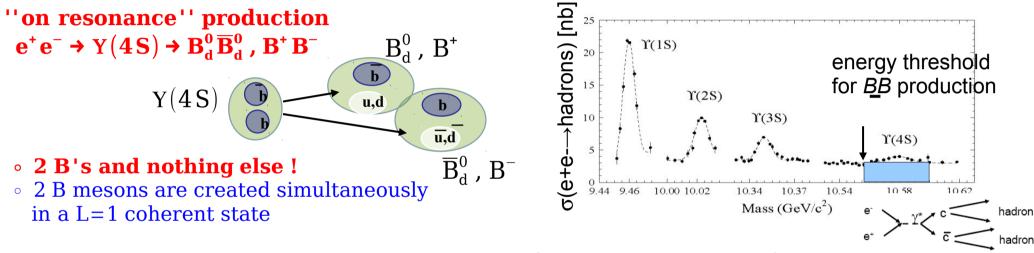

BSM discovery potential at Belle II Session E: QCD and New Physics

K.Trabelsi

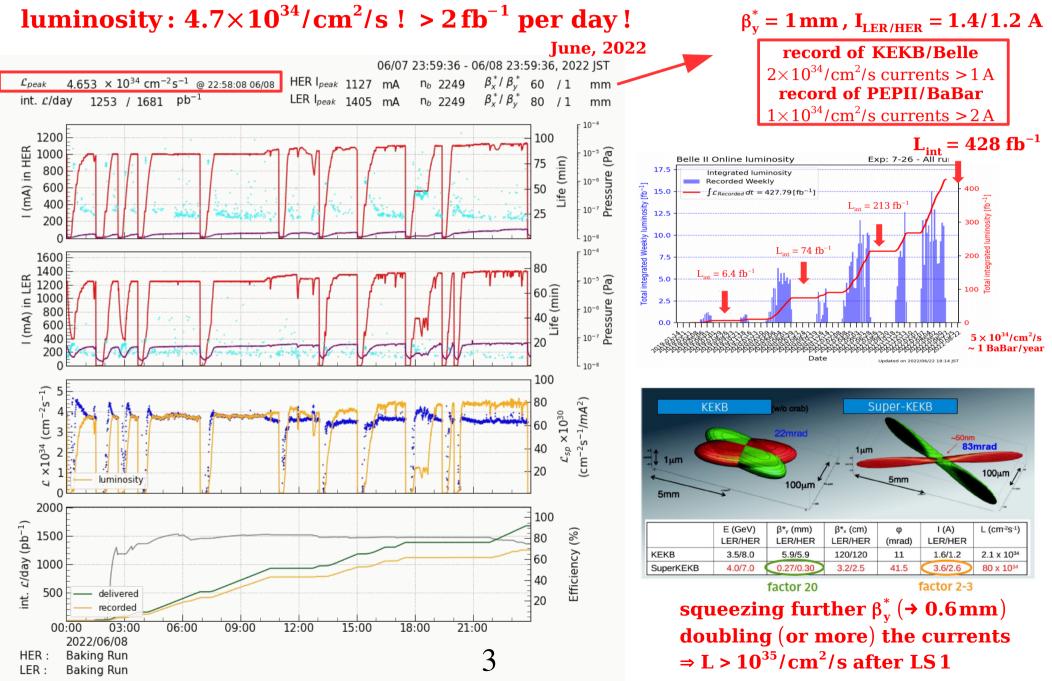
karim.trabelsi@in2p3.fr


(TYL/IN2P3)

QCHSC 2024, Cairns, 21 August 2024

Belle II, a flavour - factory,
(Belle ~ 1 ab^{-1})a rich physics program...

- We plan to collect (at least) 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
 - a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)


- a (Super) charm factory $(\sim 1.3 \times 10^9 \text{ cc} \text{ pairs per ab}^{-1})$ (but also charmonium, X, Y, Z, pentaquarks, tetraquarks, bottomonium...) (see ChengPing Shen and Bruce Yabsley's talks)
- a (Super) τ factory $(\sim\!0.9\times10^9\;\tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$ pairs per $ab^{-1})$
- exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

⇒ to reach $6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ ⇒ cumulate 50 ab⁻¹ by ~ 2035

Belle II run I (2019-2022)

data taking from March 2019 to June 2022

→ despite difficult conditions since March 2020 (Covid, war in Ukraine, energy cost...)

Belle(II), LHCb side by side

Belle (II)

 $e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else \Rightarrow clean events

(flavour tagging, B tagging, missing energy)

⇒ initial conditions are precisely known $1 \text{ mb} = 1 \text{ m}^{-1} \text{ mm}$

$$\begin{split} \sigma_{b\overline{b}} &\sim 1\,nb \Rightarrow 1\,\,fb^{-1}\,\,produces\,\,10^6\,B\,\overline{B}\\ \sigma_{b\overline{b}}/\sigma_{total} &\sim 1/4 \end{split}$$

LHCb

pp→bbX

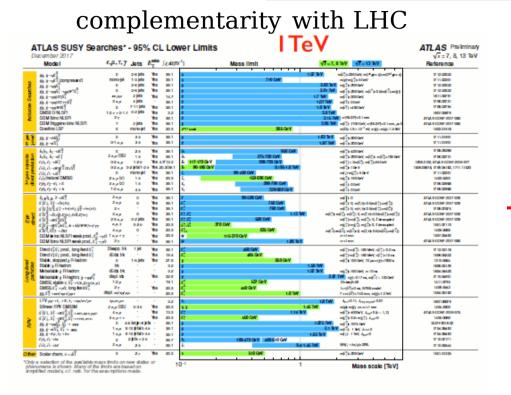
production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event

 \Rightarrow lower reconstruction efficiencies

 $\sigma_{{}_{b}\overline{b}}$ much higher than at the $Y(4\,S)$

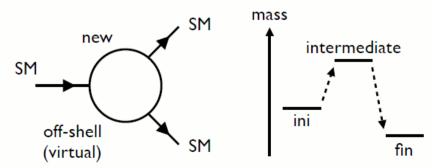
	√s [GeV]	σ _{ьб} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$
HERA pA	42 GeV	~30	~10 ⁻⁶
Tevatron	2 TeV	5000	~10 ⁻³
1.110	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10 ⁻²

b $\overline{\mathbf{b}}$ **production cross-section at LHCb** ~ 500,000 × BaBar/Belle !!

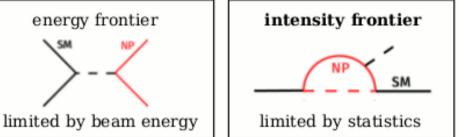

higher luminosity

 $\sigma_{b\bar{b}}/\sigma_{total}$ much lower than at the Y(4S) \Rightarrow lower trigger efficiencies

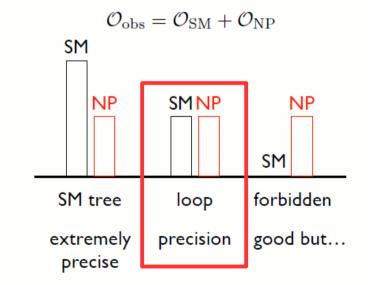
B mesons live relatively long


mean decay length $\beta \gamma c \tau \sim 200 \mu m$ | mean decay length $\beta \gamma c \tau \sim 7 mm$ data taking period(s) (displaced vertices) [1999-2010] = 1 ab⁻¹ | [run I: 2010-2012] = 3 fb⁻¹ [2019-...] = ... [run II: 2015-2018] = 6 fb⁻¹ [Belle II from 2019] \rightarrow 50 ab⁻¹ [LHCb upgrade from 2022]

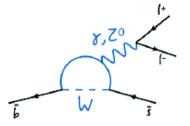
How do we search for new particles? Direct vs Indirect Searches


> ~100GeV (1TeV), if interaction is weak (strong)

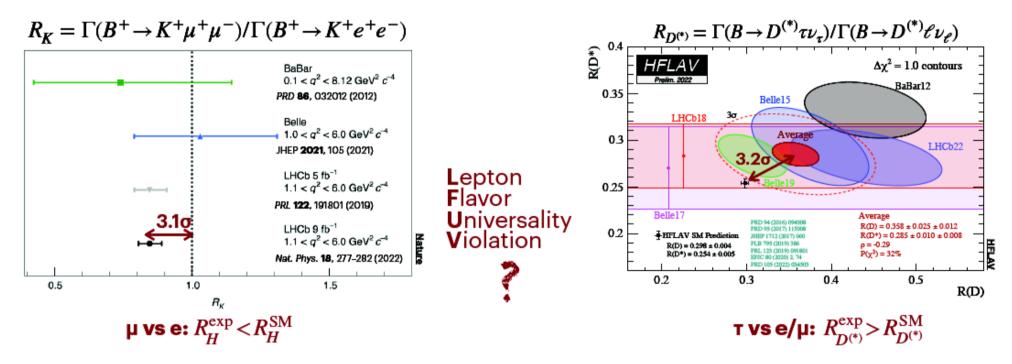
New particle via quantum effects


No sharp cutoff for energy scale (cf. LHC search) — suppressed by $(E/\Lambda)^n$

Why flavor physics ?

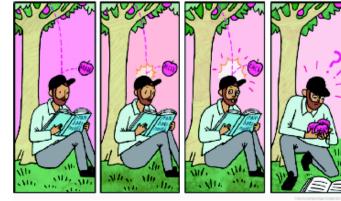

→ NP beyond the <u>direct</u> reach of the LHC

Three classes of SM processes

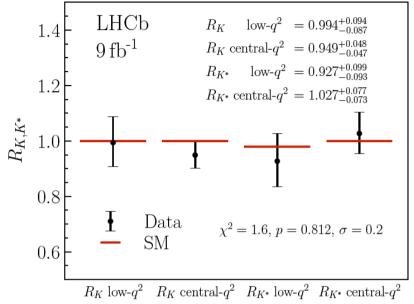


New particles can for example contribute to loop or tree level diagrams **by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular** distribution of the final-state particles

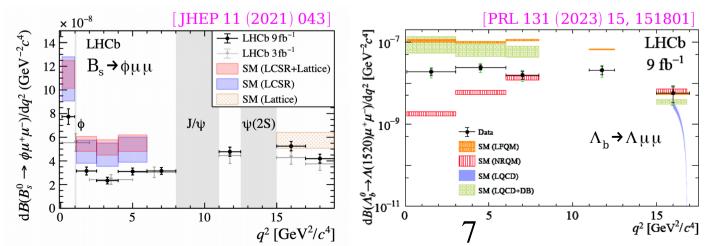
What happened with the B anomalies...?

