Experimental studies of baryon modification in nuclei using hyperons

H. Tamura Tohoku University / Japan Atomic Energy Agency

Experimental studies of baryon modification in nuclei using hyperons

Contents

- 1. Introduction baryon modification in medium
- 2. Λ 's magnetic moment in nuclei
- 3. Λ 's beta-decay rate in nuclei
- 4. Summary

1. Introduction – baryon modification in medium

Challenges in high density matter in NS

- Hyperon puzzle (How to support heavy NS's?)
- Quark matter exists? (Where and how hadronic matter changes to QM?)

Our experimental strategy (at J-PARC + JLab + SPring-8)

- See Aoki(Wed. pl.), Gogami(Thu.F) Determine YN, YY interactions both in free space $\leftarrow \Sigma^{\pm}p$ scattering (E40), Λp scattering (E86, Spring-8) + Femtoscopy and in nuclear matter (at ρ_0) $\leftarrow \Lambda$ hypernuclei (E13,63,73,94,Jlab), $\Lambda\Lambda/\Xi$ hypernuclei
- (E05,07,70,75,96) **Study** ρ (> ρ_0) dependence of YN int. (YNN 3-body force) \leftarrow Precise Λ hypernuclear spectroscopy (P84)
 - \Rightarrow Investigate whether NS properties can be microscopically described in terms of hadrons in accordance with all the experimental data and lattice QCD calculations. If not => indirect evidence for QM presence in NS.
- Ab-initio (variational, BHF, ...) approaches are necessary to extrapolate to higher densities ($\rho > \rho_0$). (Phenomenological calc. based on nuclear data at $\rho \sim \rho_0$ do not work!)
- But they assume that properties of nucleons (baryons) and nuclear force (BB forces) are unchanged.

•Nucleons (baryons) are modified even at ρ_0 , and may be further modified at higher $\rho!$ •Nucleon modification could be related to partial deconfinement (crossover transition)??

"Modification" of baryons in nuclear matter

- EMC effect (Change of structure function in DIS)
- -- Experimentally established but not well understood. Short Range Correlation data at JLab give suggestions.

-- What are good probes sensitive to "baryon modification" in low energy phenomena ?

Modification of N cannot be separated from properties of nuclear matter. Effects of N modification could be seen for valence nucleons, but they are located at a low density region.

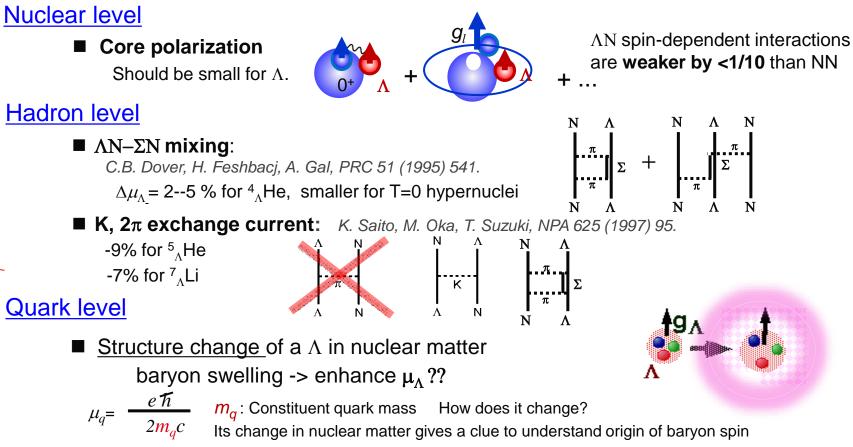
Hyperon: Distinguishable from nucleons in NM. Free from Pauli blocking from nucleons and can stay in the 0s orbit => a suitable probe

