Hydrodynamics for symmetry broken phases

Masaru Hongo (Niigata University/RIKEN iTHEMS)

2024/8/20, The XVIth Quark Confinement and the Hadron Spectrum Conference

The oldest but state-of-the-art phenomenological field theory

The oldest but state-of-the-art phenomenological field theory

Pascal's law

Hydrodynamics

Euler equations (Perfect fluid)

Navier-Stokes equations (Viscous fluid)

1600 1700 1800

- Effective theory for macroscopic dynamics
- Universal description, not depending on details
- Only conserved quantity ~ symmetry of system

- Effective theory for macroscopic dynamics
- · Universal description, not depending on details
- Only conserved quantity ~ symmetry of system

- Effective theory for macroscopic dynamics
- Universal description, not depending on details
- Only conserved quantity ~ symmetry of system

When continuous global symmetry is spontaneously broken, hydrodynamic equation is strongly modified!

When continuous global symmetry is spontaneously broken, hydrodynamic equation is strongly modified!

Ex. Helium II = U(I) symmetry breaking in 4He

Superfluid Hydrodynamics (Two-fluid model) by Tisza, Landau

When continuous global symmetry is spontaneously broken, hydrodynamic equation is strongly modified!

Ex. Helium II = U(I) symmetry breaking in 4He

Superfluid Hydrodynamics (Two-fluid model) by Tisza, Landau

When continuous global symmetry is spontaneously broken, hydrodynamic equation is strongly modified!

Ex. Helium II = U(I) symmetry breaking in ⁴He

Superfluid Hydrodynamics (Two-fluid model) by Tisza, Landau

General consequence resulting from the Nambu-Goldstone theorem

QCD enjoys Poincare $\times U(1)_B \times SU(2)_R \times SU(2)_L$ symmetry

QCD enjoys Poincare $\times U(1)_B \times SU(2)_R \times SU(2)_L$ symmetry

- Low-temperature QCD breaks (approximate) chiral symmetry → Pions

From Budapest-Marseille-Wuppertal Collaboration (2008)

QCD enjoys Poincare $\times U(1)_B \times SU(2)_R \times SU(2)_L$ symmetry

- Low-temperature QCD breaks (approximate) chiral symmetry \rightarrow Pions
- Neutron star inner crust → Superfluid and lattice phonons + Pions

From Budapest-Marseille-Wuppertal Collaboration (2008)

QCD enjoys Poincare $\times U(1)_B \times SU(2)_R \times SU(2)_L$ symmetry

- Low-temperature QCD breaks (approximate) chiral symmetry → Pions
- Neutron star inner crust → Superfluid and lattice phonons + Pions
- Liquid core the neutron star → Superfluid phonon + angulons (+ Pions)

QCD enjoys Poincare $\times U(1)_B \times SU(2)_R \times SU(2)_L$ symmetry

- Low-temperature QCD breaks (approximate) chiral symmetry \rightarrow Pions
- Neutron star inner crust → Superfluid and lattice phonons + Pions
- Liquid core the neutron star \rightarrow Superfluid phonon + angulons (+ Pions)

Q. What are hydrodynamic equations in symmetry-broken phases?

From Budapest-Marseille-Wuppertal Collaboration (2008)

Outline

Hydrodynamics for symmetry-broken phases?

Approach:

Semi-phenomenology based on local thermodynamics

Result & Outlook:

Outline

Motivation:

Hydrodynamics for symmetry-broken phases?

Approach:

Semi-phenomenology based on local thermodynamics

HOW to derive hydrodynamics

HOW to derive hydrodynamics

· Kinetic-theory derivation based on the Boltzman equation

[Tsumura et al, PLB (2007), Denicol et al, PRD (2012), ···]

· Nonequilibrium statistical operator approach

[Becattini et al, EPJC (2008), Hayata et al, PRD (2015), ···]

· Holographic-derivation based on fluid/gravity correspondence

[Baier et al, JHEP (2008), Bhattacharyya et al, JHEP (2008), ...]

