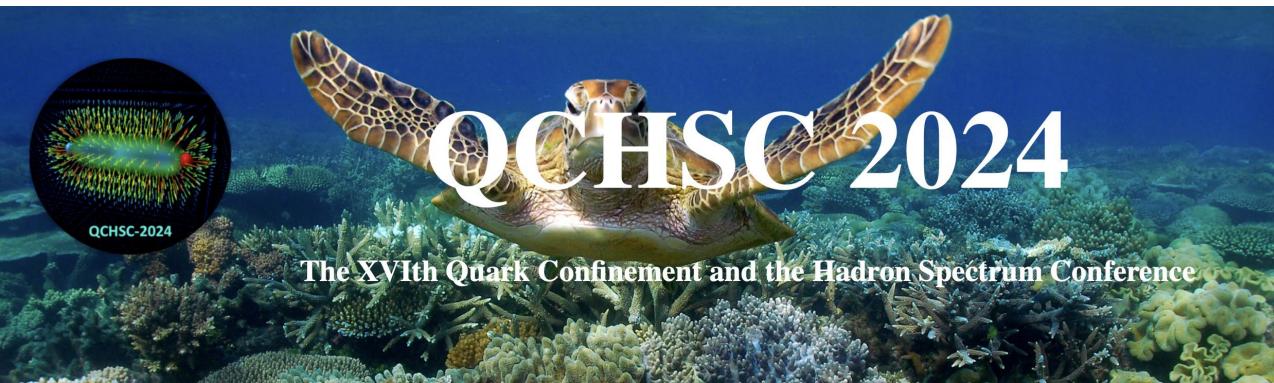
Nucleon electric polarizabilities and nucleonpion scattering from lattice QCD

> Xu Feng (Peking U.) 2024.08.20



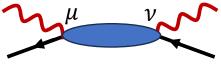
Electromagnetic polarizabilities

In the realm of nucleon properties, E&M polarizabilities represent crucial fundamental constants akin to the size and shape of the nucleon

Polarizabilities offer insights into the distribution of charge and magnetism within nucleons, revealing their response to external electromagnetic fields

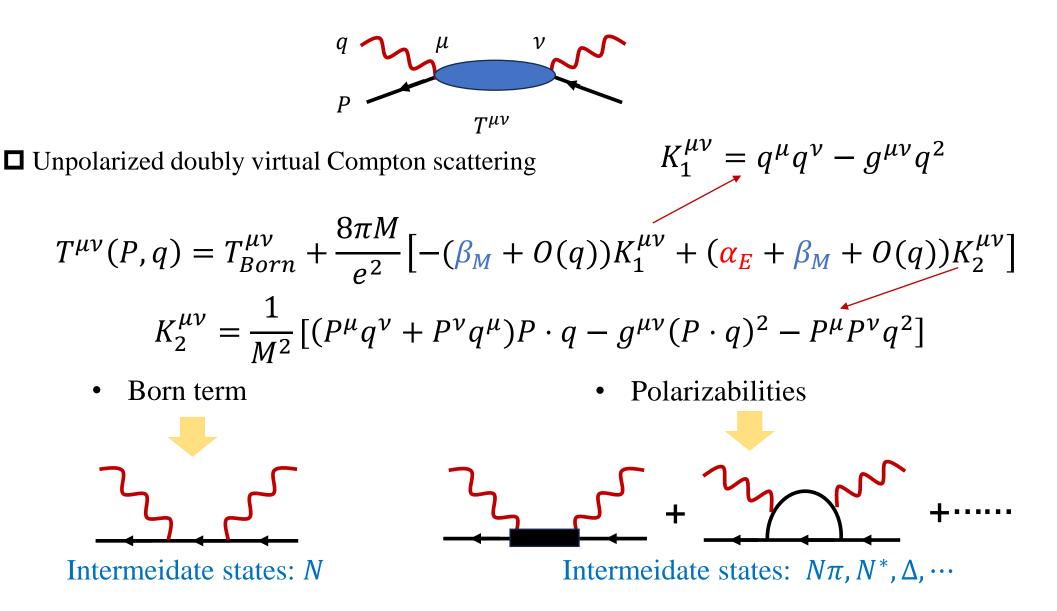
$$H_{eff}^{(2)} = -\frac{4\pi}{2} \alpha_E E^2 - \frac{4\pi}{2} \beta_M B^2$$