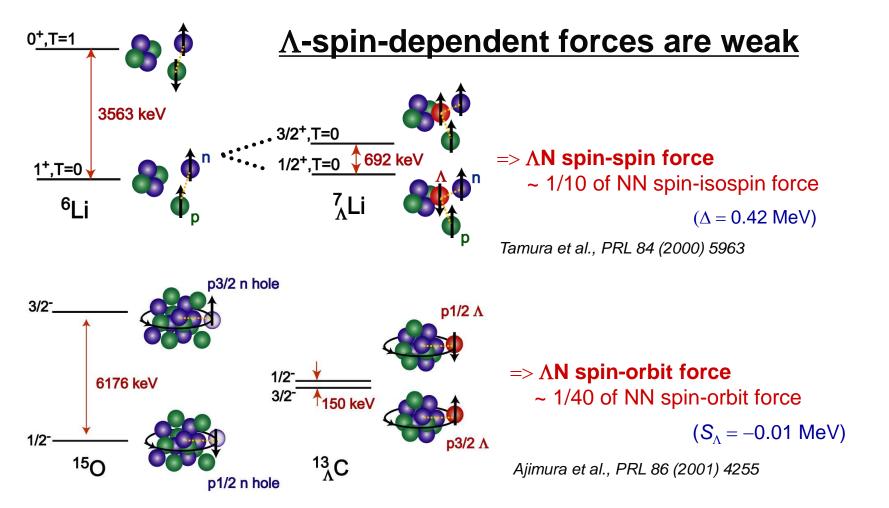
-- Various experimental and theoretical suggestions/conjectures but no clear evidence

TABLE I. The magnitudes of nucleon swelling inferred from experiments and predicted from various models.

Experiment/model	Size of nucleon swelling
Quasielastic scattering [49]	<3-6% for ³ He
K ⁺ -nucleus scattering [50]	10–30% for 12 C and 40 Ca
nIMParton [20]	2.0-8.1% for ³ He- ²⁰⁸ Pb
QMC [48]	5.5% for typical nuclei
Binding potential [54]	A few % for typical nuclei
Skyrmion model [55]	3-4%
Quark-N interaction [56]	$\approx 2\%$ for nuclear matter
Chiral quark-soliton [57]	\approx 2.4% for heavy nuclei
Chiral symmetry [58]	<10% for nuclear matter
N-N overlapping [37]	4.7–22% for ³ He- ²⁰⁸ Pb
Weak stretching [59]	4.5–9.4% for ⁴ He- ²⁰⁸ Pb
PLC suppression [60]	1-3%
Statistical model [61]	2.2–5.0% for ⁴ He- ¹⁹⁷ Au
Quark-quark correlation [62]	15%
Chiral quark-meson [63]	$\approx 19\%$ for nuclear matter
String model [64]	40%

PRC 99 (2019) 035205

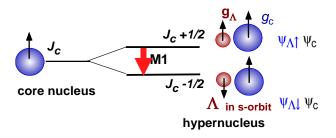

What probes should be used?


Compare electro/weak properties of hyperons in free space and in nuclear matter

- Magnetic moment of $\Lambda => On-going: \Lambda$'s spin-flip B(M1) (J-PARC E63)
- Electromagnetic decay of $\Sigma^0 \rightarrow \Lambda \gamma$
- Weak decays of A
 - Avoid strongly interacting probes Medium effects are hidden by FSI.
 - Solution Mesonic weak decay ($\Lambda \rightarrow N\pi$)
 - \bigcirc Nonmesonic weak decay ($\Lambda N \rightarrow NN$)
 - Seta decay ($\Lambda \rightarrow p e^{-} v^{bar}$) => Under detailed design
- Discriminating "baryon modification" effects from <u>hadronic effects</u> (meson exchange current, baryon mixing...) and <u>nuclear many-body effects</u> is a key. <u>Hadronic and nuclear effects should be small or reliably estimated.</u>

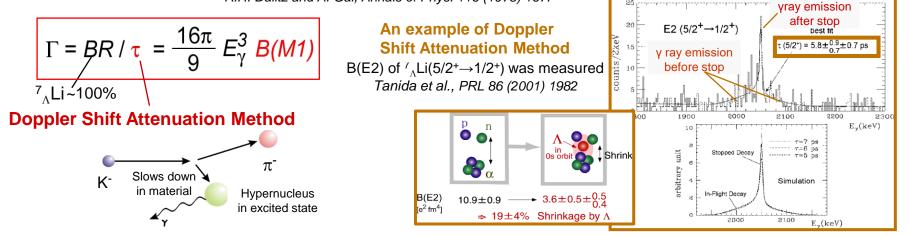
2. Magnetic moment of Λ in nuclear matter

Modification of μ_{Λ} in nuclear medium?