· Projection operator/Poisson bracket approach

[Son PRL (2000), Hayata-Hidaka PRD (2015), ···]

· Phenomenological derivation based on local thermodynamics

[Son-Stephanov PRD (2002), Grossi et al., PRD (2021), ···]

HOW to derive hydrodynamics

· Kinetic-theory derivation based on the Boltzman equation

[Tsumura et al, PLB (2007), Denicol et al, PRD (2012), ···]

· Nonequilibrium statistical operator approach

[Becattini et al, EPJC (2008), Hayata et al, PRD (2015), ···]

· Holographic-derivation based on fluid/gravity correspondence

[Baier et al, JHEP (2008), Bhattacharyya et al, JHEP (2008), ...]

· Projection operator/Poisson bracket approach

[Son PRL (2000), Hayata-Hidaka PRD (2015), ···]

Phenomenological derivation based on local thermodynamics

[Son-Stephanov PRD (2002), Grossi et al., PRD (2021), ···]

→ <u>Bulding blocks of hydrodynamic equation</u>

- Bulding blocks of hydrodynamic equation
- (I) <u>Conservation law</u>: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

$$\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$$

- Bulding blocks of hydrodynamic equation

(I) Conservation law:
$$\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$$

- Bulding blocks of hydrodynamic equation

(I) Conservation law:
$$\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$$

- Bulding blocks of hydrodynamic equation
- (1) Conservation law: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$ (2) Constitutive relation: $\vec{J} = -T \kappa_n \vec{\nabla} (\beta \mu) \simeq -D \vec{\nabla} n$

- Bulding blocks of hydrodynamic equation
- (I) Conservation law: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

$$\partial_t n + \nabla \cdot \vec{J} = 0$$

(2) Constitutive relation:
$$\vec{J} = -T\kappa_n \vec{\nabla}(\beta\mu) \simeq -D\vec{\nabla}n$$

(3) Physical properties:

Values of
$$\kappa_n$$
, χ_n $(D = \kappa_n/\chi_n)$

- Bulding blocks of hydrodynamic equation
- (I) Conservation law: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

(2) Constitutive relation:
$$\vec{J} = -T\kappa_n \vec{\nabla}(\beta\mu) \simeq -D\vec{\nabla}n$$

(3) Physical properties:

Values of κ_n , χ_n $(D = \kappa_n/\chi_n)$

Irreversibility of diffusion

Irreversibility of diffusion

Irreversibility of diffusion

No-go for time-reversal process!

Thermodynamic concepts, especially, The 2_{nd} law, should be there!

Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n(x) EoM: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n(x) EoM: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s(n) $Tds = -\mu dn$ Chemical pot.: $\beta \mu \equiv -\frac{\partial s}{\partial n}$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n(x) EoM: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s(n) $Tds = -\mu dn$ Chemical pot.: $\beta \mu \equiv -\frac{\partial s}{\partial n}$

-Step 3. Find \vec{J} up to finite derivatives compatible with 2nd law —

 $\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \implies \vec{J} \simeq -T \kappa_{n} \vec{\nabla} (\beta \mu)$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n(x) EoM: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s(n) $Tds = -\mu dn$ Chemical pot.: $\beta \mu \equiv -\frac{\partial s}{\partial n}$

-Step 3. Find \vec{J} up to finite derivatives compatible with 2nd law —

 $\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \implies \vec{J} \simeq -T \kappa_{n} \vec{\nabla} (\beta \mu)$

Step 4. Identify how parameters (e.g., κ_n) can be matched

Green-Kubo formula: $\kappa_n = \lim_{\omega \to 0} \frac{1}{\omega} \text{Im} \, G_R^{J^x J^x}(\omega, \mathbf{k} = 0)$

Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n(x) EoM: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

QFT interpretation

≃ Ward-Takahashi identity

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s(n) $Tds = -\mu dn$ Chemical pot.: $\beta \mu \equiv -\frac{\partial s}{\partial n}$ \simeq Effective Lagrangian (Hamiltonian)

(Hamiltonian)

-Step 3. Find \vec{J} up to finite derivatives compatible with 2nd law -

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad | \quad \vec{J} \simeq -T \kappa_{n} \vec{\nabla} (\beta \mu)$$

≃ A kind of symmetry constraints

Step 4. Identify how parameters (e.g., κ_n) can be matched

Green-Kubo formula: $\kappa_n = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G_R^{J^x J^x}(\omega, \mathbf{k} = 0)$

≈ Matching condition for low-energy coeff.

Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n(x) EoM: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

QFT interpretation

≃ Ward-Takahashi identity

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s(n) $Tds = -\mu dn$ Chemical pot.: $\beta \mu \equiv -\frac{\partial s}{\partial n}$ \simeq Effective Lagrangian (Hamiltonian)

(Hamiltonian)

-Step 3. Find \vec{J} up to finite derivatives compatible with 2nd law

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad | \quad \vec{J} \simeq -T \kappa_{n} \vec{\nabla} (\beta \mu)$$

≃ A kind of symmetry constraints

Γ Step 4. Identify how parameters (e.g., κ_n) can be matched

Green-Kubo formula: $\kappa_n = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G_R^{J^x J^x}(\omega, \mathbf{k} = 0)$

≃ Matching condition for low-energy coeff.

Outline

Motivation:

Hydrodynamics for symmetry-broken phases?

Approach:

Semi-phenomenology based on local thermodynamics

Result & Outlook:

Derivation of hydrodynamics for symmetry-broken phases
Matching condition (Kubo formula) for all Onsager coeff.
Application to NS physics (e.g., neutrino reaction, ...)

Outline

Motivation:

Hydrodynamics for symmetry-broken phases?

Semi-phenomenology based on local thermodynamics

Derivation of hydrodynamics for symmetry-broken phases

Matching condition (Kubo formula) for all Onsager coeff.

Application to NS physics (e.g., neutrino reaction, ...)

Application to U(1)-symmetry breaking

Application to U(1)-symmetry breaking

In addition to the conserved charge density superfluid phonon φ appears!

Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n(x) EoM: $\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$

QFT interpretation

≃ Ward-Takahashi identity

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s(n) $Tds = -\mu dn$ Chemical pot.: $\beta \mu \equiv -\frac{\partial s}{\partial n}$ \simeq Effective Lagrangian (Hamiltonian)

(Hamiltonian)

-Step 3. Find \vec{J} up to finite derivatives compatible with 2nd law

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad | \quad \vec{J} \simeq -T \kappa_{n} \vec{\nabla} (\beta \mu)$$

≃ A kind of symmetry constraints

Γ Step 4. Identify how parameters (e.g., κ_n) can be matched

Green-Kubo formula: $\kappa_n = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G_R^{J^x J^x}(\omega, \mathbf{k} = 0)$

≃ Matching condition for low-energy coeff.

Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: $n \& Superfluid phonons: \varphi$ EoM: $\partial_t n + \partial_i J^i = 0 \& \partial_t \varphi = \Pi$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: $n \& Superfluid phonons: \varphi$ EoM: $\partial_t n + \partial_i J^i = 0 \& \partial_t \varphi = \Pi$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density:
$$s=s(n,v)$$
 with $v=\frac{1}{2}(\partial_i\varphi)^2, \quad \beta\mu=-\frac{\partial s}{\partial n}, \quad \beta f^2=-\frac{\partial s}{\partial v}$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n & Superfluid phonons: φ EoM: $\partial_t n + \partial_i J^i = 0 \& \partial_t \varphi = \Pi$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density:
$$s=s(n,v)$$
 with $v=\frac{1}{2}(\partial_i\varphi)^2, \quad \beta\mu=-\frac{\partial s}{\partial n}, \quad \beta f^2=-\frac{\partial s}{\partial v}$