Experimental determination of polarizabilities relies on Compton scattering, wherein external E&M fields polarize the target nucleon or deuteron



Nucleon polarizability and Compton scattering

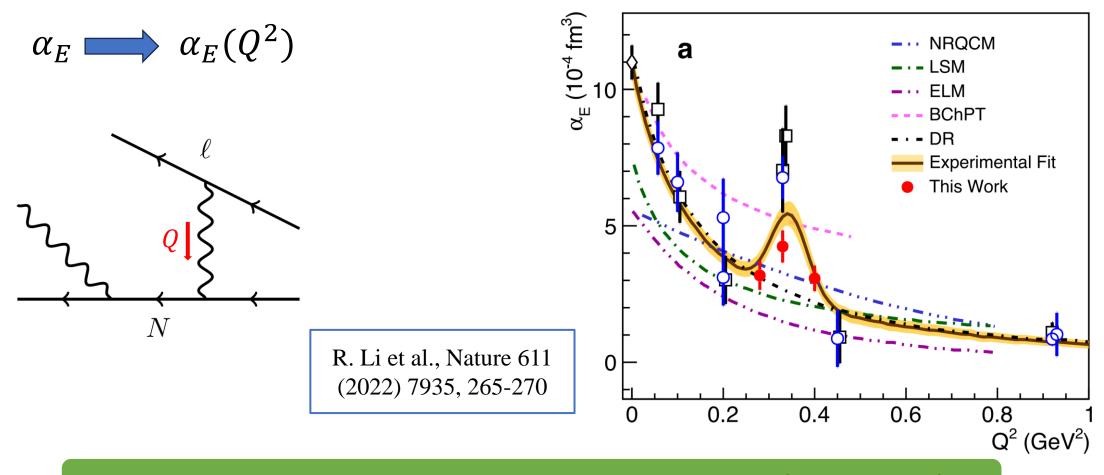
> Nucleon E&M polarizability are most central quantities relevant for Compton scattering



Generalized electric polarizabilities

> In real-virtual Compton scattering

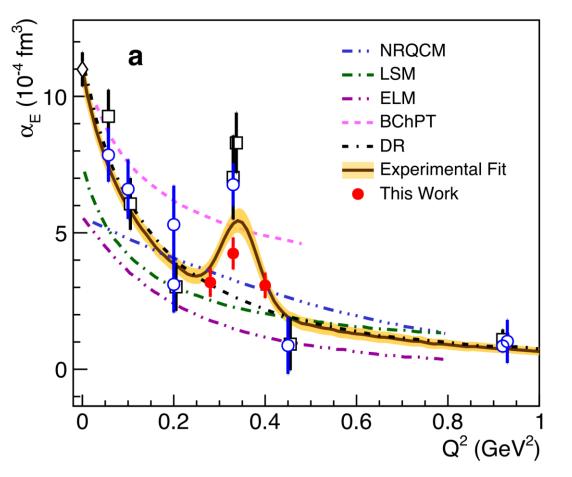
Measured proton E&M structure deviates from theoretical predictions



Abnormal peak of generalized proton electric polarizability at $Q^2 \approx 0.35 \ GeV^2$?