=> Nuclear core polarization effects should be much smaller.

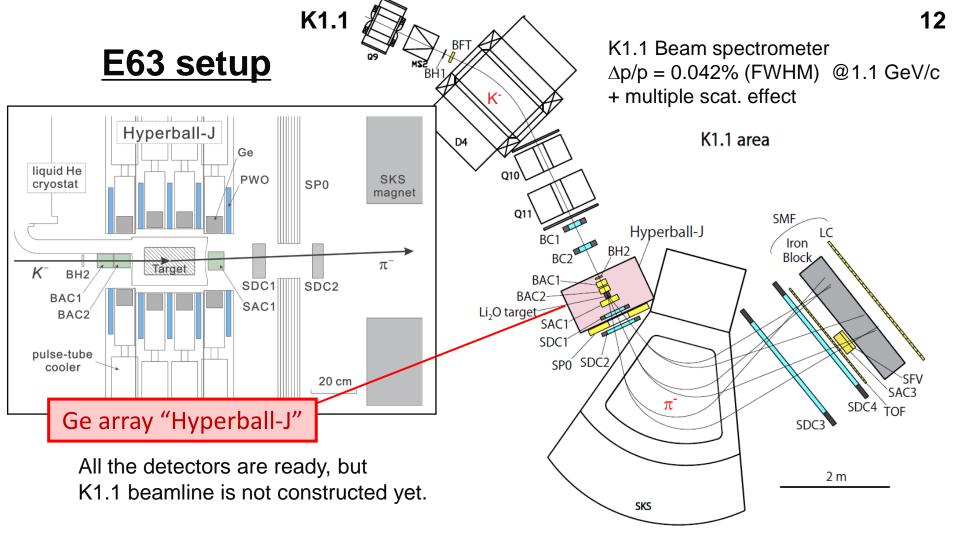
How to measure μ_{Λ} in a nucleus?

• Measurement of μ_{Λ} in a hypernucleus is very difficult => possible with Heavy Ion beams

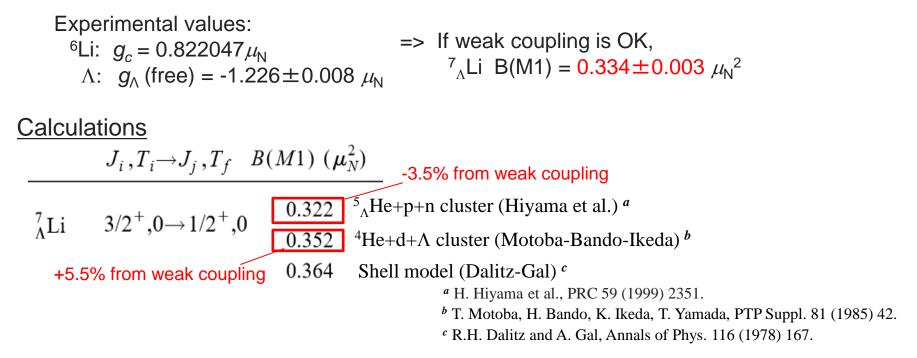

• A-spin-flip M1 transition: B(M1) -> g_{Λ}

$$B(M1) = (2J_{up} + 1)^{-1} |\langle \Psi_{low} || \mu || \Psi_{up} \rangle|^2$$