$$\exists s^{\mu} \text{ such that } \frac{\partial_{t} s}{\partial_{t} s} + \vec{\nabla} \cdot \vec{s} \geq 0 \quad \Box \searrow J^{i} = f^{2} \partial^{i} \varphi - \kappa_{n} \partial^{i} \mu, \ \Pi = -\mu + \zeta_{s} \partial_{i} u(f^{2} \partial^{i} \varphi)$$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: $n \& Superfluid phonons: \varphi$ EoM: $\partial_t n + \partial_i J^i = 0 \& \partial_t \varphi = \Pi$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s=s(n,v) with $v=\frac{1}{2}(\partial_i\varphi)^2$, $\beta\mu=-\frac{\partial s}{\partial n}$, $\beta f^2=-\frac{\partial s}{\partial v}$

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad \Box \searrow J^{i} = f^{2} \partial^{i} \varphi - \kappa_{n} \partial^{i} \mu, \ \Pi = -\mu + \zeta_{s} \partial_{i} u (f^{2} \partial^{i} \varphi)$$

$$\partial_t s = \frac{\partial s}{\partial n} \partial_t n + \frac{\partial s}{\partial v} \partial_t v$$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: $n \& Superfluid phonons: \varphi$ EoM: $\partial_t n + \partial_i J^i = 0 \& \partial_t \varphi = \Pi$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s=s(n,v) with $v=\frac{1}{2}(\partial_i\varphi)^2$, $\beta\mu=-\frac{\partial s}{\partial n}$, $\beta f^2=-\frac{\partial s}{\partial v}$

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad \Box \searrow J^{i} = f^{2} \partial^{i} \varphi - \kappa_{n} \partial^{i} \mu, \ \Pi = -\mu + \zeta_{s} \partial_{i} u (f^{2} \partial^{i} \varphi)$$

$$\partial_t s = \frac{\partial s}{\partial n} \partial_t n + \frac{\partial s}{\partial v} \partial_t v = \beta \mu \partial_i J^i - \beta f^2 \partial_i \varphi \partial^i \Pi$$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: n & Superfluid phonons: φ EoM: $\partial_t n + \partial_i J^i = 0 \& \partial_t \varphi = \Pi$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s=s(n,v) with $v=\frac{1}{2}(\partial_i\varphi)^2, \quad \beta\mu=-\frac{\partial s}{\partial n}, \quad \beta f^2=-\frac{\partial s}{\partial v}$

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad \Box \searrow J^{i} = f^{2} \partial^{i} \varphi - \kappa_{n} \partial^{i} \mu, \ \Pi = -\mu + \zeta_{s} \partial_{i} u (f^{2} \partial^{i} \varphi)$$

$$\partial_t s = \frac{\partial s}{\partial n} \partial_t n + \frac{\partial s}{\partial v} \partial_t v = \beta \mu \partial_i J^i - \beta f^2 \partial_i \varphi \partial^i \Pi = \partial_i (\beta \mu J^i) + \beta [-J^i \partial_i \mu - f^2 \partial_i \varphi \partial^i \Pi]$$

-Step 1. Determine dynamical d.o.m (& its equation of motion)

Charge density: $n \& Superfluid phonons: \varphi$ EoM: $\partial_t n + \partial_i J^i = 0 \& \partial_t \varphi = \Pi$

-Step 2. Introduce entropy & conjugate variable with 1st law

Entropy density: s=s(n,v) with $v=\frac{1}{2}(\partial_i\varphi)^2, \quad \beta\mu=-\frac{\partial s}{\partial n}, \quad \beta f^2=-\frac{\partial s}{\partial v}$

-Step 3. Find $\{J_a^i, \Pi, f^i\}$ up to finite derivatives compatible with 2nd law

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad \Box \searrow J^{i} = f^{2} \partial^{i} \varphi - \kappa_{n} \partial^{i} \mu, \ \Pi = -\mu + \zeta_{s} \partial_{i} u (f^{2} \partial^{i} \varphi)$$

$$\partial_t s = \frac{\partial s}{\partial n} \partial_t n + \frac{\partial s}{\partial v} \partial_t v = \beta \mu \partial_i J^i - \beta f^2 \partial_i \varphi \partial^i \Pi = \partial_i (\beta \mu J^i) + \beta [-J^i \partial_i \mu - f^2 \partial_i \varphi \partial^i \Pi]$$