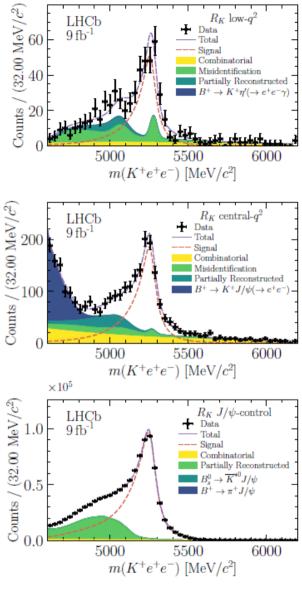


Deviations from SM have been measured, among several observables, in universality tests of lepton interactions in $b \rightarrow s$ and $b \rightarrow c$ transitions


Main players in B-physics

Belle (II), BaBar \rightarrow B-mesons in e^+e^- collisions LHCb \rightarrow b-flavored hadrons in pp collisions


Lepton flavor universality (LFU) in $b \rightarrow sl^+l^-$

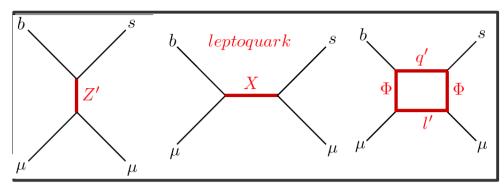


Significant change of the landscape ⇒ Compatible with SM

• BR measurements differ from predictions

Test of lepton universality using $B^+ \rightarrow K^{(*)}l^+l^-$ decays

Model candidates


- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

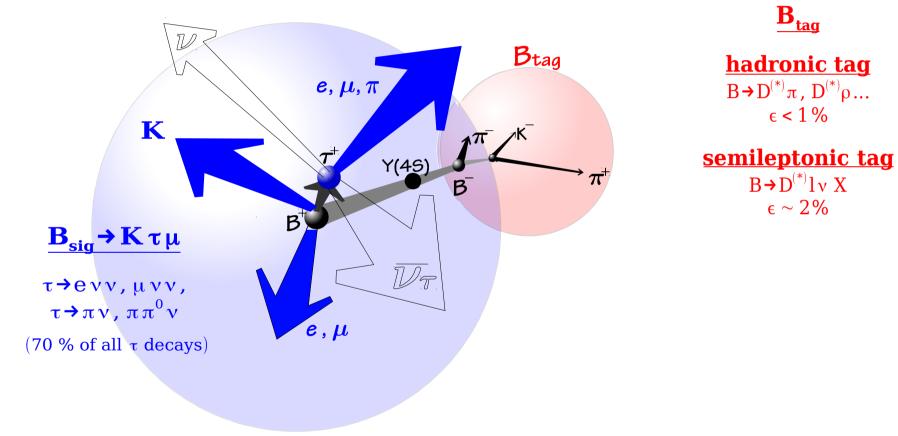
♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- ✓ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers


Lot of those models predict also LFV $b \rightarrow s e \mu$, $b \rightarrow s e \tau$,...

G.Isidori, **FPCP 2020**: correlations among $b \rightarrow s(d)ll'$ within the (2)-based EFT

	μμ (ee)	ττ	vv	τμ	μe
$b \rightarrow s$	R _K , R _{K*}	$B \rightarrow K^{(*)} \tau \tau$ $\rightarrow 100 \times SM$	$B \rightarrow K^{(*)} vv$ $O(1)$	$\begin{array}{c} \mathbf{B} \to \mathbf{K} \ \mathbf{\tau} \mathbf{\mu} \\ \hline \to 10^{-6} \end{array}$	В → К µе ???
$b \rightarrow d$	$\begin{array}{l} B_d \rightarrow \mu \mu \\ B \rightarrow \pi \ \mu \mu \\ B_s \rightarrow K^{(*)} \ \mu \mu \end{array}$	$\frac{B \rightarrow \pi \tau \tau}{\rightarrow 100 \times SM}$	$B \rightarrow \pi \nu \nu$ $O(1)$	$\frac{B \rightarrow \pi \tau \mu}{(\rightarrow 10^{-7})}$	$B \rightarrow \pi \mu e$???
($O(20\%) [R_K = R_\pi]$	8		:	

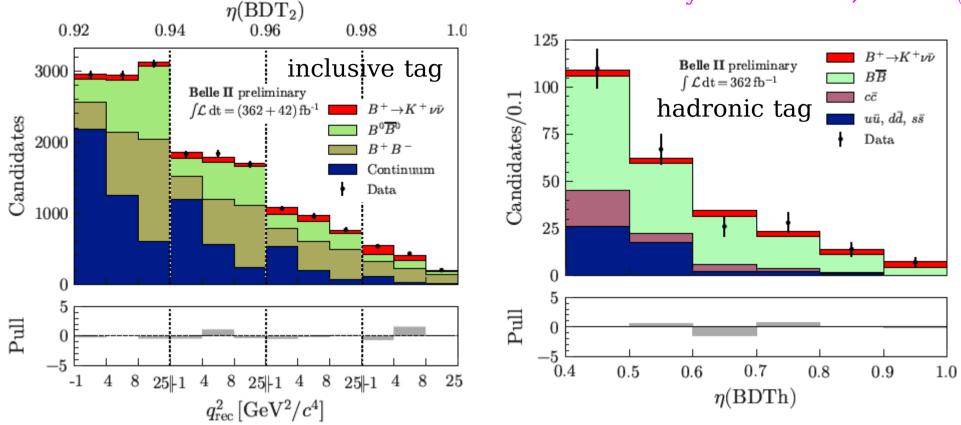
Missing energy modes and B-tagging


Many interesting B-physics studies involve missing energy: D^(*)τν<mark>, Kτl K^(*)ττ</mark> K^(*)νν, πlν, τl, τν, μν... which require B-tagging.

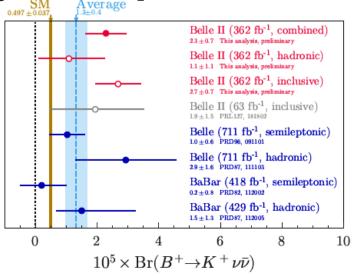
9

B→Kvv

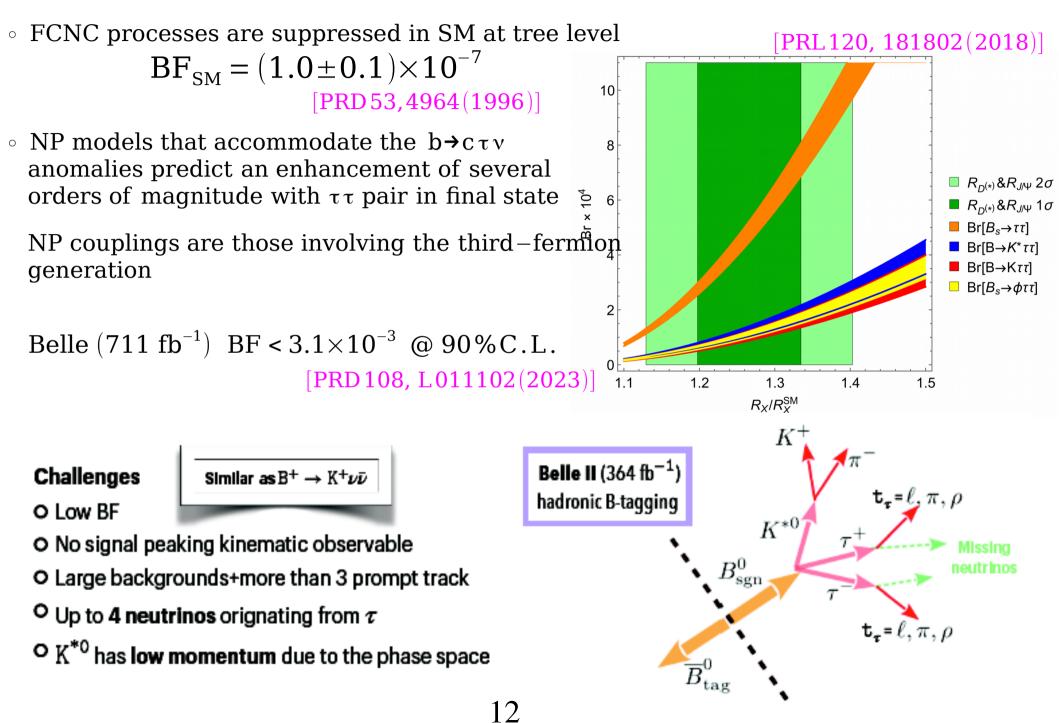
 $[arXiv:2311.14647] \\ Phys.Rev.D109,112006(2024) \\$


- $B \rightarrow K \nu \nu$ is known with high accuracy $B(B \rightarrow K \nu \nu) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$
- Extensions beyond SM may lead to significant rate increase
- Very challenging experimentally, not yet observed
 - Low branching fraction, high background contributions
 - 3-body kinematics, no good kinematics
- Unique for Belle II
- Two analyses:

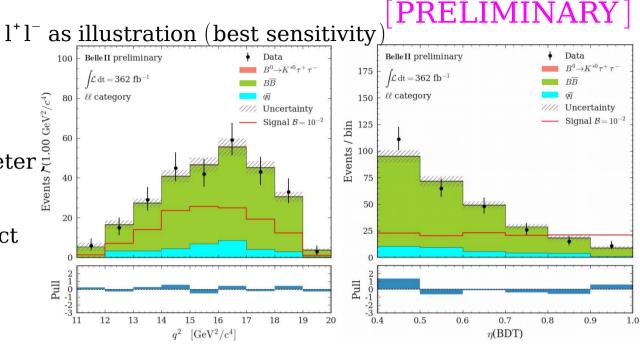
more sensitive inclusive (eff = 8%), conventional hadronic tagging (eff = 0.4%)


- Use event properties to suppress background with multiple variables combined
- Use classifier output as (one of) the fit variables, use simulation for signal and background templates
- Use multiple control channels to validate simulation with data

Evidence of \mathbf{B} \rightarrow \mathbf{K} \vee \overline{\mathbf{v}}


$[arXiv:2311.14647] \\ Phys.Rev.D109,112006(2024) \\$

- Maximum likelihood fit to data using signal and background templates $B_{incl} = (2.7 \pm 0.5 \text{ (stat)} \pm 0.5 \text{ (syst)}) \times 10^{-5}
 B_{had} = (1.1 \stackrel{+0.9}{_{-0.8}} \text{ (stat)} \stackrel{+0.8}{_{-0.5}} \text{ (syst)}) \times 10^{-5}$
- ∘ For inclusive analysis, evidence for $B \rightarrow K v \overline{v}$ at 3.5 σ branching fraction within 3σ of SM
- $\circ~$ For hadronic tag , the result is consistent with null hypothesis and SM at $1.1\,\sigma$ and $0.6\,\sigma$
- ⇒ Combination of two analyses provides first evidence of the decay at 2.7 σ from SM 11

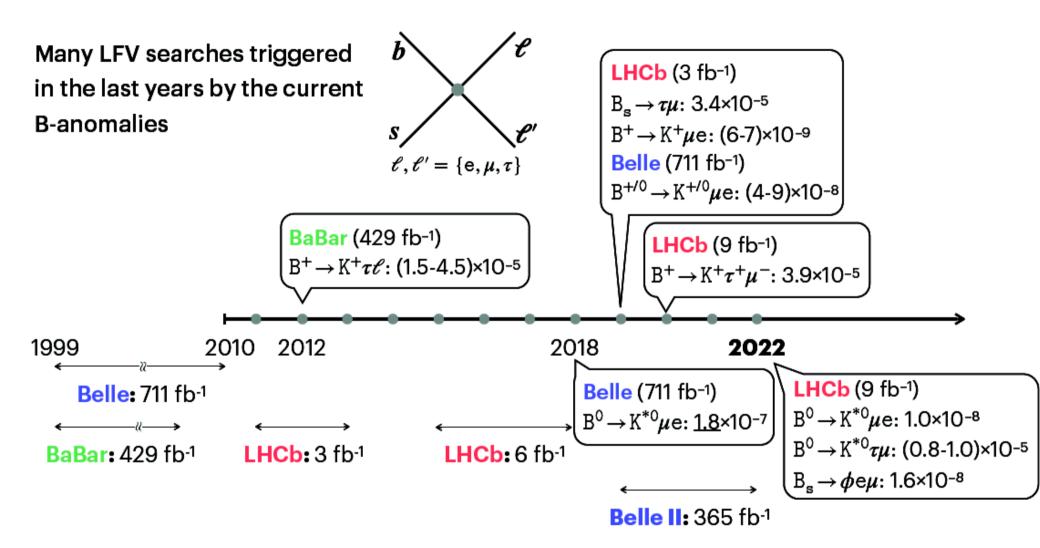


Search for $B \rightarrow K^{*0} \tau \tau$ decays

Search for $B \rightarrow K^{*0} \tau \tau$ decays

- $\circ~$ Combinations of 4 categories: $l^{+}l^{-}$, $l\pi$, $\pi\pi$, ρX
- $\circ~BDT$ trained using missing energy , extra cluster energy in EM calorimeter $M(K^{*0}t_{\tau})$, q^2 , ...
- $\circ~BDT$ output $\eta(BDT)$ is used to extract signal yield with a simultaneous fit to 4 categories

Validation

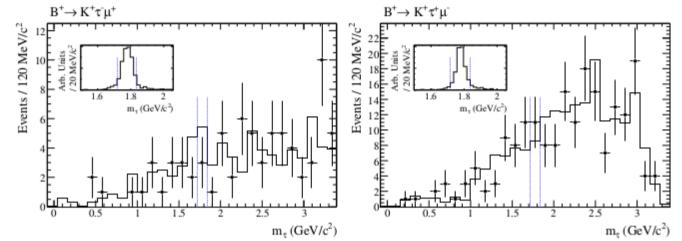

- $\circ \text{ total efficiency and peaking } B^0 \overline{B^0} : B \rightarrow J/\psi K^{*0} \text{ sample , replace } J/\psi K^{*0} \text{ with } K^{*0} \tau^+ \tau^- (14 \,\% \text{ uncertainty})$
- $\circ~$ Non–peaking $B\,\overline{B}\!:$ sample with B_{sig} and B_{tag} having same flavor
- $\circ \ q \, \overline{q}$ background is scaled by off–resonance data

Belle II (364 fb⁻¹) BF (B \rightarrow K^{*0} τ τ) < 1.8×10⁻³ @ 90%C.L.