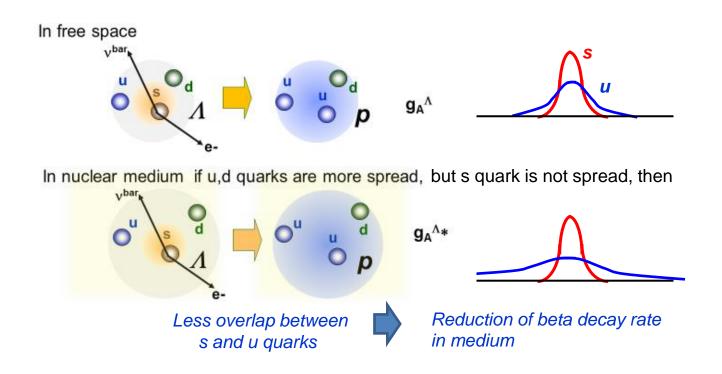
= $(2J_{up} + 1)^{-1} |\langle \psi_{\Lambda\downarrow} \psi_c || \mu || \psi_{\Lambda\uparrow} \psi_c \rangle|^2$
 $\mu = g_C J_C + g_\Lambda J_\Lambda = g_C J + (g_\Lambda - g_C) J_A$



 $= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_c + 1} (g_{\Lambda} - g_c)^2 \quad [\mu_N^2] \quad : \text{ assuming "weak coupling" between a } \Lambda \text{ and the core.}$


R.H. Dalitz and A. Gal, Annals of Phys. 116 (1978) 167.

Calculations for nuclear many-body effects

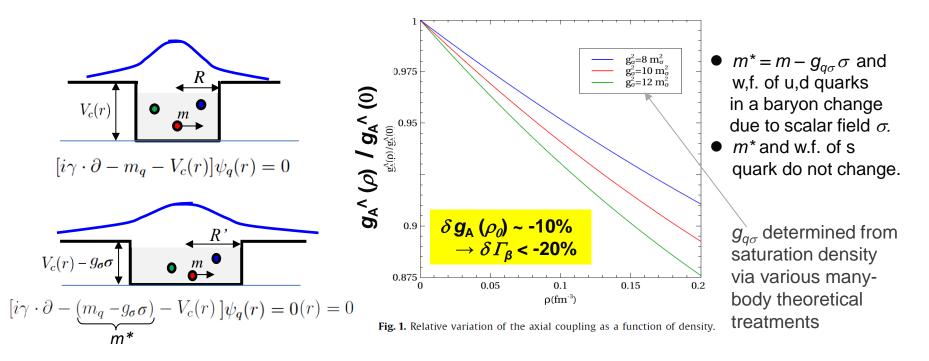

Suggesting that the weak coupling hypothesis holds well (<3.5%).

- Better calculation by Hiyama is going on. ⁴He+p+n+ Λ cluster model with and without Λ - Σ coupling
- Ab-initio 7-body calculations in future (if the measurement is done)

3. Beta-decay of Λ in nuclear matter

Modification of g_A^A due to baryon "swelling" in medium

 $\Lambda \rightarrow p e^{-} v^{bar}$ Sensitive to overlap of u and s quark w.f.



Prediction by Quark Meson Coupling Model

Lambda beta-decay in-medium

P.A.M. Guichon, A.W. Thomas / Physics Letters B 773 (2017) 332-335

QMC model: u,d quarks couple to σ , ρ , ω fields in a nucleus but s quark does not.