Choosing $s^i := -\beta \mu J^i + \beta f^2 \Pi \partial^i \varphi$, $J^i = f^2 \partial^i \varphi - \kappa_n \partial^i \mu$, $\Pi = -\mu + \zeta_s \partial_i u(f^2 \partial^i \varphi)$ works!

◆Equation of motion-

$$\partial_t n + \partial_i J^i = 0, \quad \partial_t \varphi = \Pi$$

◆ Equation of motion

$$\partial_t n + \partial_i J^i = 0, \quad \partial_t \varphi = \Pi$$

◆Constitutive relation

$$J^i = f^2 \partial^i \varphi - \kappa_n \partial^i \mu, \quad \Pi = -\mu + \zeta_s \partial_i u(f^2 \partial^i \varphi)$$

◆ Equation of motion

$$\partial_t n + \partial_i J^i = 0, \quad \partial_t \varphi = \Pi$$

◆Constitutive relation

$$J^i=f^2\partial^i\varphi-\kappa_n\partial^i\mu,\quad \Pi=-\mu+\zeta_s\partial_iu(f^2\partial^i\varphi)$$

Supercurrent/Diffusion Josephson eq./Damping effect

◆Equation of motion

$$\partial_t n + \partial_i J^i = 0, \quad \partial_t \varphi = \Pi$$

◆Constitutive relation

$$J^i=f^2\partial^i\varphi-\kappa_n\partial^i\mu,\quad \Pi=-\mu+\zeta_s\partial_iu(f^2\partial^i\varphi)$$

Supercurrent/Diffusion Josephson eq./Damping effect

◆ Onsager coefficient-

Charge conductivity: κ_n , Damping coefficient: ζ_s

Equation of motion

$$\partial_t n + \partial_i J^i = 0, \quad \partial_t \varphi = \Pi$$

Constitutive relation

$$J^i=f^2\partial^i\varphi-\kappa_n\partial^i\mu,\quad \Pi=-\mu+\zeta_s\partial_iu(f^2\partial^i\varphi)$$

Supercurrent/Diffusion Josephson eq./Damping effect

Onsager coefficient-

Charge conductivity: κ_n , Damping coefficient: ζ_s

Gapless mode: $\omega \simeq \pm c_s |{m k}| - \frac{\mathrm{i}}{2} (D + f^2 \zeta_s) {m k}^2$ appears! $\left[c_s := \frac{f}{\sqrt{\chi}}, \, D := \frac{\sigma}{\chi}\right]$

$$c_s := rac{f}{\sqrt{\chi}}, \, D := rac{\sigma}{\chi}$$

Application to Hydrodynamics in the neutron star inner crust

-Key properties: ——[See Cirigliano et al. et al, PRC (2011) for low-energy EFT] \neg

- Nuclei form a Coulomb lattice:
 - Translational symmetry is spontaneously broken \rightarrow Lattice phonons ξ^i appears!
- Cooper pairs of dripped neutrons realize an s-wave condensate:
 - $U(I)_n$ symmetry is spontaneously broken \rightarrow Superfluid phonon φ appears!

From Chamel-Haensel (2008)

- $\underline{Key\ properties:}$ ——[See Cirigliano et al. et al, PRC (2011) for low-energy EFT] \neg

- Nuclei form a Coulomb lattice:

Translational symmetry is spontaneously broken \rightarrow Lattice phonons ξ^i appears!

- Cooper pairs of dripped neutrons realize an s-wave condensate:

 $U(I)_n$ symmetry is spontaneously broken \rightarrow Superfluid phonon φ appears!

What is the corresponding hydrodynamics at $T \neq 0$ for the inner crust?