The most stringent limit among the results for $b \rightarrow s \tau \tau$ transition

Twice better with only half sample wrt Belle ! Better tagging + more categories + BDT classifer... 13

EXPERIMENTAL STATUS ON $b \rightarrow s \ell \ell'$



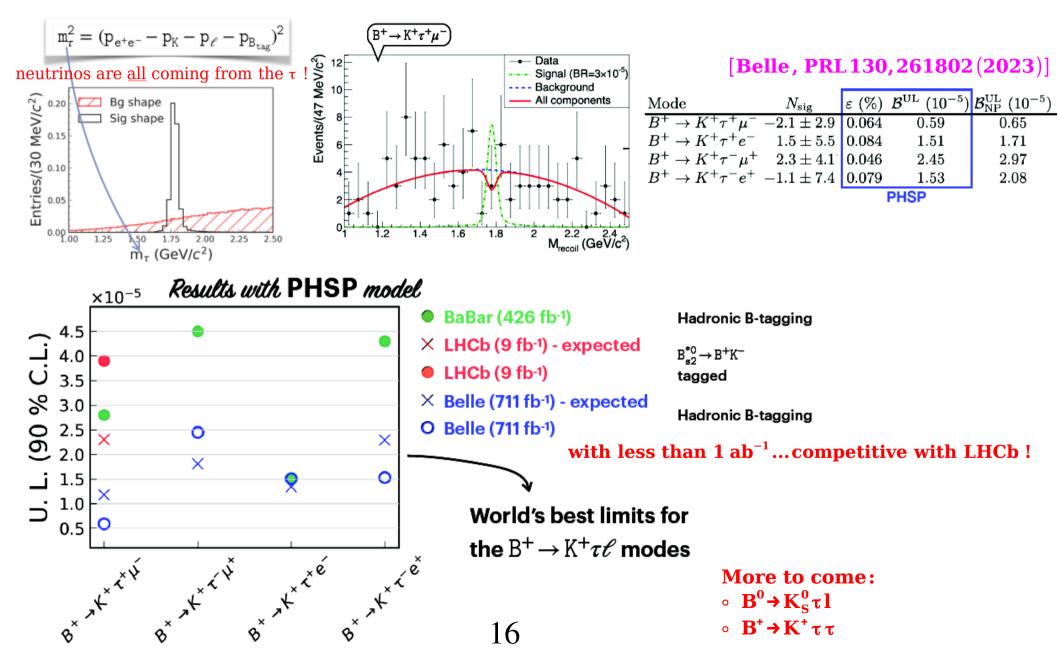
Limits on modes with τ 's are not as constraining as those with μ e because of the more challenging τ reconstruction

• (2-5)×10⁻⁵ range for $B^+ \rightarrow K^+ \tau \ell$ (BaBar and LHCb)

LFV B \rightarrow **K** τ **l** (**l** = **e**, μ) **decays**

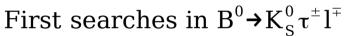
[BaBar, arXiv:1204.2852] strategy used: B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_l \nu_{\tau}$, $(n \pi^0) \pi \nu$, with $n \ge 0$ using momenta of K, l and B, **can fully determine the** τ **four-momentum** unique system: no other neutrino than the ones from one tau ($\neq B \rightarrow \tau \nu$, D^(*) $\tau \nu$...)

$$\begin{split} B(B^{+} \! \rightarrow \! K^{+} \tau^{-} \mu^{+}) &< 4.5 \times 10^{-5} \text{ at } 90 \,\% \text{CL}, \ B(B^{+} \! \rightarrow \! K^{+} \tau^{+} \mu^{-}) < 2.8 \times 10^{-5} \text{ at } 90 \,\% \text{CL} \\ (\text{also results for } B \! \rightarrow \! K^{+} \tau^{\pm} e^{\mp}, B \! \rightarrow \! \pi^{+} \tau^{\pm} \mu^{\mp}, B \! \rightarrow \! \pi^{+} \tau^{\pm} e^{\mp} \text{ modes}) \end{split}$$

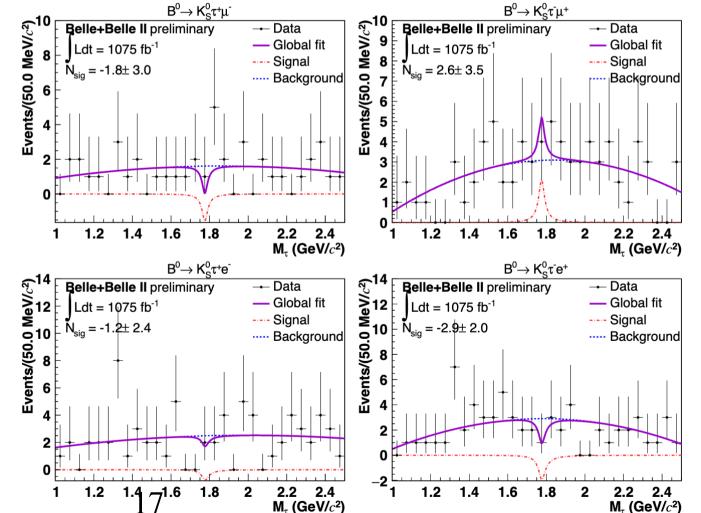

[Belle II, arXiv:1808.10567]

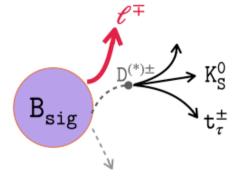
Observables	Belle $0.71 \text{ ab}^{-1} (0.12 \text{ ab}^{-1})$	Belle II $5 \mathrm{ab^{-1}}$	Belle II 50 ab^{-1}
$\text{Br}(B^+ \rightarrow K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$			< 2.1
${ m Br}(B^+ o K^+ au^\pm \mu^\mp) \cdot 10^6$	_		< 3.3
$\text{Br}(B^0 \rightarrow \tau^{\pm} e^{\mp}) \cdot 10^5$	_		< 1.6
$\text{Br}(B^0 \rightarrow \tau^{\pm} \mu^{\mp}) \cdot 10^5$	_		< 1.3

⇒ can we do better ? combining hadronic tag with an more inclusive tag... ⇒ can do $K^* \tau e$, $K^* \tau \mu$ with similar sensitivity ... 15


Missing energy modes and B-tagging

Many interesting B-physics studies involve missing energy: D^(*)τν<mark>, Kτl</mark> K^(*)ττ K^(*)νν, πlν, τl, τν, μν... which require B-tagging.


LFV $B \rightarrow K_{S}^{0} \tau l (l = e, \mu)$ decays

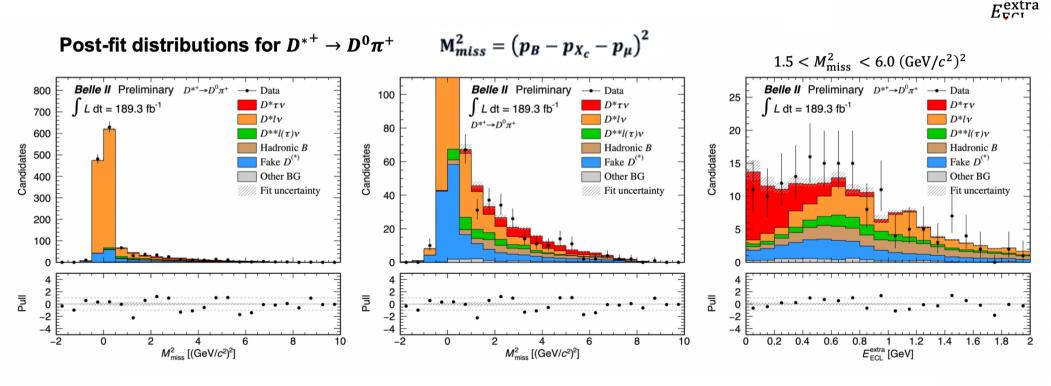

- Belle + Belle II $(711 + 364 \text{ fb}^{-1})$
- $\circ~K^0_S$ purity is larger than 98%
- Dominant bkg: B semi-leptonic decay
- BDT for remaining bkg suppression

90%CL upper limits:

$$\begin{split} \mathcal{B}(B^0 \to K^0_S \tau^+ \mu^-) &< 1.1 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^0_S \tau^- \mu^+) &< 3.6 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^0_S \tau^+ e^-) &< 1.5 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^0_S \tau^- e^+) &< 0.8 \times 10^{-5} \end{split}$$

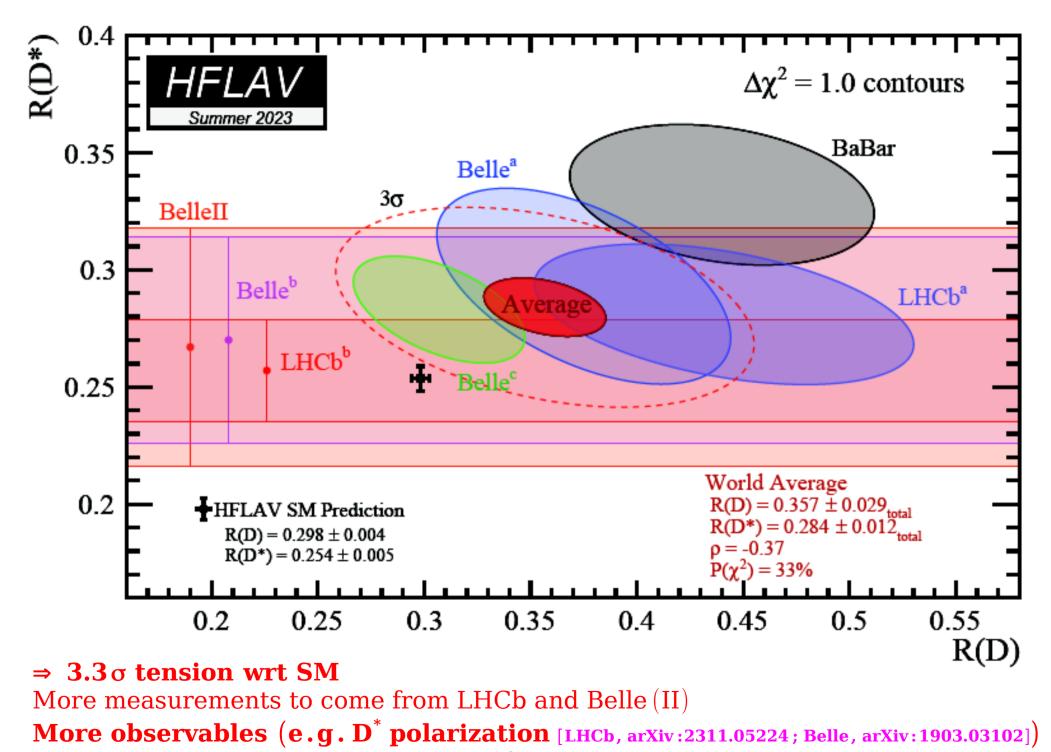
[PRELIMINARY]

