

# SU(3) gauge-fermion systems with fundamental flavors

Oliver Witzel





August 20, 2024

## Motivation

- ► Study properties of strongly coupled gauge-fermion systems
- ► Characterize nature of such systems
  - $\rightarrow$  Where is the onset of the conformal window?
- ► Determine properties of these systems
  - $\rightarrow$  Anomalous dimensions: important for BSM model building
  - $\rightarrow$  New method to determine  $\Lambda$  parameter ( $\rightsquigarrow \alpha_s$ )
- ▶ Interesting signs of a new phase for SU(3) with  $N_f = 8$  fundamental flavors → Symmetric Mass Generation (SMG)

Continuous  $\beta$  function  $\bullet$ OOOO  $N_f = 8$  with PV 000000

Summary 00

## Renormalization Group $\beta$ function

$$\beta(g^2) = \mu^2 \frac{dg^2}{d\mu^2}$$

- $\blacktriangleright$  Encodes dependence of coupling  $g^2$  on the energy scale  $\mu^2$
- ▶  $\beta$  has no explicit dependence on  $\mu^2$ , only implicit through  $g^2(\mu)$
- ► Known perturbatively up to 5-loop order in the MS scheme (1- and 2-loop are universal) [Baikov, Chetyrkin, Kühn PRL118(2017)082002] [Ryttov and Shrock PRD94(2016)105015]
- ▶ Known perturbatively at 3-loop order in the GF scheme [Harlander, Neumann JHEP06(2016)161]
- Perturbative predictions reliable at weak coupling, nonperturbative methods needed for strong coupling

ntinuum physics

action parameter space

## Gradient flow and real-space renormalization Group (RG) flow

- ▶ RG flow: change of (bare) parameters and coarse graining (blocking)
- ▶ Gradient flow is a continuous transformation
  - → Define real-space RG blocked quantities by incorporating coarse graining <sup>bare action</sup> as part of calculating expectation values [Carosso, Hasenfratz, Neil PRL 121 (2018) 201601]
- $\blacktriangleright$  Relate GF time  $t/a^2$  to RG scale change  $b \propto \sqrt{t/a^2}$ 
  - $\rightarrow$  Quantities at flow time  $t/a^2$  describe physical quantities at energy scale  $\mu \propto 1/\sqrt{t}$
  - → Any local operator with non-vanishing expectation value can be used to define running coupling  $\rightarrow$  Simplest choice:  $t^2 \langle E(t) \rangle$  [Lüscher JHEP 1008 (2010) 071]
- $\blacktriangleright$  Continuous RG  $\beta$  function

$$\beta_{GF}(g_{GF}^2) = \mu^2 \frac{dg_{GF}^2}{d\mu^2} = -t \frac{dg_{GF}^2}{dt}$$

New in next

FLAG edition!

## Continuous RG $\beta$ function

[Fodor et al. EPJ Web Conf. 175 (2018) 08027] [Hasenfratz, OW PRD 101 (2020) 034514] [Hasenfratz, OW PoS LATTICE2019 (2019) 094] [Wong et al. PoS LATTICE2022 (2023) 043] [Hasenfratz, Peterson, Van Sickle, OW PRD108 (2023) 014502]

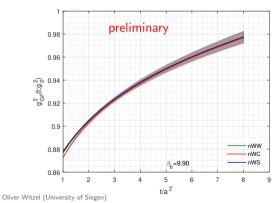
- ► Extract  $g_{GF}^2(t; \beta_b, L/a)$  its derivative  $\beta_{GF}(t; \beta_b, L/a)$  for a range of GF times on each ensembles → Different bare coupling  $\beta_b$  on different volumes  $(L/a)^4$  or  $(L/a)^3 \times T/a$
- ▶ Perform infinite volume extrapolation at fixed bare coupling  $\beta_b$  and GF time t→ Obtain  $g_{GF}^2(t; \beta_b)$  and  $\beta_{GF}(t; \beta_b)$
- ▶ Interpolate discrete infinite volume values to get continuous values at fixed flow time  $\rightarrow g_{GF}^2(t)$  and  $\beta_{GF}(t; g_{GF}^2)$
- ▶ Take continuum limit  $(a^2/t \rightarrow 0)$  for fixed  $g_{GF}^2$  and obtain  $\beta_{GF}(g_{GF}^2)$