<u>Weak decay of Λ </u>

Free	• •	A DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)		
1100	<u>, 11</u>	$p\pi^-$		(63.9 ± 0.5)%		101		
		$n\pi^0$	(35.8 ± 0.5) %		104			
		$n\gamma$		(1.75 ± 0.15) $ imes$ 1	0-3	162		
		$oldsymbol{ ho}\pi^-\gamma$	[<i>c</i>]	(8.4 ± 1.4) $ imes 1$	0 ⁻⁴	101		
	$pe^-\overline{ u}_e$ $p\mu^-\overline{ u}_\mu$		$(\begin{array}{c} 8.32 \pm 0.14) imes 10^{-4} \ (\begin{array}{c} 1.57 \pm 0.35) imes 10^{-4} \end{array}$		163	1		
					131			
<u>⁵<u>∧</u>He</u>	(best	<u>known)</u>	from τ	Λ→p π⁻	$\Lambda \rightarrow n\pi^0$	$\Lambda N \rightarrow$	NN	
=	Experi	iment/Theory	$\Gamma_{tot}/\Gamma_{\Lambda}$	$\Gamma_{\pi^-}/\Gamma_{\Lambda}$	$\Gamma_{\pi^0}/\Gamma_{\Lambda}$	$\Gamma_{nm/}$	$\overline{\Gamma_{\Lambda}}$	Γ_{Λ} : free Λ
-	Exp. (K^-, π^-) , BNL [7]		1.03 ± 0.08	0.44 ± 0.11	0.18 ± 0.20	$0.41 \pm$	0.14	decay rate
KEK E462	Exp. ($(\pi^+, K^+), \text{ KEK } [8, 9]$	0.947 ± 0.038	$0.340 {\pm} 0.016$	0.201 ± 0.011	$0.406 \pm$	0.020	
L402-	Theor.	[10] (YNG)		0.393	0.215			
	Theor.	. [11]		0.386	0.196			
	Theor.	. [12]	0.966			0.3	58	
	Theor.	[13] (NSC97f)			0.317			
_	Theor.	. [14]			0.43			
	-	al., Phys. Rev. C43 (1991) 849. , Nucl. Phys. A754 (2005) 173c.		84 (187) - 11	Kumagai-Fuse, S. Okabe, Y.			
[9] S. C	Okada et al., Pl	 Nucl. Phys. A754 (2005) 173c. hys. Lett. B 597 (2004) 249; S. Okada et al., 			Itonaga, T. Motoba, Prog. T Parreno, A. Ramos, Phys. F			2.

[10] T. Motoba, H. Bandō, T. Fukuda, J. Žofka, Nucl. Phys. A534 (1991) 597.

[14] C. Barbero, C. De Conti, A.P. Galeao, F. Krmpotic, Nucl. Phys. A 726 (2003) 267.

What to measure?

18

Measure branching ratio BR_{β} and lifetime τ of a hypernucleus $\Gamma_{\beta} = BR_{\beta}/\tau \propto (g_{V}^{\Lambda})^{2} |\int 1|^{2} + (g_{A}^{\Lambda})^{2} |\int \sigma|^{2}$ Free $\Lambda = (g_{V}^{\Lambda})^{2} + 3 (g_{A}^{\Lambda})^{2} \sim 1 + 1.56$ $g_{V}^{\Lambda} = 1$ $g_{A}^{\Lambda}/g_{V}^{\Lambda} = -0.718 \pm 0.015$

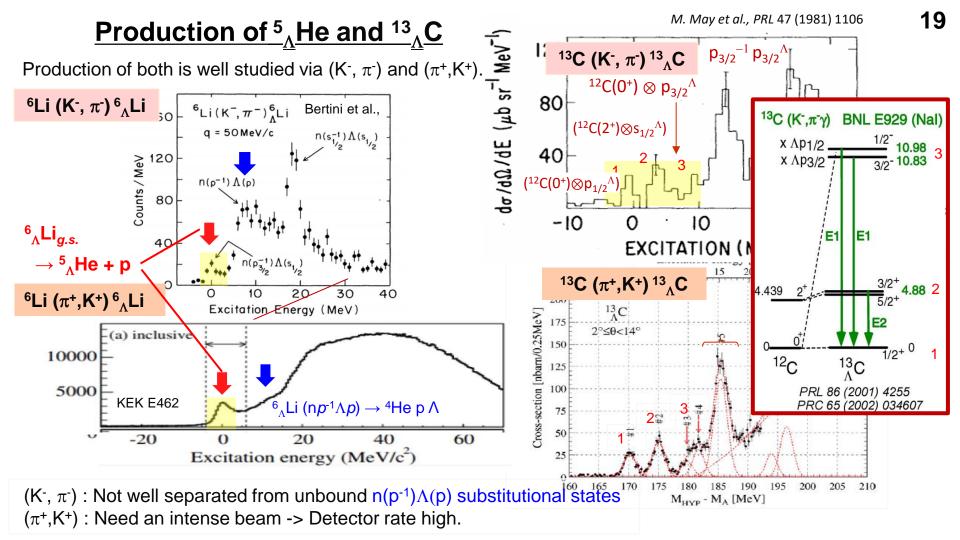
Goal for statistical error: $\Delta BR_{\beta} / BR_{\beta} \sim 4\%$ and $\Delta \tau / \tau \sim 2\% \Rightarrow \Delta \Gamma_{\beta} / \Gamma_{\beta} \sim 5\% \Rightarrow \Delta g_{A}^{\Lambda} / g_{A}^{\Lambda} \sim 4.1\%$ Lifetime measurement of $\Delta \tau / \tau \sim 2\%$ possible (4% in KEK E463), but $\Delta BR_{\beta} / BR_{\beta} \sim 4\%$ is a challenge. Light hypernuclei -> Little quenching of g_{A} from meson exchange current and nuclear effects.