First Belle II result on $B(B \rightarrow D^* \tau \nu)/B(B \rightarrow D^* l \nu)$

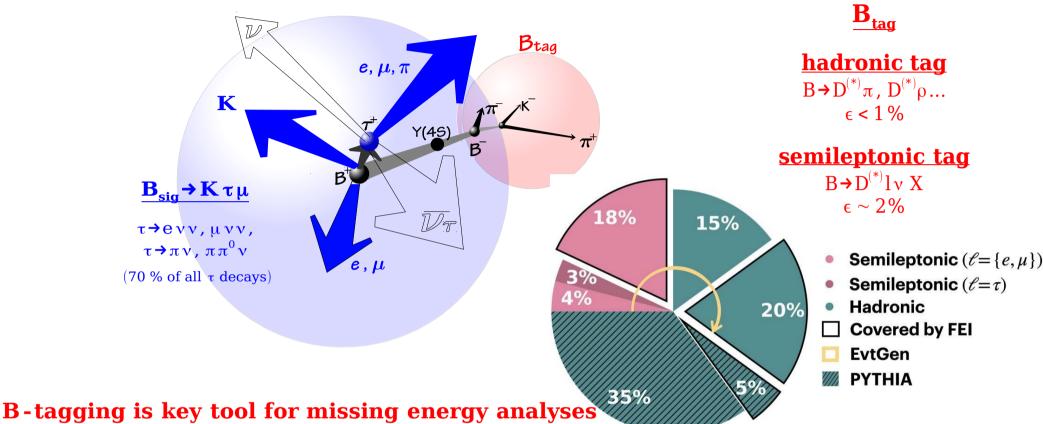

 $M_{\rm miss}^2$

 $D^*\tau\nu$

 $D^*\ell v$


 $D^{**}l_1$

- $\circ~$ Half of available sample (200 million $B\,\overline{B}$ pairs)
- $\circ~$ Fully reconstruct the partner B in the event to suppress bckg
- $\circ~$ Reconstruct numerator and denominator with \sim same selections
- Two-dimensional fit of missing mass and total residual energy in calorimeter determines signal yields
- $\circ~$ Data sidebands validate understanding of sample composition


 $\mathbf{R}(\mathbf{D}^*) = \mathbf{0.267}_{-0.039}^{+0.041}(\mathbf{stat})_{-0.033}^{+0.028}(\mathbf{syst})$

Not leading, 40% improvement in statistical precision over Belle at the same sample size Consistent with WA

Missing energy modes and B-tagging

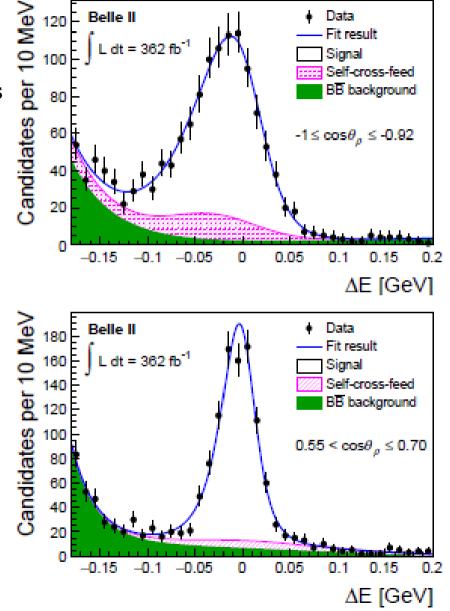
Many interesting B-physics studies involve missing energy: D^(*)τν<mark>, Kτl K^(*)ττ</mark> K^(*)νν, πlν, τl, τν, μν... which require B-tagging.

- low efficiency (efficiency for hadronic B-tagging < 1%)
- and ML can't save you... B-tagging algorithms are trained using MC samples
- $\circ~40\%$ of hadronic B decays generated by PYTHIA...
- and even among the EvtGen part... most BFs measured are old measurements from ARGUS, CLEO...
- → calibration is an important and delicate task

Lot of on-going improvements:

- improve our simulation of all B_{tag} modes included \rightarrow better B-tagging performance
- also some opportunities to remeasure/study those B decays and intermediate states

Branching fraction of B^+ \rightarrow D^0 \rho^+ at Belle II

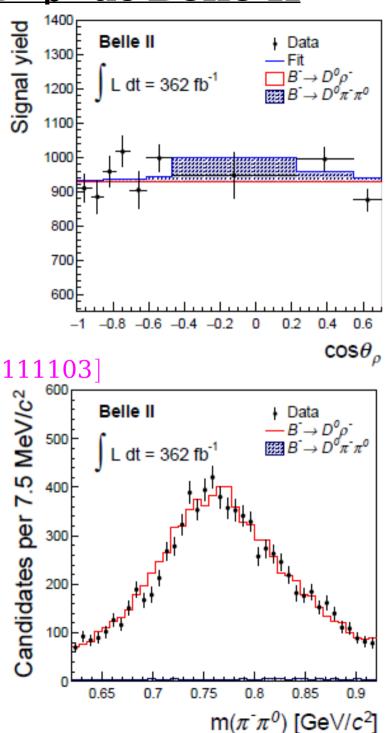

Test heavy-quark limit and factorization models
 [Nucl. Phys. B 591, 313 (2000)]

WA BF = (1.35 ± 0.18) % driven by CLEO measurement with large uncertainty (14%) [CLEO, PRD 50, 43 (1994)]

 $\circ~$ Signal extracted from fit to ΔE

Challenge: separate $B^+ \rightarrow D^0 \rho^+ (\rightarrow \pi^+ \pi^0)$ resonant and $B^+ \rightarrow D^0 \pi^+ \pi^0$ non-resonant components Fit performed in bins of helicity angle $(\cos \theta_{\rho})$

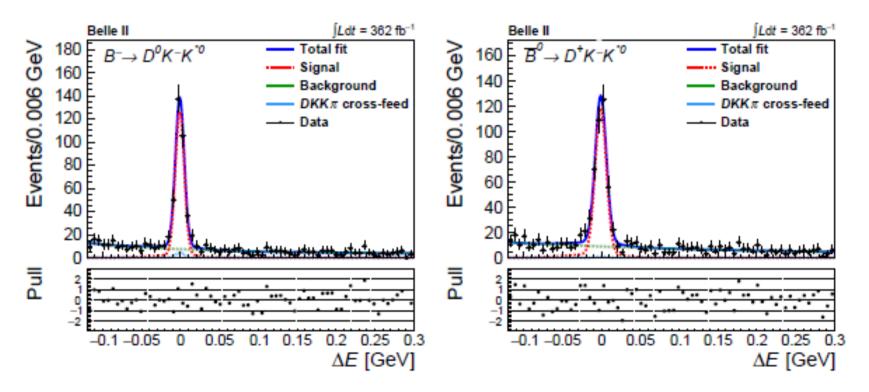
 $\theta_{\rho} \text{:}$ angle between π momentum and direction opposite to B momentum in ρ rest frame


Branching fraction of $B^+ \rightarrow D^0 \rho^+$ **at Belle II**

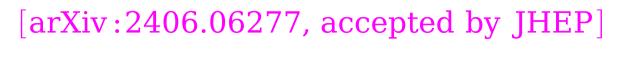
Template fit in $\cos \theta_{\rho}$

- Flat $\cos \theta_{\rho}$ distribution for $B \rightarrow D \rho$
- Less than 2% contribution of $B^+ \rightarrow D^0 \pi^+ \pi^0 S$ -wave component

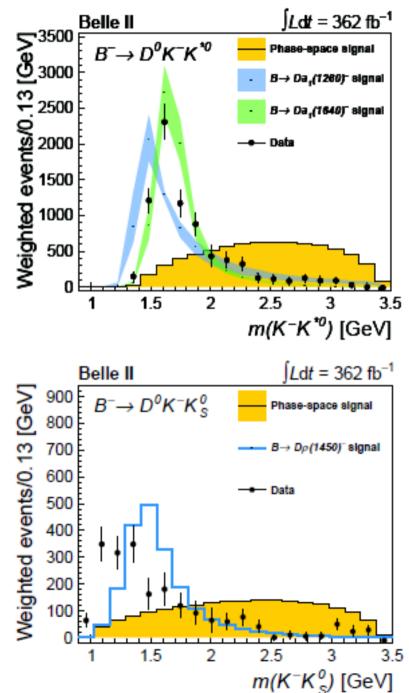
 $BF(B^{+} \rightarrow D^{0} \rho^{+}) = (0.94 \pm 0.02 \pm 0.05)\%$ [arXiv:2404.10874 , Phys Rev D. 109, L11103]


- World's best result with more than $2\times\,improvement$
- Factorisation test: in agreement with prediction
- Systematically limited by uncertainty on π^0 efficiency

$\underline{\mathbf{B}} \rightarrow \mathbf{D}^{(*)} \mathbf{K} \mathbf{K}_{(\mathbf{S})}^{(*)\mathbf{0}} \text{ at Belle II} \quad [arXiv:2406.06277, accepted by JHEP]}$


 $B \rightarrow DKK$: largely unexplored sector

- $\circ~$ few % of B branching fraction expected
- $\circ~$ Only 0.3% measured so far



- ∘ Challenge: estimate non-resonant $B \rightarrow DKK\pi$ modes (non K^*)
- $\circ~$ Signal extracted from fit to ΔE
- Subtract background, and look at invariant mass and Dalitz distributions

$B \rightarrow D^{(*)}KK^{(*)0}_{(S)}$ at Belle II

- $\circ~$ Efficiency correction applied in the planes $m(D^{(*)}K^-)$ and $m(K^{-}K^{(*)0}_{(S)})$
- Extraction of bkg-subtracted and efficiency corrected invariant mass and helicity
- $\,\circ\,$ Dominant transitions $J^{\rm P}$ = 1 $^{\text{-/+}}$
- ∘ $B \rightarrow D^{(*)}D_s(\rightarrow KK^{(*)})$ are used as control modes

$B \rightarrow D^{(*)}KK^{(*)0}_{(S)}$ at Belle II

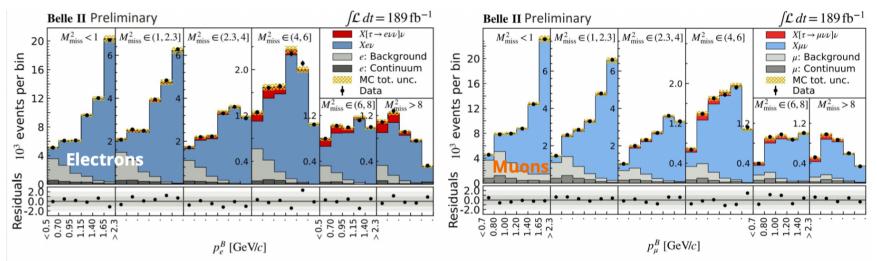
[arXiv:2406.06277, accepted by JHEP]