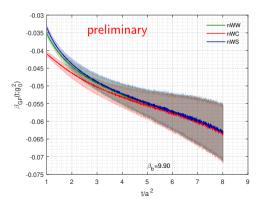
 $N_f = 8$  with PV

#### Summary 00

# Continuous RG eta function $(N_f=2)$ [Hasenfratz, Monahan, Rizik, Shindler, OW in preparation]

- Extract  $g_{GF}^2(t; \beta_b, L/a)$  its derivative  $\beta_{GF}(t; \beta_b, L/a)$  for a range of GF times on each ensembles
  - $_{\rightarrow}$  Different bare coupling  $\beta_b$  on different volumes  $(L/a)^4$  or  $(L/a)^3 \times$  T/a
- $\blacktriangleright$  Perform infinite volume extrapolation at fixed bare coupling  $\beta_b$  and GF time t
  - $\rightarrow$  Obtain  $g_{GF}^2(t; \beta_b)$  and  $\beta_{GF}(t; \beta_b)$





 $N_f = 8$  with PV

#### Summary 00

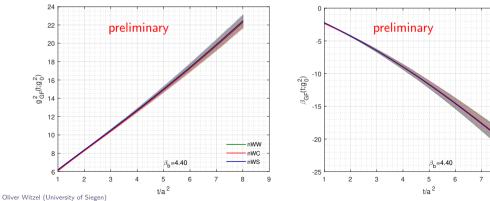
nWW

nWC nWS

8

# Continuous RG eta function $(N_f=2)$ [Hasenfratz, Monahan, Rizik, Shindler, OW in preparation]

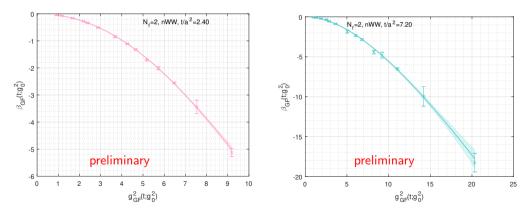
- Extract  $g_{GF}^2(t; \beta_b, L/a)$  its derivative  $\beta_{GF}(t; \beta_b, L/a)$  for a range of GF times on each ensembles
  - $_{\rightarrow}$  Different bare coupling  $\beta_b$  on different volumes  $(L/a)^4$  or  $(L/a)^3 \times$  T/a
- $\blacktriangleright$  Perform infinite volume extrapolation at fixed bare coupling  $\beta_b$  and GF time t
  - $\rightarrow$  Obtain  $g_{GF}^2(t; \beta_b)$  and  $\beta_{GF}(t; \beta_b)$



 $N_f = 8$  with PV 000000

### Continuous RG eta function $(N_f=2)$ [Hasenfratz, Monahan, Rizik, Shindler, OW in preparation]

▶ Interpolate discrete infinite volume values to get continuous values at fixed flow time  $\rightarrow g_{GF}^2(t)$  and  $\beta_{GF}(t; g_{GF}^2)$ 

