1)D QED



Hamiltonian Lattice QED
In 2 spatial dimensions

• We use the Kogut-Susskind Hamiltonian 
formalism of lattice gauge theory. Time is 
continuous. 

• The Hilbert space is defined as the tensor 
product of the local Hilbert spaces of each 
degree of freedom on the lattice 

• A state is a superposition of amplitudes for 
each possible configuration of degrees of 
freedom on the lattice 

• Site: fermion - Electron 

• Link: gauge - Electric field
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QED on qubits
Electric and Magnetic terms

ĤE =
g2

2 ∑⃗
n

( ̂E2
⃗n,x + ̂E2

⃗n,y)

̂E ⃗n,μ e ⃗n⟩ = e ⃗n e ⃗n⟩

Û ⃗n,μ e ⃗n⟩ = e ⃗n − 1⟩

ĤB = −
1

2g2 ∑⃗
n

(Û ⃗n,xÛ ⃗n+x,yÛ†
⃗n+y,x

Û†
⃗n,y

+ …)
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QED on qubits
Discretize: U(1) → ℤ2l+1

̂E ⃗n,μ e ⃗n⟩ = e ⃗n e ⃗n⟩

̂E ⃗n,μ

e ⃗n⟩ = −l ⃗n⟩, −l + 1 ⃗n⟩, …, −1 ⃗n⟩, 0 ⃗n⟩, +1 ⃗n⟩, l − 1 ⃗n⟩, l ⃗n⟩

i = + 1
i = 0
i = − 1

l = 1

l = 1
Encoding to qubits: 

We need 2 qubits to represent 4 
states. 1 state is “unphysical”
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Example on a  lattice3 × 2

• Using Gauss’ law we reduce the 
number of dynamical degrees of 
freedom: 6 sites, 2 links 

• We use 1 qubit for each site 

• We use 2 qubits for each link 

• Any state of this lattice QED 
theory is defined on 10 qubits 

• This classically requires 
manipulating a vector with 

 complex components210 = 1024
Ψ⟩ = ψsites⟩ ⊗ ψlinks⟩

∑
μ=x,y

( ̂E ⃗r,μ − ̂E ⃗r−μ,μ) − ̂q ⃗r − Q ⃗r |Φ⟩ = 0Gauss’ law
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Static Potential
In (2+1)D QED

•  

• On the lattice we can change  
by changing the lattice 
spacing  

• The lattice spacing  depends 
non-perturbatively on the 
coupling constant  

•

V(r) = V0 + α log r + σr

r
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State Preparation
With variational methods

• The ground state is prepared using the 
variational quantum eigensolver (VQE) 

• A trial state is obtained using a 
parametrized quantum circuit  
acting on some initial state 

•  

• The expectation value of the 
Hamiltonian is measured 

• An optimizer updates the parameters 
towards the minimum of the energy 
landscape

C(θ)

Ψ(θ)⟩ = C(θ) Ψ0⟩
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Example ansatz circuit

Ψ(θ)⟩ = ψsites⟩ ⊗ ψlinks⟩ = C(θ) Ψ0⟩

10 qubits, 30 parameters
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Example ansatz circuit

Ψ(θ)⟩ = ψsites⟩ ⊗ ψlinks⟩ = C(θ) Ψ0⟩

10 qubits, 30 parameters

|1010100101⟩
|1010100100⟩
|1000110100⟩
|1000110111⟩

⋯



Quantinuum
H-series Quantum Hardware 

Most benchmarked quantum 
computer 

Lowest-error commercial 
quantum device 

20 and 56 qubits on trapped ions

https://www.quantinuum.com/hardware


Example of gate decomposition

H-series Native Gates:  2-qubit gates≈ 80

{H, X, Rz, Rx, Ry, CNOT}:  2-qubit gates≈ 115



Results



Consistency checks
Benchmark quantum results against classical methods

• A quantum state of 10 qubits 
can be represented with 
classical memory on a laptop 
and the Hamiltonian can be 
easily written as a matrix 

• Use exact diagonalization (ED) 
to find the ground state and its 
energy 

• Use VQE to find the optimal 
parameters for the ground state 
circuit
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Simulation and Emulation
And real hardware experiments

• Simulate the circuit classically without measuring 

• Simulate the circuit classically with measurements 

• Simulate the circuit classically with measurements and noisy operations 

• Emulate the circuit on a trapped ion device 

• Run the circuit on a trapped ion device

• Given the optimal parameters for the ansatz circuit at each coupling we 
can:
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probi = |ci |
2 = |⟨i |ΨGS⟩ |2



|ΨGS⟩ = c0 |1000110101⟩ + …
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|ΨGS⟩ = c0 |1000110101⟩ + …

probi = |ci |
2 = |⟨i |ΨGS⟩ |2

|ΨGS⟩ = c0 |1010100101⟩ + c1 |1010101101⟩ + c2 |1010100111⟩
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Large Noise Levels

Remove unphysical states/bitstrings
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Configurations with electric fluxes between static charges





Configurations with string breaking: no flux and mesons



Real Hardware
Results compared to 
Emulator 

• 128 shots on H1-1 

• No error mitigation!



Conclusions
And future directions

• We demonstrated on real quantum hardware a calculation of the 
confining potential of (2+1)D QED in the Hamiltonian formulation 

• Access to the ground state, even in a variational sense, allows us to 
visualize the confining fluxes between static charges 

• String breaking and the formation of “mesons” is observed 

• Scaling up the quantum state preparation step is important to fully 
leverage the computational power of quantum hardware 

• To get more details and see other applications of this method go see Karl 
Jansen’s poster at 18:30