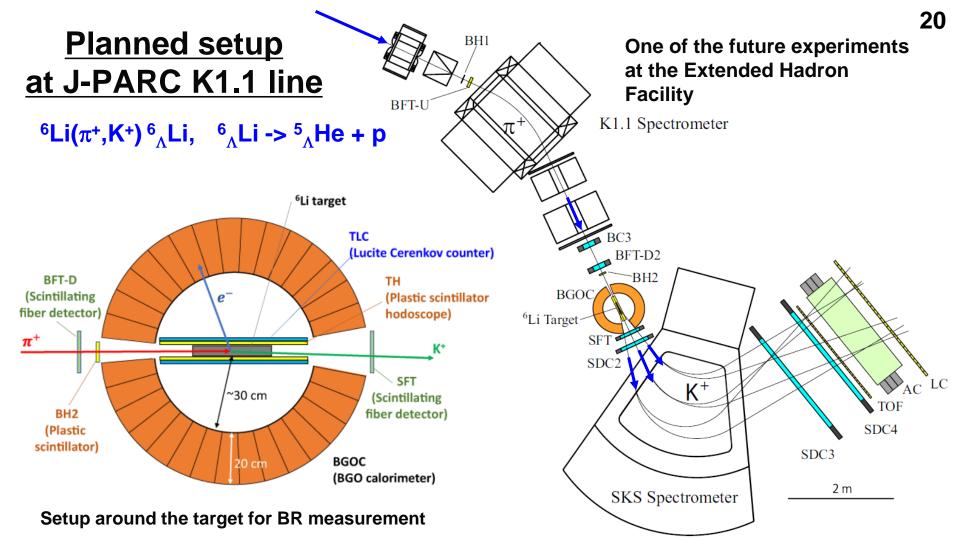
⁵[∧]He ⁴He(0⁺)

¹³^ΛC

¹²C(0+

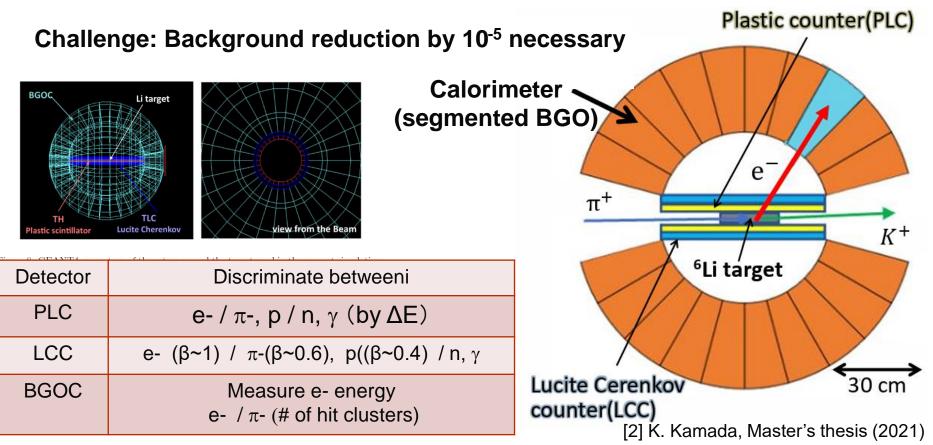
${}^{5}_{\Lambda}$ He(1/2+) \rightarrow 4 He p e⁻ ν^{bar}