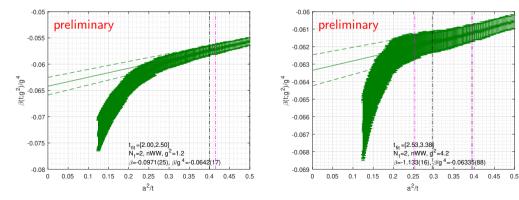


 $N_f = 8$  with PV

Summary 00

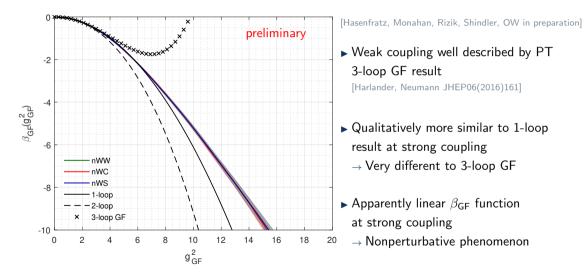
### Continuous RG eta function $(N_f=2)$ [Hasenfratz, Monahan, Rizik, Shindler, OW in preparation]

► Take continuum limit  $(a^2/t \rightarrow 0)$  for fixed  $g_{GF}^2$  and obtain  $\beta_{GF}(g_{GF}^2)$ 



Summary

### Continuum limit of continuous RG $\beta$ function for $N_f = 2$

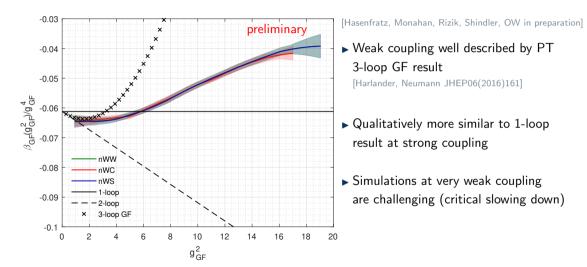


Continuous  $\beta$  function 00000

 $N_f = 8$  with PV 000000

Summary 00

### Continuum limit of continuous RG $\beta$ function for $N_f = 2$



 $N_f = 8$  with PV 000000

#### Summary 00

## $\Lambda$ parameter

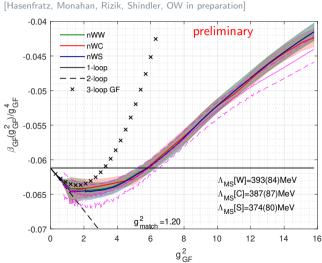
- ▶ Integrate inverse  $\beta$  function to obtain  $\Lambda_{GF}$ 
  - $\rightarrow g_m^2$  GF renormalized coupling at energy scale  $\mu = 1/\sqrt{8t_0}$
  - $\rightarrow$  Only need  $t_0$  lattice scale ( $\rightsquigarrow$  FLAG)
  - $\rightarrow$   $b_0$ ,  $b_1$  universal 1-loop coefficients

$$\Lambda_{GF} = \mu \left( b_0 g_m^2 \right)^{-\frac{b_1}{2b_0^2}} \exp\left( -\frac{1}{2b_0 g_m^2} \right) \exp\left[ -\int_0^{g_m^2} \mathrm{d}g^2 \left( \frac{1}{\beta(g^2)} + \frac{1}{b_0 g^4} - \frac{b_1}{b_0^2 g^2} \right) \right]$$

 $N_f = 8$  with PV 000000

Summary 00

## $\Lambda$ parameter



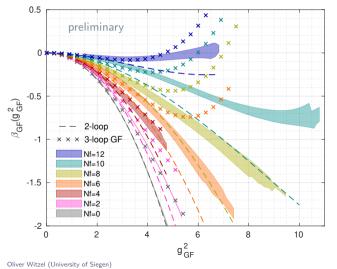
- Match to 3-loop GF β function at small g<sup>2</sup><sub>GF</sub>
- Presently large uncertainty in Λ due to matching at weak coupling
- ►  $g_m^2 \approx 15.8$
- $\blacktriangleright$  In principal could relate  $\Lambda$  to  $\alpha_s$ 
  - $\rightarrow N_f = 2 \text{ requires running "through"}$ strange quark threshold
- ightarrow Better repeat with  $N_f=3$  or 4

Continuous  $\beta$  function 00000

#### *N<sub>f</sub>* = 8 with PV ●00000

# Landscape of SU(3)

▶ Plot: Lattice 2023 [Hasenfratz, OW in preparation]