From Chamel-Haensel (2008)

-Step 1. Determine dynamical d.o.m (& its equation of motion) $---(T^{\mu}_{\nu}u^{\nu} = -eu^{\mu})$

Charge densities: $c_a = \{T^0_{\mu}, \rho_n\}$ & Phonons: $\{\varphi, \xi^i\}$ EoM: $\partial_t c_a + \partial_i J^i_a = 0$ & $u^{\mu} \partial_{\mu} \varphi = \Pi$, $u^{\mu} \partial_{\mu} \xi^i = f^i$

-Step 1. Determine dynamical d.o.m (& its equation of motion) $---(T^{\mu}_{\nu}u^{\nu} = -eu^{\mu})$

Charge densities: $c_a = \{T^0_\mu, \rho_n\}$ & Phonons: $\{\varphi, \xi^i\}$ EoM: $\partial_t c_a + \partial_i J^i_a = 0$ & $u^\mu \partial_\mu \varphi = \Pi$, $u^\mu \partial_\mu \xi^i = f^i$

-Step 2. Introduce entropy & conjugate variable with 1st law —— [Cirigliano et al. et al, PRC (2011)]

Entropy density
$$s \simeq s_0(e, \rho_n - g\partial_i \xi^i) - \frac{\beta f^2}{2} (\partial_i \varphi)^2 - \frac{\beta}{2} \mu^{ijkl} \partial_i \xi_j \partial_k \xi_l$$
 with $\beta = \frac{\partial s}{\partial e}$, $\beta \mu_n = -\frac{\partial s}{\partial \rho_n}$

-Step 1. Determine dynamical d.o.m (& its equation of motion) $---(T^{\mu}_{\nu}u^{\nu}=-eu^{\mu})$

Charge densities: $c_a = \{T^0_\mu, \rho_n\}$ & Phonons: $\{\varphi, \xi^i\}$ EoM: $\partial_t c_a + \partial_i J^i_a = 0$ & $u^\mu \partial_\mu \varphi = \Pi$, $u^\mu \partial_\mu \xi^i = f^i$

-Step 2. Introduce entropy & conjugate variable with 1st law [Cirigliano et al. et al, PRC (2011)]

Entropy
$$s \simeq s_0(e, \rho_n - g\partial_i \xi^i) - \frac{\beta f^2}{2} (\partial_i \varphi)^2 - \frac{\beta}{2} \mu^{ijkl} \partial_i \xi_j \partial_k \xi_l$$
 with $\beta = \frac{\partial s}{\partial e}$, $\beta \mu_n = -\frac{\partial s}{\partial \rho_n}$ density

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad \Box \qquad J^{i}_{a} = \cdots, \quad \Pi = \cdots, \quad f^{i} = \cdots$$

-Step 1. Determine dynamical d.o.m (& its equation of motion) $---(T^{\mu}_{\nu}u^{\nu}=-eu^{\mu})$

Charge densities: $c_a = \{T^0_\mu, \rho_n\}$ & Phonons: $\{\varphi, \xi^i\}$ EoM: $\partial_t c_a + \partial_i J^i_a = 0$ & $u^\mu \partial_\mu \varphi = \Pi$, $u^\mu \partial_\mu \xi^i = f^i$

-Step 2. Introduce entropy & conjugate variable with 1st law [Cirigliano et al. et al, PRC (2011)]

Entropy
$$s \simeq s_0(e, \rho_n - g\partial_i \xi^i) - \frac{\beta f^2}{2} (\partial_i \varphi)^2 - \frac{\beta}{2} \mu^{ijkl} \partial_i \xi_j \partial_k \xi_l$$
 with $\beta = \frac{\partial s}{\partial e}, \ \beta \mu_n = -\frac{\partial s}{\partial \rho_n}$ density

-Step 3. Find $\{J_a^i, \Pi, f^i\}$ up to finite derivatives compatible with 2nd law

$$\exists s^{\mu} \text{ such that } \partial_{t} s + \vec{\nabla} \cdot \vec{s} \geq 0 \quad \Box \qquad J^{i}_{a} = \cdots, \quad \Pi = \cdots, \quad f^{i} = \cdots$$

The procedure looks complicated in this case, but we can do it!