Channel	Yield	Average ε	\mathcal{B} $[10^{-4}]$	_	
$B^- \rightarrow D^0 K^- K^0_S$	209 ± 17	0.098	$1.82 \pm 0.16 \pm 0.08$	_	World's best
$\overline{B}{}^0 \rightarrow D^+ K^- K^0_S$ $B^- \rightarrow D^{*0} K^- K^0_S$	$105 \pm 14 \\ 51 \pm 9$	$0.048 \\ 0.044$	$\begin{array}{c} 0.82 \pm 0.12 \pm 0.05 \\ 1.47 \pm 0.27 \pm 0.10 \end{array}$	П	
$\overline{B}^0 \to D^{*+} K^- K_S^0$	36 ± 7	0.044	$0.91 \pm 0.19 \pm 0.05$		First observation
$B^- \rightarrow D^0 K^- K^{*0}$	325 ± 19	0.043	$7.19 \pm 0.45 \pm 0.33$	П	
$\overline{B}{}^0 \rightarrow D^+ K^- K^{*0}$ $B^- \rightarrow D^{*0} K^- K^{*0}$	$385 \pm 22 \\ 160 \pm 15$	0.021 0.019	$7.56 \pm 0.45 \pm 0.38 \\ 11.93 \pm 1.14 \pm 0.93$		World's best
$\overline{B}{}^0 \to D^{*+} K^- K^{*0}$	193 ± 14	0.020	$13.12 \pm 1.21 \pm 0.71$		
$B^- \to D^0 D^s$	$144 \pm 12~/~153 \pm 13$	0.09 / 0.04	$95\pm6\pm5$		Precision
$\overline{B}{}^0 \to D^+ D^s$ $B^- \to D^{*0} D^-$	$145 \pm 12 / 159 \pm 13$	0.05 / 0.02	$89 \pm 5 \pm 5$		compatible
$\begin{array}{c} B^- \rightarrow D^{*0} D^s \\ \overline B{}^0 \rightarrow D^{*+} D^s \end{array}$	$30 \pm 6 / 29 \pm 7$ $43 \pm 7 / 37 \pm 7$	$0.04 \ / \ 0.02$ $0.04 \ / \ 0.02$	$65 \pm 10 \pm 6$ $83 \pm 10 \pm 6$		with WA

Total 12 channels, first observation for 3 channels World's best precision for the rest

Summary

- Very active field: many more results than shown (with run 1 data $\sim 400 \text{ fb}^{-1}$)
- $\circ~$ Importance to have both the e^+e^- and pp environments
- Belle (II) is a unique environment to study B decays with missing energy $B \rightarrow K \nu \overline{\nu}, K \tau \tau, K \tau l, \tau \tau, \tau l, D^{(*)} \tau \nu, \tau \nu, \mu \nu ...$ (and urgently improving our understanding of hadronic B decays and consequently our B-tagging efficiency)


and τ sector ...

... but also perform precise measurements of CKM UT (CPV or not), low mutiplicity, dark sector... and many other opportunities

• Resumed data taking (run 2) in 2024, goal is to reach 10^{35} cm⁻² s⁻¹, and o(5 ab⁻¹) by 2029

First B factory result on $B(B \rightarrow [c]\tau\nu)/B(B \rightarrow [c]l\nu)$

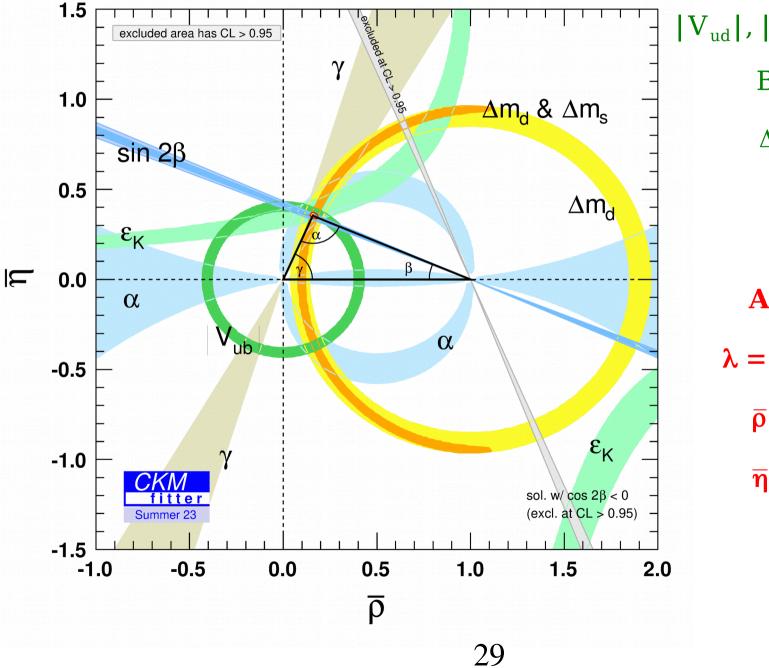
- $\circ~$ BF ratio without explicitly reconstructing the charm meson offers an unique, supplementary and theoretically more reliable probe, than $R\left(D^{(*)}\right)$
- Half of available sample (200 million $B\overline{B}$ pairs)
- Fully reconstruct the partner B in the event to suppress bckg
- Sophisticated event weighting to ensure proper sample-composition, validated in multiple sidebands.
- Two-dimensional fit of lepton momentum and missing mass provides signal yield:

Complex analysis, requiring multiple corrections/reweighting to simulated samples Excellent agreement between electron and muon channel measurements:

 $R(X_{\tau/e}) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$

 $R(X_{\tau/\mu}) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$

Systematics is largely from data-driven corrections in control regions

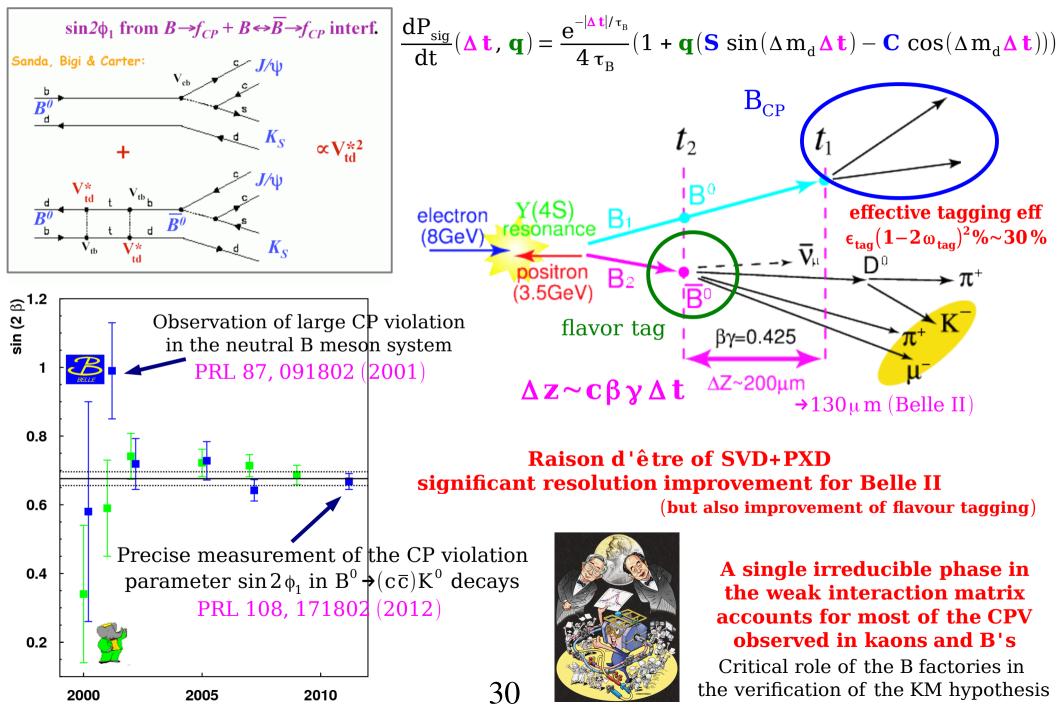

Combined result

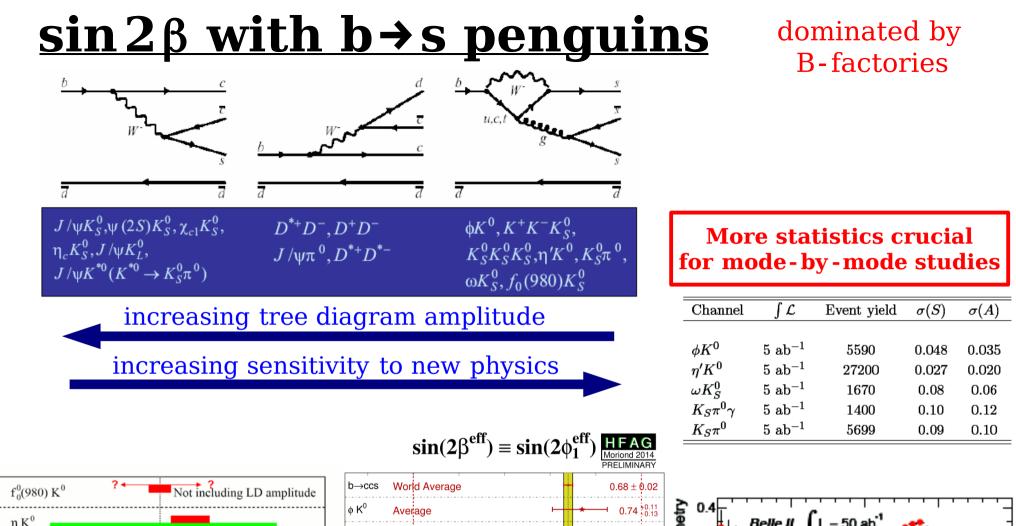
 $R(X) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$

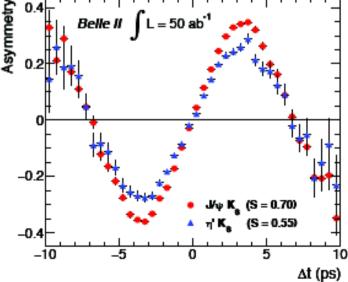
is consistent with SM 0.223±0.006, but also with measurements of $R(D^{(*)})$

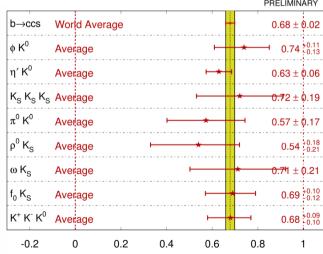
First ever such result from B factories

The current status of CKM (CKMfitter 2023)

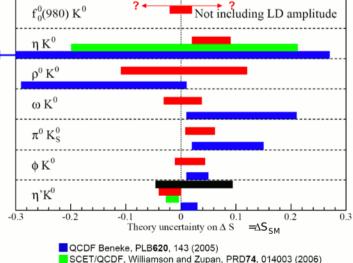



 $|V_{ud}|, |V_{us}|, |V_{cb}|, |V_{ub}|_{SL}$ $B \rightarrow \tau \nu, |V_{ub}|_{\Lambda_{b}}$ $\Delta m_{d}, \Delta m_{s}, \epsilon_{K}$ $\alpha, \sin 2\beta, \gamma$


 $A = 0.822^{+0.005}_{-0.008}$ $\lambda = 0.22498^{+0.0023}_{-0.00021}$ $\bar{\rho} = 0.156^{+0.011}_{-0.004}$ $\bar{\eta} = 0.355^{+0.005}_{-0.006}$


(68% CL)

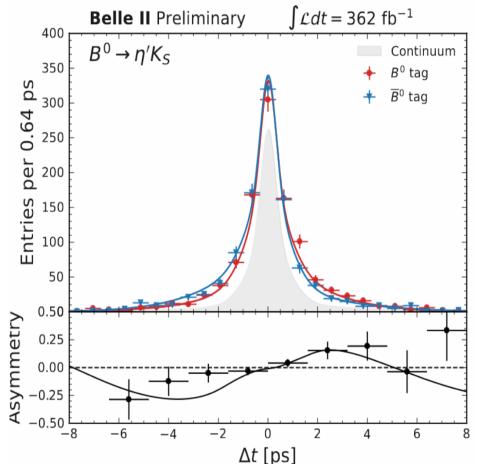
<u>Time-dependent CP asymmetries</u> in decays to CP eigenstates