- Simulations with stout-smeared
   Möbius DWF and Symanzik gauge action
- ► Systematic effects for N<sub>f</sub> = 10 likely underestimated
- ▶ Reach in g<sup>2</sup> limited by 1st order bulk phase transition (lattice artifact)
  - $\rightarrow$  N<sub>f</sub> = 12 sign of IRFP
  - $_{
    m 
    ightarrow}$   $N_{f}=10$  likely turning around
  - $\rightarrow \textit{N}_{f} = 10 \text{ Wilson+PV: conformal} \\ \text{[Hasenfratz et al. PRD 108 (2023) L071503]}$
- Qualitative behavior captured by 2-loop PT prediction
- 3-loop GF prediction tracks nonperturbative result longer, but turns away showing different qualitative behavior [Harlander, Neumann JHEP06(2016)161]

### What is the nature of $N_f = 8$ ?

- Signs that  $N_f = 8$  is special [Hasenfratz PRD 106 (2022) 014513]
  - $\rightarrow$  Small volume simulations favor finite size scaling fit with ansatz for Berezinskii-Kosterlitz-Thouless (BKT) transition
- ► New phase of symmetric mass generation (SMG)
  - $\rightarrow$  No chiral symmetry breaking, no massless Goldstone bosons
  - $_{\rightarrow}$  Bilinear condensate  $\langle \psi \bar{\psi} \rangle =$  0,  $\langle \psi \psi \psi \psi \rangle \neq$  0
  - $\rightarrow$  All bound states are gapped
  - $\rightarrow$  't Hooft anomalies must cancel
- ► Simulations: LSD collaboration [Anna Hasenfratz, Ethan Neil, OW work in progress]
  - $\rightarrow$  nHYP-smeared staggered fermions with additional Pauli-Villars fields
  - $\rightarrow$  Plaquette gauge action with adjoint term on 16³  $\times$  32, 24³  $\times$  64, 32³  $\times$  64,  $48^3$   $\times$  96 volumes
  - $\rightarrow\beta_{b}=$  8.10, 8.20, 8.30, 8.40, 8.50, 8.60, 8.70, 8.80, 8.90, 9.10, 9.20, 9.30, 9.50
  - $\rightarrow$  Simulations cross from weak coupling to possible SMG phase

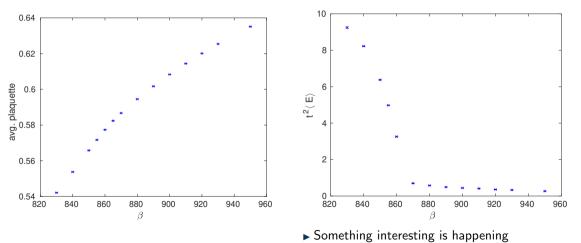
 $N_f = 8$  with PV 000000

▶  $t^2 \langle E(t) \rangle$  at  $t = L^2/32 = 18$ 

Summary 00

## $24^3 \times 64$ ensembles

► Average plaquette



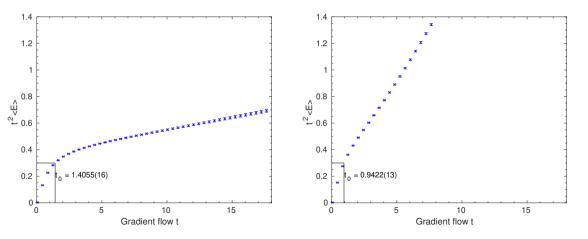
 $N_f = 8$  with PV 000000

▶  $\beta_b = 8.60$ 

Summary 00

 $t^2\langle E(t)
angle$  vs. t

▶ β<sub>b</sub> = 8.70

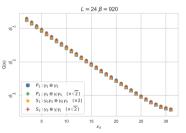


Oliver Witzel (University of Siegen)

