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The potential energy

Between two static charges

N Path Integral Monte Carlo we extract this
oy computing Wilson Loops of various
dimensions

N quantum computing we have direct
access to the Hamiltonian and the states of
the system!

By changing the distance between static
Ch arges we can study the force between
tnem

- The potential V(r) is the energy of the
ground state with 2 opposite static charges
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The potential energy

Between two static charges

N Path Integral Monte Carlo we extract this
oy computing Wilson Loops of various L.
dimensions

N quantum computing we have direct
access to the Hamiltonian and the states of

the system! M —
By changing the distance between static r
charges we can study the force between
them
- The potential V(r) is the energy of the V(r) = (¥, (r) | H | (7))

ground state with 2 opposite static charges
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Hamiltonian Lattice QED

In 2 spatial dimensions

- We use the Kogut-5Susskind Hamiltonian
formalism of lattice gauge theory. Iime is
continuous.

- The Hilbert space is defined as the tensor
oroduct of the local Hilbert spaces of each
degree of freedom on the lattice

- A state is a superposition of amplitudes tor
cach possible configuration of degrees of
freedom on the lattice
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QED on qubits
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State Preparation

With variational methods

- The ground state is prepared using the
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Example ansatz circuit

10 qubits, 30 parameters

ql0] - ; - q10]

ql1] - : - ql1]

ar21 i I - ql2]

q[3] - : - q[3]

q[4] - ; - ql4]

q[5] - : CiSWAP . q[5]
iISWAP

Q[6] _ " : " - - " : . Q[6]

iISWAP H iISWAP I iISWAP H iISWAP

Q[7] B | N - 1 .. : _ Q[7]
iISWAP iISWAP

ql8] - | ) " : q[8]

ql9] - _:L - q[9]

W(O) = |vies) ® |Wiints) = CO)] ¥o)
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Example ansatz circuit

10 qubits, 30 parameters

I
1

ql0] - - q10]

~ql1]

~ql2]

q 3]

ql4] ~ql4]
ql5] CiSWAP - q[5]
iISWAP
a[6) . : " - : . 6]
iISWAP H iISWAP I iISWAP H iISWAP
Q7] | . : - .. e
iISWAP iISWAP
ql8] - " ’ " ql[8]
ql9] - ™ Rz(6[29...) - q191
1010100101)
T(H)) _ ® _ C(H) \P 1010100100)
= || Wsites Wiinks | = 0 1000110100)
1000110111)
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Quantinuum

H-series Quantum Hardware

Most benchmarked guantum
computer

L owest—error commercial
guantum device

20 and 56 qubits on trapped ions 999979(3)%  99914(3)%

single-qubit gate fidelity two-qubit gate fidelity


https://www.quantinuum.com/hardware

Example of gate decomposition

{H, X, Rz, Rx, Ry, CNOT}: ~ 115 2-qubit gates
ate) —CINY / '
pf—

JEI Ry (0[2]-) o .
ql3] Ry(6[5]...) Ry(-0.5...) Ry((1/2...)
ql4] H ? Rz((1/2...) ? H Rx(1.5707963267949/. .. ? Rz((1/2...) ? Rx(—1.5707963267949/. . .)
q[5] H | H Rx(1.5707963267949/. .. Rx(—1.5707963267949/. . .)
ql6] H ? Rz((1/2...) ? H Rx(1.5707963267949/. .. ? Rz((1/2...) ? Rx(—1.5707963267949/. . .)
ql7] H Rx(1.5707963267949/. .. Rx(—1.5707963267949/. .. )
q[8] H | ? Rz((1/2...) ? H | Rx(1.5707963267949/. .. ? Rz((1/2...) ? Rx(—1.5707963267949/. . .)
q[9] H m Rx(1.5707963267949/ . . Rx(—1.5707963267949/. . .)
H-series Native Gates: ~ 80 2-qubit gates

qle] PhasedX(—1.656, —0.5) g 0 PhasedX(1, —1.5)

ZZPhase(0.176)
ql1] PhasedX(—1.5,0) 1 PhasedX(0.5, 0.824) ZZPhase(0.083) 0 PhasedX(1, 2.324)