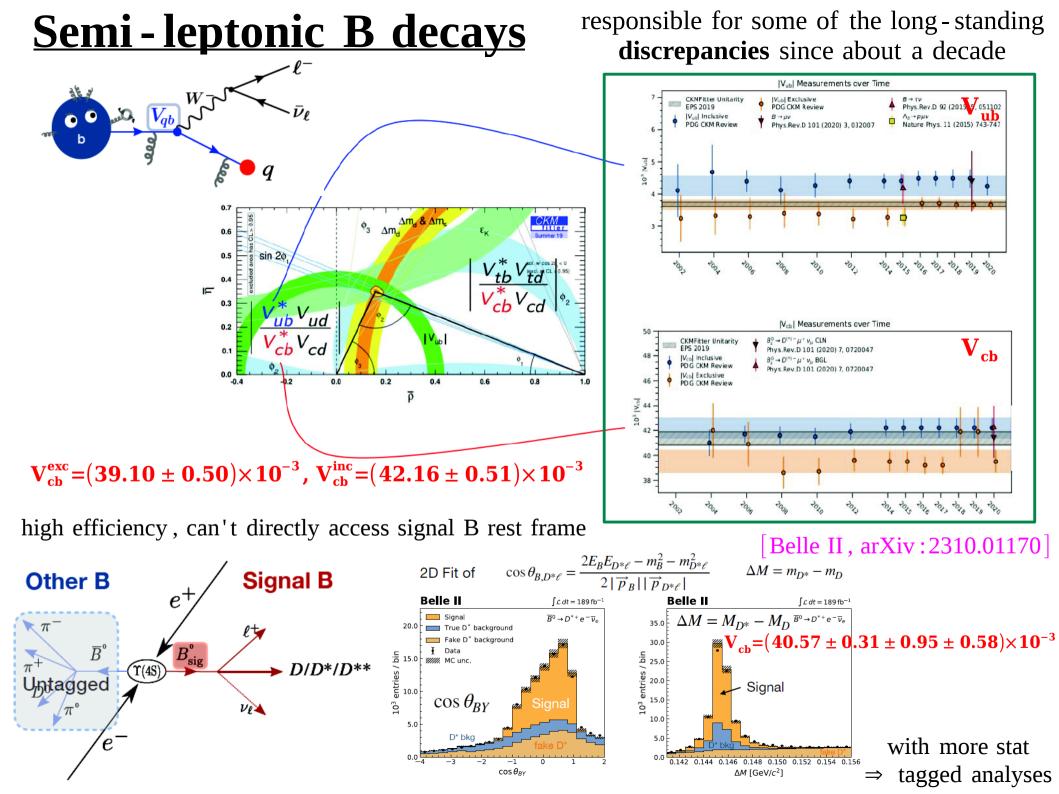
31

QCDF Cheng, Chua and Soni, PRD72, 014006 (2005)

SU(3) Gronau, Rosner and Zupan, PRD74, 093003 (2006)


First Belle II measurement of CPV in $B \rightarrow \eta' K_S^0$

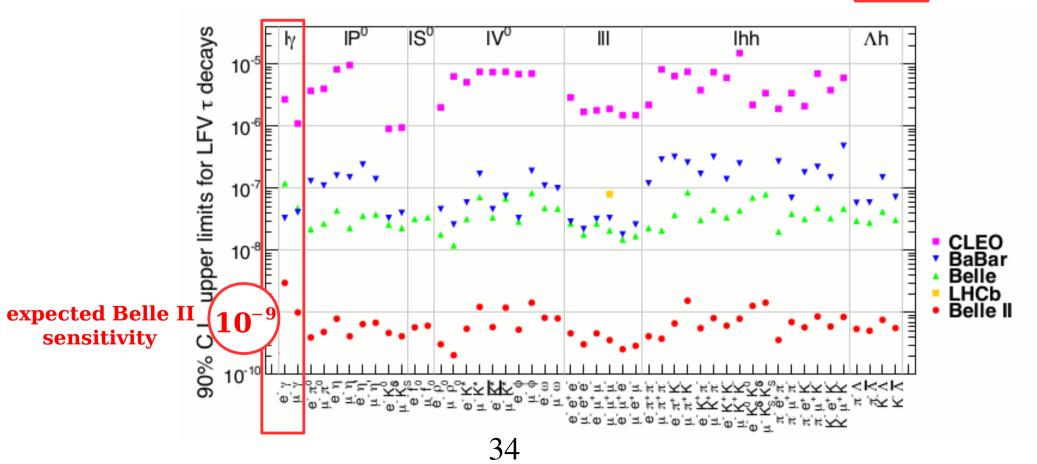
 B^0 mixing phase well measured to be SM using CPV in tree-dominated $B \rightarrow J/\psi K_S^0$ Checking consistency with penguin-dominated decays probes generic non-SM and is a central flavor goal unique to Belle II


```
B^0 \rightarrow \eta' K_S^0 is best:
high BF and o(%) theoretical uncertainty
```

```
\begin{array}{l} C = 0.19 \pm 0.08 \pm 0.03 \\ S = 0.67 \pm 0.10 \pm 0.04 \end{array}
```

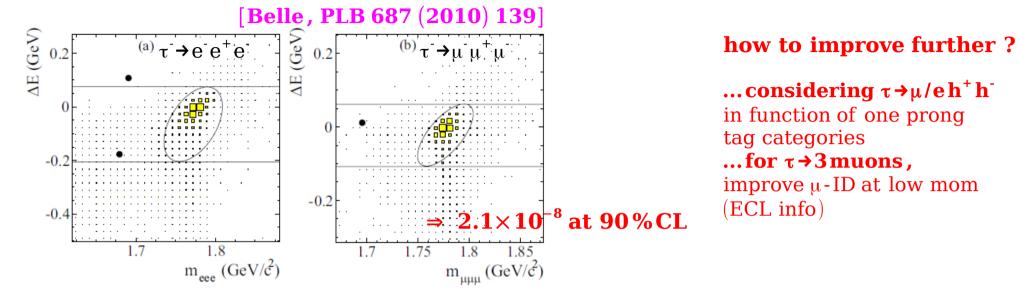
Contributes to world average with sensitivity close to Belle's and BaBar's

Mode	Experiment	$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$	C _{CP}	Correlation	Reference
	<u>BaBar</u> N(BB)=467M	$0.57 \pm 0.08 \pm 0.02$	$-0.08 \pm 0.06 \pm 0.02$	0.03 (stat)	PRD 79 (2009) 052003
η΄Κ ^ο	Belle N(BB)=772M	$0.68 \pm 0.07 \pm 0.03$	$-0.03 \pm 0.05 \pm 0.03$	0.03 (stat)	J <u>HEP 1410 (2014) 165</u>
	Average	0.63 ± 0.06	-0.05 ± 0.04	0.02	HFLAV correlated average $\chi^2 = 1.3/2$ dof (CL=0.53 \Rightarrow 0.6 σ)
	Figures:	<u>eps.gz png</u>	<u>eps.gz</u> png		<u>eps.gz png</u>
			32		

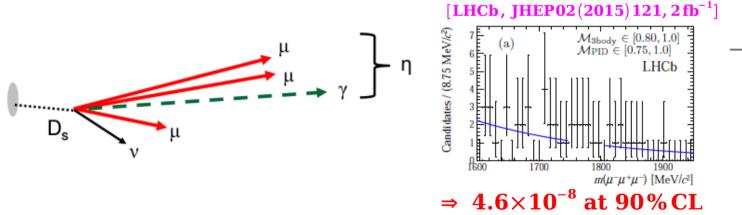

<u>''τ center''</u>

• Belle II is also a τ -factory!

 $\circ~$ lepton flavour violating decays of the τ as NP probe


 $\Rightarrow \ LFV \ accidental \ symmetry \ of \ SM \ , \ many \ NP \\ models \ can \ naturally \ break \ this \ symmetry \ \\$

Model	Reference	τ→μγ	т→µµµ
SM+ v oscillations	EPJ C8 (1999) 513	10 ⁻⁴⁰	10- 40
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10 ⁻⁹	1 0 ⁻¹⁰
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10-8
SUSY SO(10)	PRD 68 (2003) 033012	10 ⁻⁸	1 0 ⁻¹⁰
mSUGRA+seesaw	PRD 66 (2002) 115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566 (2003) 217	10 ⁻¹⁰	10-7



cLFV: beyond the Standard Model

 τ LFV searches at Belle II will be extremely clean with very little background (if any), thanks to pair production and double-tag analysis technique.

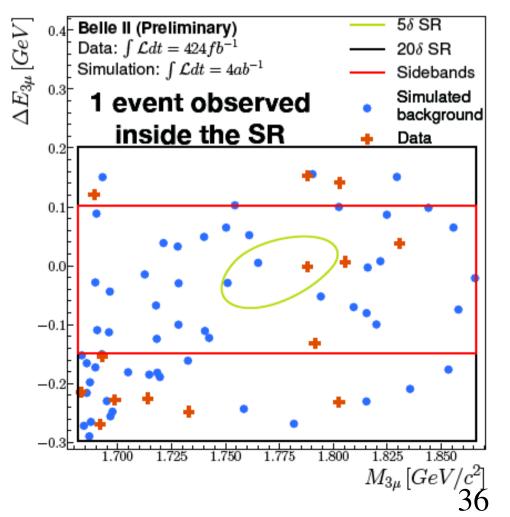
In contrast, hadron collider experiments must contend with larger combinatorial and specific backgrounds

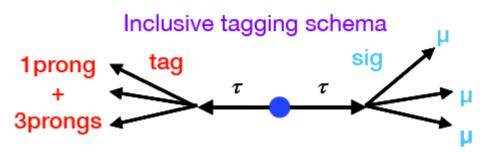
Background modes normalised to $D_s \rightarrow \eta(\mu\mu\gamma)\mu\nu$ (BR ~ 10⁻⁵)

Decay channel	Relative abundance		
D _s →η(μμγ)μν	1		
$D_s \rightarrow \phi(\mu\mu)\mu\nu$	0.87		
$D_s \rightarrow \eta'(\mu \mu \gamma) \mu \nu$	0.13		
D→η(μμγ)μν	0.13		
D→ω(μμ)μν	0.06		
D→ρ(μμ)μν	0.05		

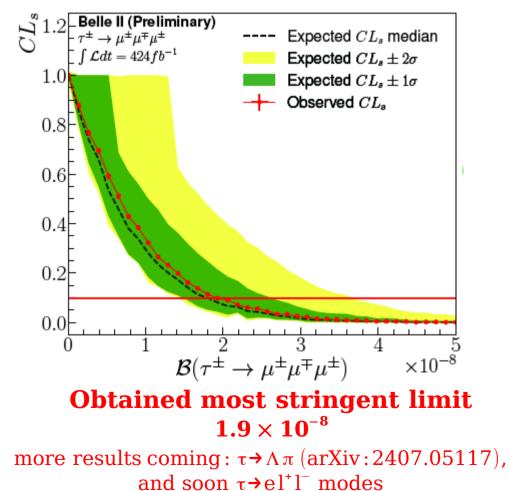
CMS, full Run 2 dataset: 2.9×10^{-8} at 90% CL

Most improvement in coming decade is expected from Belle II, which can reach 1×10^{-9} [arXiv:1011.0352] and will do gen better if can achieve ~ zero bckgd


$\tau \rightarrow 3\mu$ at Belle II

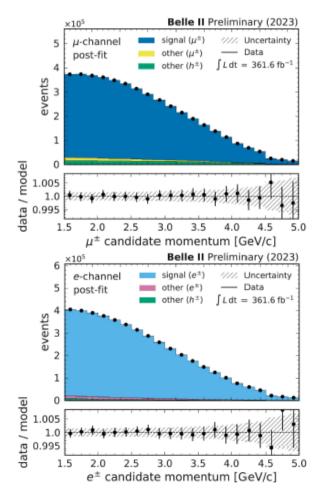

arXiv:2405.07386 accepted by JHEP

Analysis selection and results: inclusive approach

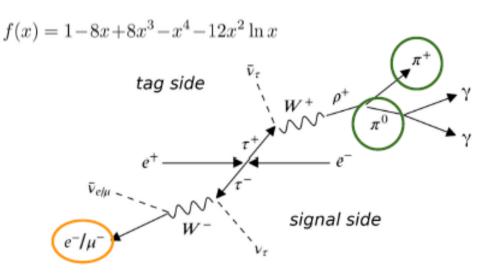

BDT trained on 32 variables: inputs from signal τ^{-} , event tag side, event shape and kinematics

$$\begin{split} \varepsilon_{sig} = & (20.42 \pm 0.06)\% ~(3 \times larger ~than ~Belle) \\ & \text{Expected BKG: } 0.5^{\text{+}1.4}_{\text{-}0.5} ~\text{evts} \end{split}$$