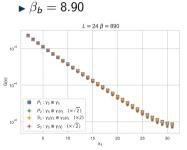
 $N_f = 8$  with PV 000000

### Pseudoscalar correlator

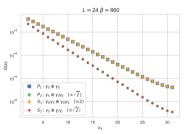
• Weak coupling  $\beta_b = 9.20$  (conformal)



- Degenerate pseudoscalar and scalar (parity doubling)
- No taste splitting



 Degenerate pseudoscalar and scalar (parity doubling) Strong coupling  $\beta_b = 8.60 \text{ (SMG)}$ 

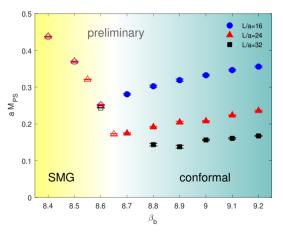


- Degenerate pseudoscalar and scalar (parity doubling)
- ▶ No chiral symmetry breaking

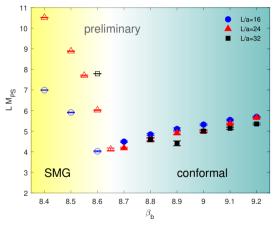
 $N_f = 8$  with PV 00000

## Pseudoscalar correlator

 $\blacktriangleright aM_{PS}$ 







 $\blacktriangleright$  Conformal scaling for  $\beta_b > 8.6$ 

# Summary

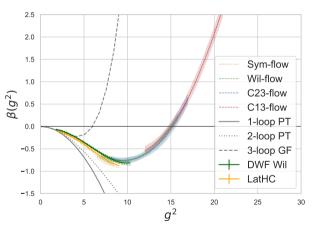
- ▶ Gradient flow is a very powerful tool
  - $\rightarrow$  Exploiting relation to RG flow leads to continuous  $\beta$  function
  - $\rightarrow$  Up to overall scale setting of  $t_0$  and PT matching at weak coupling entirely nonperturbative method to obtain  $\Lambda$  and  $\alpha_s$
- ▶ Signs of an infrared fixed point for SU(3) with  $N_f = 10$  or 12 fundamental flavors → Is  $N_f = 8$  the onset of the conformal window for SU(3) with fundamental flavors?
- ▶ Large scale simulations to test SU(3) with  $N_f = 8$  fundamental flavors
  - $\rightarrow$  Additional Pauli-Villars fields allow investigation at strong coupling
  - $\rightarrow$  Preliminary findings support picture of a conformal and an SMG phase
  - $\rightarrow$  No chiral symmetry breaking
  - $\rightarrow$  Further simulations on larger volumes needed/planned

## Acknowledgment

- ▶ stout-smeared Möbius domain-wall fermion simulations with  $N_f = 2, 4, 6, 8, 10, 12$ 
  - $\rightarrow$  HMC: GRID (Boyle, Cossou, Portelli, Yamaguchi et al.)
  - $\rightarrow$  Gauge flow, spectrum: QLUA (Pochinsky et al.)
- ▶ nHYP smeared staggered  $N_f = 8 + PV$  simulations
  - $\rightarrow$  HMC: QEX (Osborn, Jin, Peterson)
  - $\rightarrow$  Spectrum: MILC (DeTar et al., ..., Schaich, Hasenfratz)
  - $\rightarrow$  Gauge flow: QLUA (Pochinsky et al.)
- ▶ Special thanks to Amitoj Singh and his team at Jefferson Lab for granting us access and early science time on the new 24s cluster critical for first results on  $N_f = 8 + PV$

extra

## $N_f = 10$ at strong coupling



[Hasenfratz, Neil, Shamir, Svetitsky, OW PRD 108 (2023) L071503]

- ➤ Simulating N<sub>f</sub> = 10 with Wilson fermions and additional Pauli-Villars fields allows simulations at much stronger coupling
- ▶ Clear IRFP
  - $\rightarrow N_f = 10$  is conformal
  - $\rightarrow$  Confirms  $N_f = 12$  is conformal