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SSB patterns of QCD matter

QCD enjoys Poincare X U(1); X SU(2)p X SU(2); symmetry

- Low-temperature QCD breaks (approximate) chiral symmetry — Pions

- Neutron star inner crust — Superfluid and lattice phonons + Pions
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SSB patterns of QCD matter

QCD enjoys Poincare X U(1); X SU(2)p X SU(2); symmetry

- Low-temperature QCD breaks (approximate) chiral symmetry — Pions

- Neutron star inner crust — Supertluid and lattice phonons + Pions

- Liquid core the neutron star — Superfluid phonon + angulons (+ Pions)

» Q. What are hydrodynamic equations in symmetry-broken phases?
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[rreversibility of diffusion

No-go for time-reversal process!

Thermodynamic concepts, especially, The 2,4 law, should be there!
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Phenomenological derivation

Step 1. Determine dynamical d.o.m (& its equation of motion) QFT interpretation
. - o ~ Ward-Takahashi
Charge density: n(z) EoM: din+V -J =0 identity

Step 2. Introduce entropy & conjugate variable with 1st law
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Step 4. Identity how parameters (e.g., k) can be matched
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Green-Kubo formula: x,, = ilg% ;Im Gp” (w,k=0) for low-energy coeft.
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Application to|U(1)-symmetry breaking

In addition to the conserved charge density
superfluid phonon ¢ appears!
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Result for the simple superfluid

¢ Equation of motion

ﬁm

¢ Constitutive relation

J' = f20'¢ — knd'p,

Supercurrent/Diftusion

¢ Onsager coeflicient

I = —p+ {0u(f20"p)
Josephson eq./Damping eftect

Charge conductivity: k,, Damping coefhicient: {,

» Gapless mode: w ~ -

-cs | k| ;(D + f%(s)k* appears!
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SSB pattern in the NS inner crust
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SSB pattern in the NS inner crust

Kevy properties: ——[See Cirigliano et al. et al, PRC (2011) for low-energy EFT]

- Nuclei form a Coulomb lattice:

Translational symmetry is spontaneously broken — Lattice phonons &’ appears!
- Cooper pairs of dripped neutrons realize an s-wave condensate:

U(1)n symmetry is spontaneously broken — Supertluid phonon ¢ appears!

» What is the corresponding hydrodynamics at 7' # O for the inner crust?

(g/cm’)

Inner crust

nuclear clusters

From Chamel-Haensel (2008)
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Step 2. Introduce entropy & conjugate variable with 1st law (Cirigliano et al. et al, PRC (2011)]
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Phenomenological derivation

Step 1. Determine dynamical d.o.m (& its equation of motion) (T" u* = — eu*)

Charge densities: ¢, = {T(L, p,} & Phonons: {¢, 'Y EoM: d.c, + aijia — 0 & uﬂﬁﬂ(p = 1T, uﬂaﬂgi = f

[Cirigliano et al. et al, PRC (2011)]

Entropy _ A i BI° 0 o B iikia e : :@ _ 0s
density S—SO(engn 95)7,6) 9 (8290) 2:“ &ngakgl Wlth 5 867 6“71 810”

Step 2. Introduce entropy & conjugate variable with 1st law

Step 3. Find {J' .I1./'} up to finite derivatives compatible with 2nd law

3 s" such that 8t3—|—€-§’20 I:{> Jia:...7 M=---, fi=...

The procedure looks complicated in this case, but we can do it!
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¢ Equation of motion
0,T" =0, 0,J"=0, u'd,p=11, u'd,E =h
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¢ Equation of motion

0, 1" =0, 0,J5=0, u'd,p=1I,

¢ Constitutive relation
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Hydrodynamics for inner crust

¢ Equation of motion

0,T" =0, 0,J"=0, u'd,p=11, u'd,E =h

¢ Constitutive relation

0s 0

TH = (e + p)ur'u” + pnt” + f20"p0" ¢ + T '
5’%1/ 8UM)\
—Tn"P?9,(Bus) — TCx M B0, (f0" ¢)
JH = nut + f20Fp — TkpOyL,v

I = —p + TCou(f20%9) + TCh*™ 8,,(Bus)
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