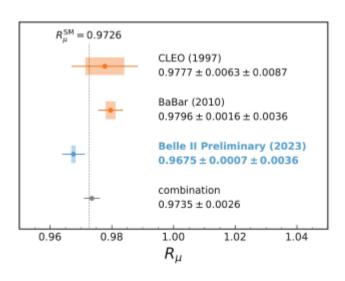
No significant excess in 424 fb^{-1} of data

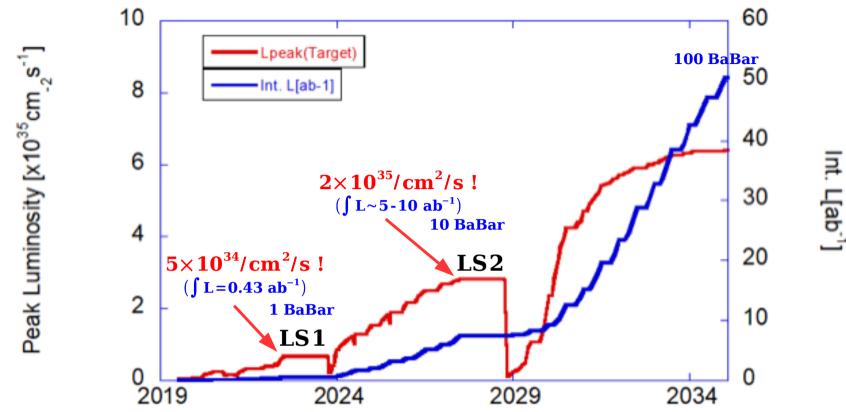

Lepton universality tests at Belle II

precise test of μ -e universality by measuring

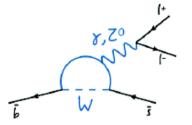

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{\mathcal{B}\left(\tau^{-} \to \nu_{\tau} \mu^{-} \overline{\nu}_{\mu}(\gamma)\right)}{\mathcal{B}\left(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma)\right)}} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}$$

ratio of leptonic branching fractions

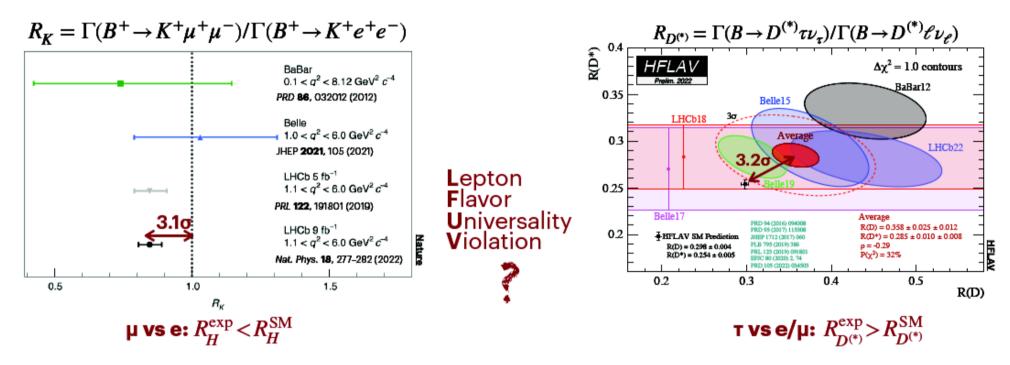

$R_{\mu} \equiv$	$\mathcal{B}\left(\tau^{-} \to \nu_{\tau} \mu^{-} \overline{\nu}_{\mu}\right)$	$\frac{\mu(\gamma)}{\langle n \rangle} \stackrel{\text{SM}}{=} 0.9726$
$n_{\mu} \equiv$	$\mathcal{B}(\tau^- \to \nu_\tau e^- \overline{\nu}_e)$	$\overline{e(\gamma)} = 0.9720$


Source	Uncertainty [%]
Charged-particle identification:	
Electron identification	0.22
Muon misidentification	0.19
Electron misidentification	0.12
Muon identification	0.05
Trigger	0.10
Imperfections of the simulation:	
Modelling of FSR	0.08
Normalisation of individual processes	0.07
Modelling of the momentum distribution	0.06
Tag side modelling	0.05
π^0 efficiency	0.02
Modelling of ISR	0.01
Photon efficiency	< 0.01
Photon energy	< 0.01
Size of the samples	
Simulated samples	0.06
Luminosity	0.01
Charged-particle reconstruction:	
Particle decay-in-flight	0.02
Tracking efficiency	0.01
Detector misalignment	< 0.01
Momentum correction	< 0.01
Total 37	0.37

$R_{\mu} = 0.9675 \pm 0.0037$

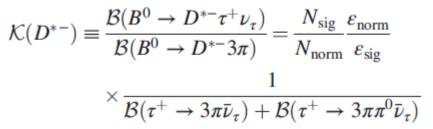


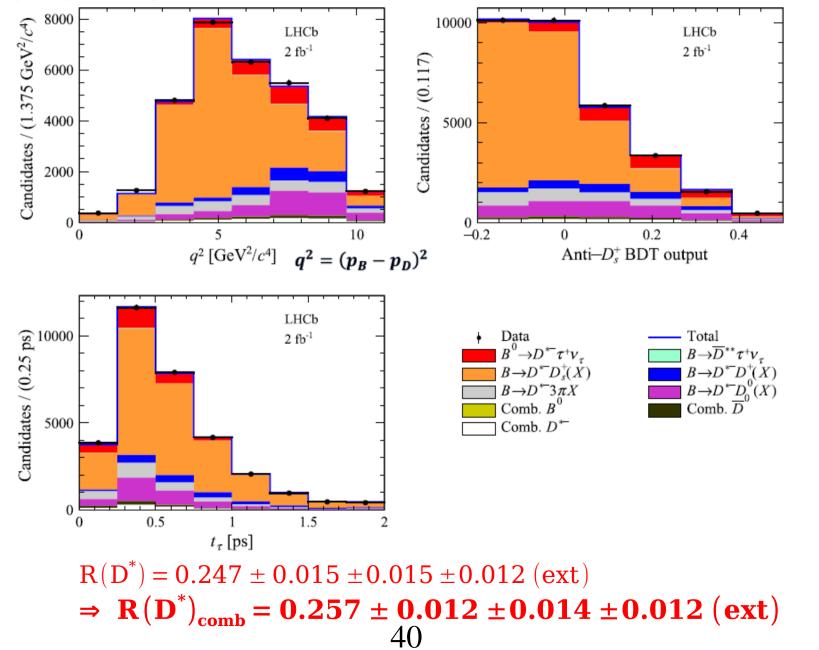
Belle II calendar



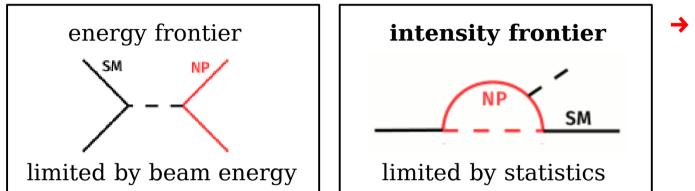
run 1 (→ June 2022): integrated luminosity ~0.43 ab⁻¹, 4-5×10³⁴/cm²/s PXD complete (2 layers) to be installed during **LS1** (2022-2023) (+beampipe + TOP PMTs) **run 2** (→ 2027): integrated luminosity 5-10 ab⁻¹, 2×10³⁵/cm²/s **2028: collider upgrade (QCS+RF)** → installation upgraded detector **run 3** (→ 2035): 50 ab⁻¹

what happened with the B anomalies...?

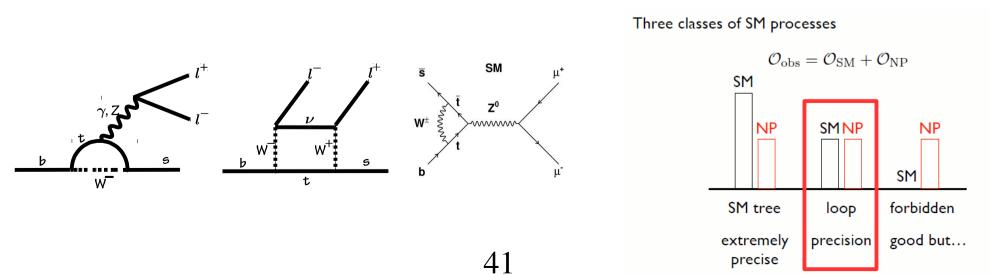

Deviations from SM have been measured, among several observables, in universality tests of lepton interactions in $b \rightarrow s$ and $b \rightarrow c$ transitions


Main players in B-physics

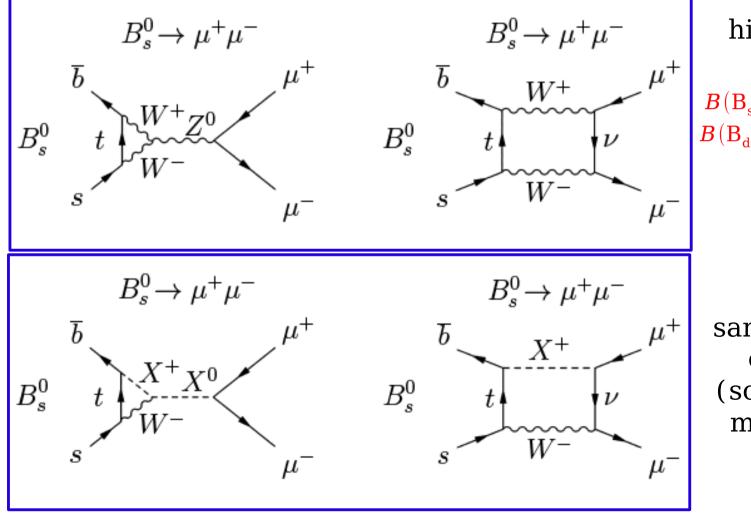
Belle (II), BaBar \rightarrow B-mesons in $e^{+}e^{-}$ collisions LHCb \rightarrow *b*-flavored hadrons in *pp* collisions



Run 2: 2 fb⁻¹ [PRD 108 (2023) 012018]


Rare B decays

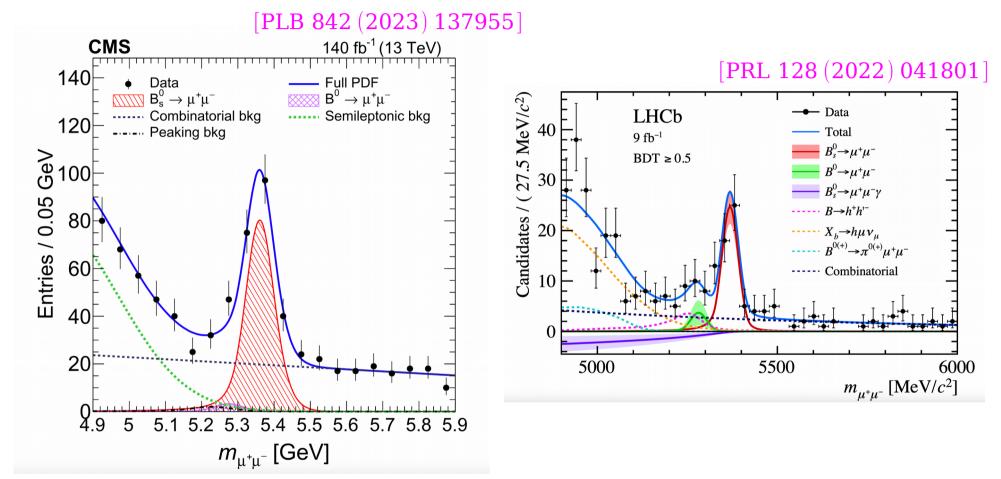
- FCNC are strongly suppressed in the SM: only loops + GIM mechanism
- Any new particle generating new diagrams can change the amplitudes


→ NP beyond the <u>direct</u> reach of the LHC

New particles can for example contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

$\mathbf{B}_{(s)} \rightarrow \mu \mu$: ultra rare processes...