ZZPhase(0.095) ZZPhase(0.5)
ql2] PhasedX (0.5, 0) 1 PhasedX(0.5, —2.68) 0 PhasedX(1, —4.18) 0
ZZPhase(0.5) ZZPhase(0.5)

q[3] PhasedX(0.856, —0.5) 1 PhasedX(0.318, —0.682) PhasedX(—0.25, —1.905) 1 PhasedX
ql4] PhasedX(0.043, 1.637) 1 PhasedX(0.5,1.038) 1 PhasedX(1/...,0.538) ( PhasedX(0.886,0.713)

ZZPhase(0.039) ZZPhase(0.039) M ZZPhase(0.039)
ql5] PhasedX(0.957, —0.637) g 0 PhasedX(0.5, —2.235) == 0 PhasedX(1/...,—2.735) 0 PhasedX(0.2, —4.769) 1 PhasedX(0.5, —4.52) 1 PhasedX(1/...,—5.02) 1

ZZPhase(0.049) H ZZPhase(0.049) ZZF

ql6] PhasedX(0.468, 1.794) 1 PhasedX(0.5,1.598) 1 PhasedX(1/...,1.098) ( PhasedX(0.753,1.151) 0 PhasedX(0.5,0.983) 0 PhasedX(1/...,0.483) 0

ZZPhase(0.013) ZZPhase(0.013) H ZZPhase(0.013)
ql7] PhasedX(0.532, —0.794) == 0 PhasedX(0.5, —1.989) == 0 PhasedX(1/...,—2.489) 0 PhasedX(0.281, —4.544) 1

PhasedX(1/...,—5.244) 1
H ZzF
0.5, —0.443 PhasedX(1/...,—1.899) 0

1 PhasedX (0.5, —4.744) 1
ZZPhase(0.061) H ZZPhase(0.061)
q[8] PhasedX(0.351, —0.001) == 1 PhasedX( ) 0 PhasedX(0.5, —1.399) 0
ZZPhase(0.006) M ZZPhase(0.006)

q[9] PhasedX(0.649, 1.001) 0 PhasedX (0.5, —0.441) 22 0

PhasedX(1/...,—0.943) 1 PhasedX(0.145, —1.383)
ZZPhase(0.006)

0 PhasedX(0.57, —1.684)

|

PhasedX(1/...,—0.941)

Q QUANTINUUM
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Consistency checks

Benchmark quantum results against classical methods

- A guantum state of 10 gubits
can pe represented witr
classical memory on a laptop
and the Hamiltonian can be

easily written as a matrix

- Use exact diagonalization (ED)
to find the ground state and its — I=1ED  § I=1VQE
energy

- Use VQE to find the optimal

Darameters tor the ground state
CIrcult
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Simulation and Emulation

And real hardware experiments

Given the optimal parameters for the ansatz circuit at each coupling we
can:

Simulate the circuit classically without measuring
Simulate the circuit classically with measurements

Simulate the circuit classically with measurements and noisy operations

—Mmulate the circuit on a trapped ion device

Run the circuit on a trapped ion device
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pI’Obi = | C; ‘2 = | <i | \PGS> ‘2 Probabilities of the different states for each g value:AerStateBackend shots=None

g=0.3
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Probabilities of the different states for each g value:AerBackend shots=100000
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Small Noise Levels Probabilities of the different states for each g value: AerBackend shots=10000 ’

g=0.3
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Large Noise Levels Probabilities of the different states for each g value:AerBackend shots=10000

g=0.3
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Large Noise Levels Probabilities of the different states for each g value:AerBackend shots=10000

g=0.3
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Large Noise Levels Probabilities of the different states for each g value:AerBackend shots=10000

g=0.3
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Probabilities of the different states for each g valuc:QuantinuumBackend shots=1024 ;
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Probabilities of the different states for each g value:QuantinuumBackend shots=1024
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Conclusions

And future directions

We demonstrated on real guantum hardware a calculation of the
confining potential of (2+1)D QED in the Hamiltonian formulation

Access to the ground state, even in a variational sense, allows us to
visualize the contining fluxes between static charges

String breaking and the formation of "'mesons” is olbserved

Scaling up the quantum state preparation step is important to fully
leverage the computational power of guantum hardware

'O get more details and see other applications of this method go see Kar
Jansen's poster at 18:50