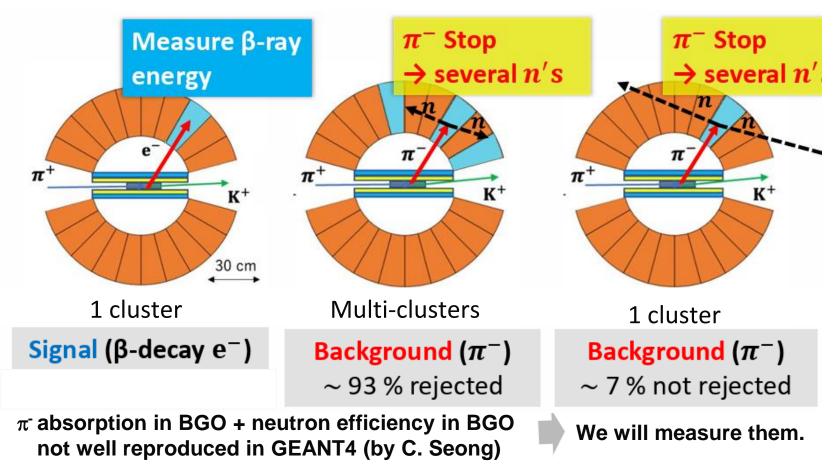

 Λ w.f. widely spread -> lower ρ -> Effect may be reduced.


 g_A quenching by hadronic / nuclear effects $\sim 5\%$ in ordinary β decay Experiment feasible. Few-body calculation may be possible.

${}^{13}{}_{\Lambda}$ C(1/2+) \rightarrow " 13 N " e⁻ v^{bar}

 Λ w.f. not spread. -> Effect may not be reduced.


 g_A quenching by hadronic / nuclear effects $\sim 10-20\%$ in ordinary β decay Experimentally easier, but theoretically difficult.



Setup design with GEANT4 simulation

by K. Kamada and M. Fujita

Beta-decay ID via clustering of calorimeter hits

Expected beta-ray spectrum

Background/ Signal

- \approx BR(π^0 bg)/ 0.68 BR(β)
- $= 0.35 \times 10^{-4} / (0.68 \times 8.3 \times 10^{-4})$

= 0.06

If background level can be experimentally estimated within 30% accuracy, the systematic error in BR(β) will be < 2%

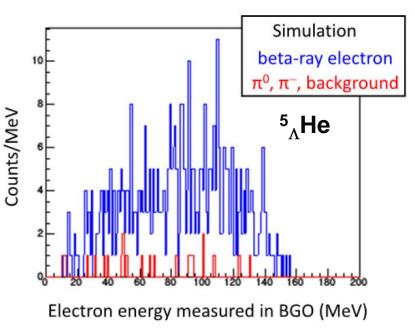


Figure 11: Simulated spectrum of the beta-ray electron energy (blue) and the contaminated background events (red) after all the background rejection analysis. The number of the background events is 4% of that of the beta-ray electron.

H.Tamura et al., J-PARC Letter-Of-Intent

Yield and statistical error for BR

1400 hours (2 months) beam time each w/100 kW proton intensity is assumed.