Hydrodynamics for inner crust (preliminary)

◆ Equation of motion-

$$\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}J^{\mu}_{n} = 0, \quad u^{\mu}\partial_{\mu}\varphi = \Pi, \quad u^{\mu}\partial_{\mu}\xi^{i} = h^{i}$$

Hydrodynamics for inner crust (preliminary)

◆Equation of motion

$$\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}J^{\mu}_{n} = 0, \quad u^{\mu}\partial_{\mu}\varphi = \Pi, \quad u^{\mu}\partial_{\mu}\xi^{i} = h^{i}$$

◆Constitutive relation

$$T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + p\eta^{\mu\nu} + f^{2}\partial^{\mu}\varphi\partial^{\nu}\varphi + T\frac{\partial s}{\partial v_{\mu\nu}} + T\frac{\partial s}{\partial v_{\mu\lambda}}\partial^{\nu}\xi_{\lambda}$$

$$-T\eta^{\mu\nu\rho\sigma}\partial_{\rho}(\beta u_{\sigma}) - T\zeta_{\times}h^{\mu\nu}\beta\partial_{\mu}(f^{2}\partial^{\mu}\varphi)$$

$$J^{\mu} = nu^{\mu} + f^{2}\partial^{\mu}\varphi - T\kappa_{n}\partial_{\perp\mu}\nu$$

$$\left[v_{\mu\nu} = \frac{1}{2}(\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu})\right]$$

$$\Pi = -\mu + T\zeta_{s}\partial_{\mu}(f^{2}\partial^{\mu}\varphi) + T\zeta_{\times}h^{\mu\nu}\partial_{\mu}(\beta u_{\nu})$$

$$h^{i} = u^{i} - T\gamma_{ij}\frac{\partial s}{\partial \xi_{i}}$$

Hydrodynamics for inner crust (preliminary)

◆Equation of motion

$$\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}J^{\mu}_{n} = 0, \quad u^{\mu}\partial_{\mu}\varphi = \Pi, \quad u^{\mu}\partial_{\mu}\xi^{i} = h^{i}$$

◆Constitutive relation

$$T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + p\eta^{\mu\nu} + f^{2}\partial^{\mu}\varphi\partial^{\nu}\varphi + T\frac{\partial s}{\partial v_{\mu\nu}} + T\frac{\partial s}{\partial v_{\mu\lambda}}\partial^{\nu}\xi_{\lambda}$$

$$-T\eta^{\mu\nu\rho\sigma}\partial_{\rho}(\beta u_{\sigma}) - T\zeta_{\times}h^{\mu\nu}\beta\partial_{\mu}(f^{2}\partial^{\mu}\varphi)$$

$$J^{\mu} = nu^{\mu} + f^{2}\partial^{\mu}\varphi - T\kappa_{n}\partial_{\perp\mu}\nu$$

$$\left[v_{\mu\nu} = \frac{1}{2}(\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu})\right]$$

$$\Pi = -\mu + T\zeta_{s}\partial_{\mu}(f^{2}\partial^{\mu}\varphi) + T\zeta_{\times}h^{\mu\nu}\partial_{\mu}(\beta u_{\nu})$$

$$h^{i} = u^{i} - T\gamma_{ij}\frac{\partial s}{\partial \xi_{i}}$$

◆ Onsager coefficient-

$$\eta, \zeta, \kappa_n, \zeta_s, \zeta_{\times}, \gamma_{ij}$$

Summary

Motivation:

Hydrodynamics for symmetry-broken phases?

Approach:

Semi-phenomenology based on local thermodynamics

Result & Outlook:

Derivation of hydrodynamics for symmetry-broken phases
Matching condition (Kubo formula) for all Onsager coeff.
Application to NS physics (e.g., neutrino reaction, ...)