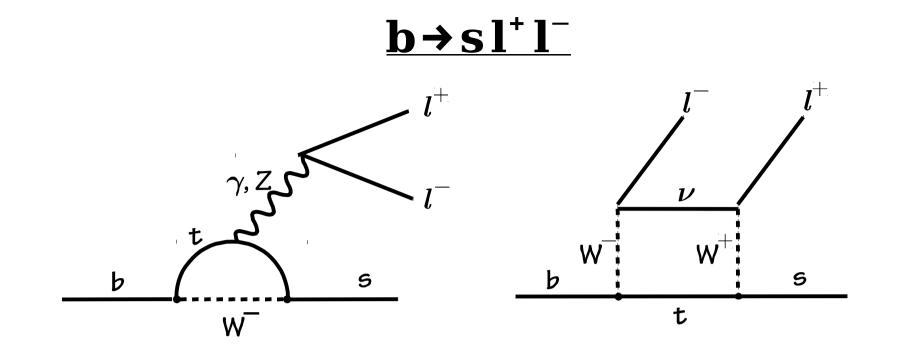
loop diagram + suppressed in SM + theoretically clean = an excellent place to look for new physics


higher-order FCNC allowed in SM $B(B_s \rightarrow \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$ $B(B_d \rightarrow \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$

> [Beneke et al, JHEP 10 (2019) 232]

same decay in theories extending the SM (some of NP scenarios may boost the B→μμ decay rates)

$\mathbf{B}_{(s)} \rightarrow \mu \mu$: ultra rare processes...


- $\circ~$ Observation by CMS and LHCb in 2014
- $\circ~$ Clean experimental signature: ATLAS, CMS and LHCb

43

 $B(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}) = (3.83 \stackrel{+0.38}{_{-0.36}} \stackrel{+0.19}{_{-0.16}} \stackrel{+0.14}{_{-0.13}} (f_{s}/f_{u})) \times 10^{-9}$ B(B^{0} \rightarrow \mu^{+} \mu^{-}) < 1.9 \times 10^{-10} @ 95\% CL B(B⁰_s→ $\mu^{+}\mu^{-}$) = (3.09 ^{+0.46}_{-0.43} ^{+0.15})×10⁻⁹ B(B⁰→ $\mu^{+}\mu^{-}$) < 2.6 ×10⁻¹⁰ @ 95% CL

Pioneer measurements for effective lifetime already available

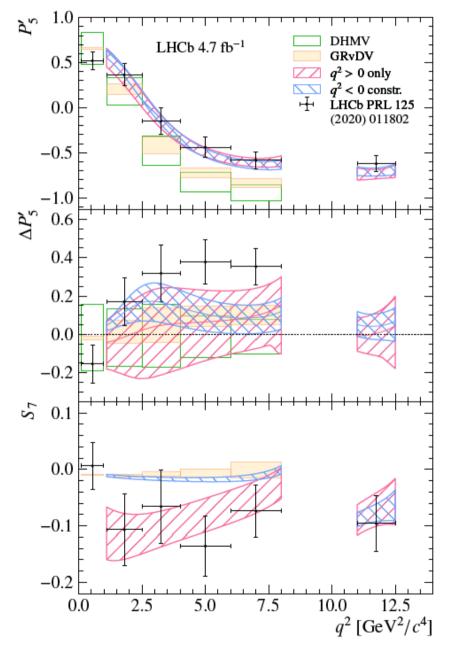
 $\Rightarrow~2~orders~of~magnitude~smaller~than~b \rightarrow s \gamma~but~rich~NP~search~potential$

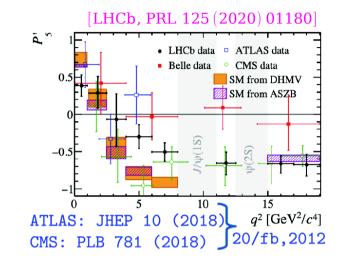
may interfere w/ contributions from NP

Many observables:

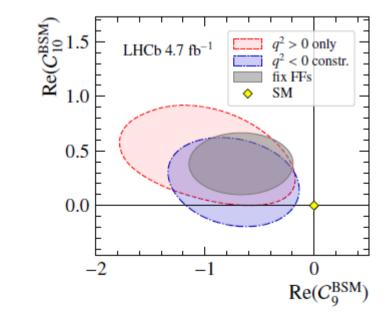
• Branching fractions

 $\circ~$ Isospin asymmetry $(A_{\rm I})$, Lepton forward -backward asymmetry $(A_{\rm FB})$, CP asymmetry ...


 $\circ~$ and much more...


 $\Rightarrow \text{ Exclusive } (\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{l}^{+} \mathbf{l}^{-}) \text{, Inclusive } (\mathbf{B} \rightarrow \mathbf{X}_{s} \mathbf{l}^{+} \mathbf{l}^{-})$

Unbinned B \rightarrow K^{*0} $\mu^+\mu^-$


first unbinned amplitude analysis of $B \rightarrow K^{*0} \mu \mu$ (same dataset as Run1+2016 q² binned) \Rightarrow determines simultaneously the short- and long-distance contribution

45

Data still prefers negative C_9^{NP} , but tension in C_9 reduced to ~ 1.8 σ and 1.4 σ global

Lepton flavor universality (LFU) in $b \rightarrow sl^+l^-$

How do the SM gauge bosons couple to charged leptons of different flavors?

Universality in neutral current interactions

$$U^{\dagger}U = V^{\dagger}V = \mathbb{I}_{3\times3} \implies \mathcal{L}_{\mathrm{nc}}^{\ell} \equiv \left(\overline{\widehat{e}}\gamma_{\mu}\widehat{e} + \overline{\widehat{\mu}}\gamma_{\mu}\widehat{\mu} + \overline{\widehat{\tau}}\gamma_{\mu}\widehat{\tau}\right) \left(g_{\gamma}A^{\mu} + g_{Z}Z^{\mu}\right)$$

The photon and Z-boson couple with the same strength to the three lepton families

Universality

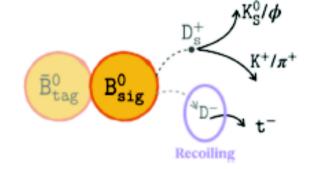
How do we test this feature of the Standard Model?

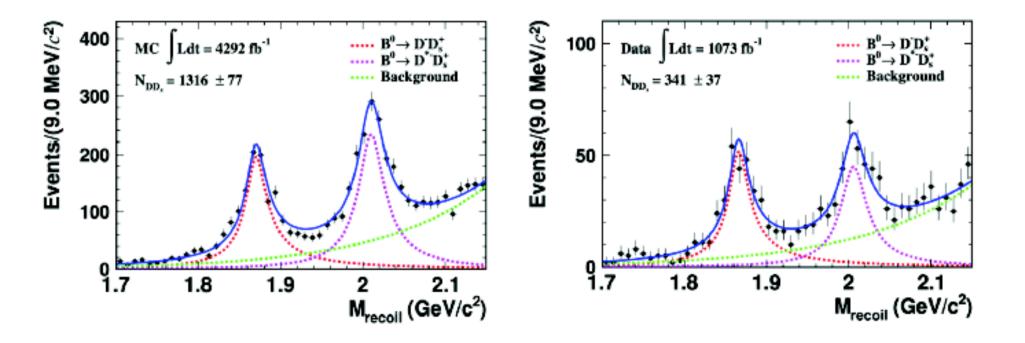
$$R_Y = \frac{\mathrm{BR}\left(X \to Y e_i^+ e_i^-\right)}{\mathrm{BR}\left(X \to Y e_j^+ e_j^-\right)} \qquad i \neq j$$

46

SM expectation

Experimental results

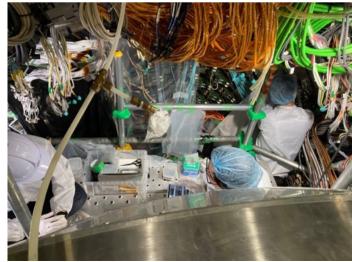

$$R_Y = 1 + \mathcal{O}\left(\frac{m_{i,j}^n}{m_X^n}\right)$$


Search for $B^0 \to K^0_s \tau^{\pm} \ell^{\mp}$: Validation

• Use $B^0 \rightarrow D_s^+ D^-$ to validate recoiling signal PDF and BDT training:

- consistent resolutions in data/simulation
- obtain BDT efficiency correction factor

Long-shutdown (LS1) activity and plans

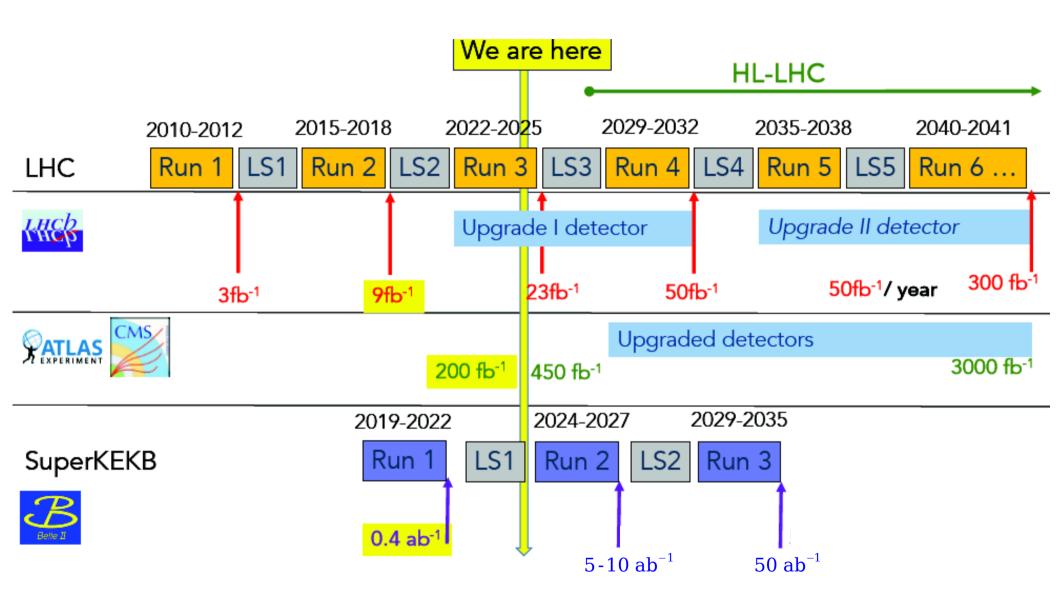

Belle II stopped taking data in Summer 2022 for a long shutdown

- accelerator improvements: injection, non-linear collimators, monitoring...
- additional shielding and increased resilience against beam bckg
- replacement of beam-pipe
- installation of 2-layered pixel vertex detector
- replacement of photomultipliers of the central PID detector (TOP)
- completed transition to new DAQ boards (PCIe40)
- work on other detectors as CDC, KLM...
- improved data-quality monitoring and alarm system

VXD extraction in May

TOP MCP-PMT replacement work

PXD2 at KEK since March



CDC FE reinstallation work

LHCb and Belle II datasets: present and future

(M.H. Schune)