24

⁵ _Λ He via (π+, Ι	<mark>(+) @ K1</mark>	.1+SKS	¹³ _Λ C via (K ⁻ , π ⁻) @K1.8 + S-2S		
⁶ Li (π+, K+) ⁵ _Δ He+p	PS-E462	Expected (in LOI)	¹³ C (Κ ⁻ , π ⁻) ¹³ _Λ C	Expected	
# of pi+ beam (Any beamline)	2.5x10 ¹²	24x10 ¹² (20M/spillx1400h)	# of K- beam 1.5 GeV/c @K1.8	1.5x10 ¹² (1.25 M/spill x1400h)	
Target: 6Li metal	3.7g/cm ²	14g/cm ² (30 cm)	Target: ¹³ C scintillator	20 g/cm ² (20 cm)	
$\Delta \Omega_{\rm eff}$ (SKS) x Eff.	\downarrow		$\Delta \Omega_{\rm eff}$ (S-2S) x Eff.	37 msr x ~0.7	
${}^{5}_{\Lambda}$ He counts	45653	1.6x10 ⁶	dσ/dΩ: ¹³ _Λ C(0+,2+) @2º-12º 100+200 μb/sr x1/3	2.9x10 ⁶	
BR(beta) x Pauli		8x10 ⁻⁴ x 0.6	BR(beta) x Pauli	8x10 ⁻⁴ x ~ 0.3	
Eff (e-)		0.7	Eff (e-)	0.7	
Beta-ray counts		550	Beta-ray counts	602	
		$\sqrt{N_e/N_e} = 4.3\%$		$\sqrt{N_e/N_e} = 4.1\%$	

<u>Theoretical calculations for ${}^{5}_{\Lambda}$ He and ${}^{13}_{\Lambda}$ C?</u>

- Nuclear effects of the daughter proton ----Precise estimate w/ Pauli effect + ⁵Li/¹³N structure
- Hadronic effects
 - ----Meson exchange current should be estimated.
- Estimate "quark effects" from the effective density which a daughter proton feels

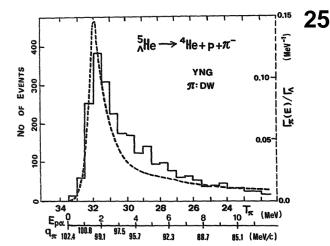


Fig. 4. The theoretical π^- decay spectrum $\Gamma_{\pi}(\frac{5}{3}\text{He})/\Gamma_1$ with YNG drawn as a function of the $p\alpha$ relative energy $E_{p\alpha}$ is compared with the observed π^- decay spectrum taken in the emulsion experiment ^{15,33}). The calculated π^- decay rate is compared with the experimental values ^{12,20}) in table 1 and fig. 5.

T. Motoba et al., NPA 534 (1991) 597.

A good example:

Precise few-body calculation with N³LO chiral perturbation theory for ${}^{6}\text{He} \rightarrow {}^{6}\text{Li}$ beta decay

S.Vaintraub, N. Barnea, D. Gazit, PRC 79 (2009) 065501

Exp/Theory = 0.91 -> 0.975

- Triton beta-decay rate is used to determine the LEC relevant to MEC.
- Very small dependence on the cutoff parameter.
- Nuclear many-body calculation using Hyperspherical-Harmonics expansion.

A similar calculation is possible for ${}^{5}_{\Lambda}$ He, but LEC for Λ should be determined.

Summary and prospect

- Electro-weak properties of hyperons in hypernuclei are good probes to investigate possible modification of baryons in nuclear matter.
- Magnetic moment (g-factor) of Λ in nuclei could be a probe for baryon modification.
 - We will measure the g_{Λ} in a nucleus in 5% accuracy via a B(M1) value of
 - 7 _∆Li(3/2+→1/2+) transition (J-PARC E63).
- Λ's beta decay rate could be significantly changed due to baryon modification.
 - Measurement with ~ 5% statistical accuracy is possible for ${}^{5}_{\Lambda}$ He and ${}^{13}_{\Lambda}$ C.
 - GEANT4 simulation shows that huge background can be sufficiently suppressed and detailed desing of the experiment is going on.

To theorists:

- Please estimate precisely (1)Pauli effect and nuclear many-body effects, and (2)hadronic effects (MEC) in hypernuclear beta decay for ⁵_AHe and ¹³_AC
- Other model calculations for medium effect in Λ's magnetic moment and beta-decay