Generalized electric polarizabilities

Measured proton E&M structure deviates from theoretical predictions



R. Li, N. Sparveris, et. al. Nature 611 (2022) 265

Different viewpoints

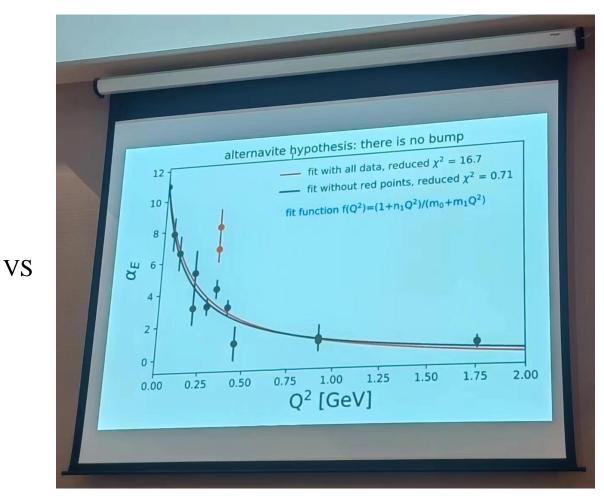
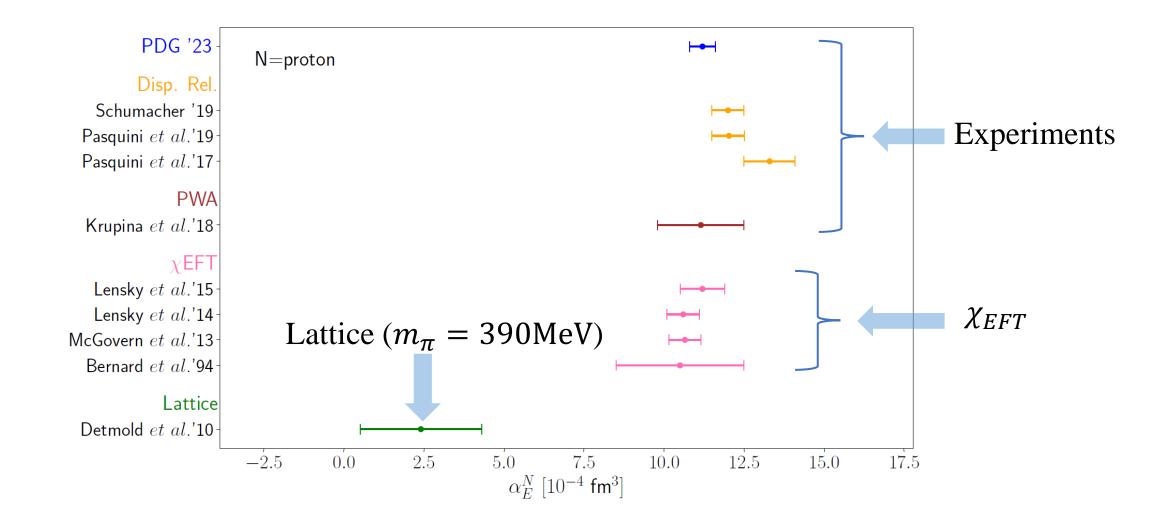


Figure shown by D. Higinbotham @ 2nd Workshop on Nucleon Structure at Low Q

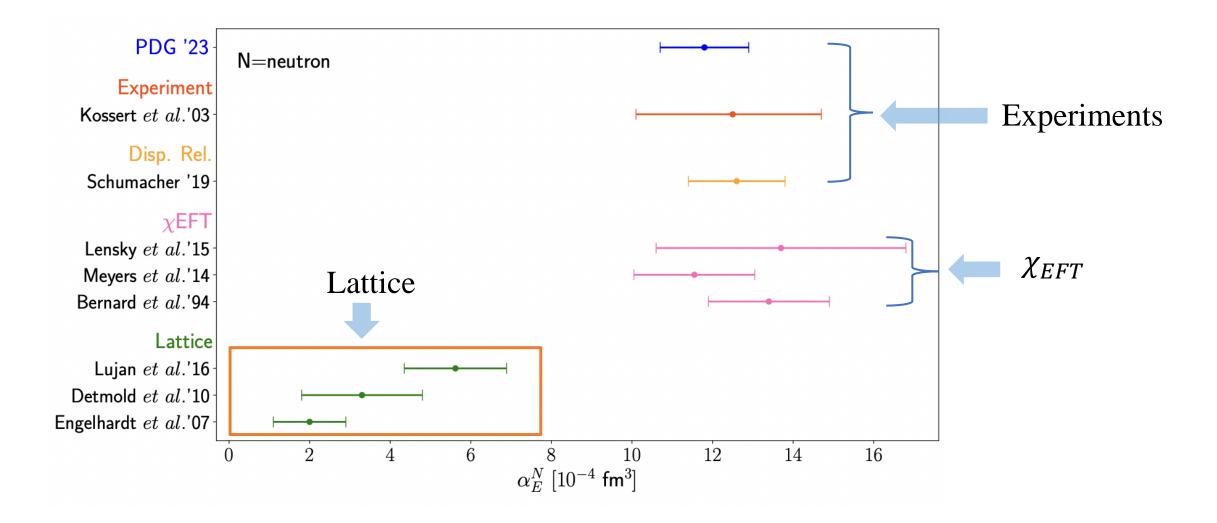
Determination of electric polarizabilities

 \succ For proton



Determination of electric polarizabilities

 \succ For neutron



Determination of electric polarizabilities

> What is the primary source of discrepancy between lattice QCD and other studies?

1 Lattice calculations are performed at unphysical pion masses, ranging from 227 - 759 MeV

Unphysical quark mass effects

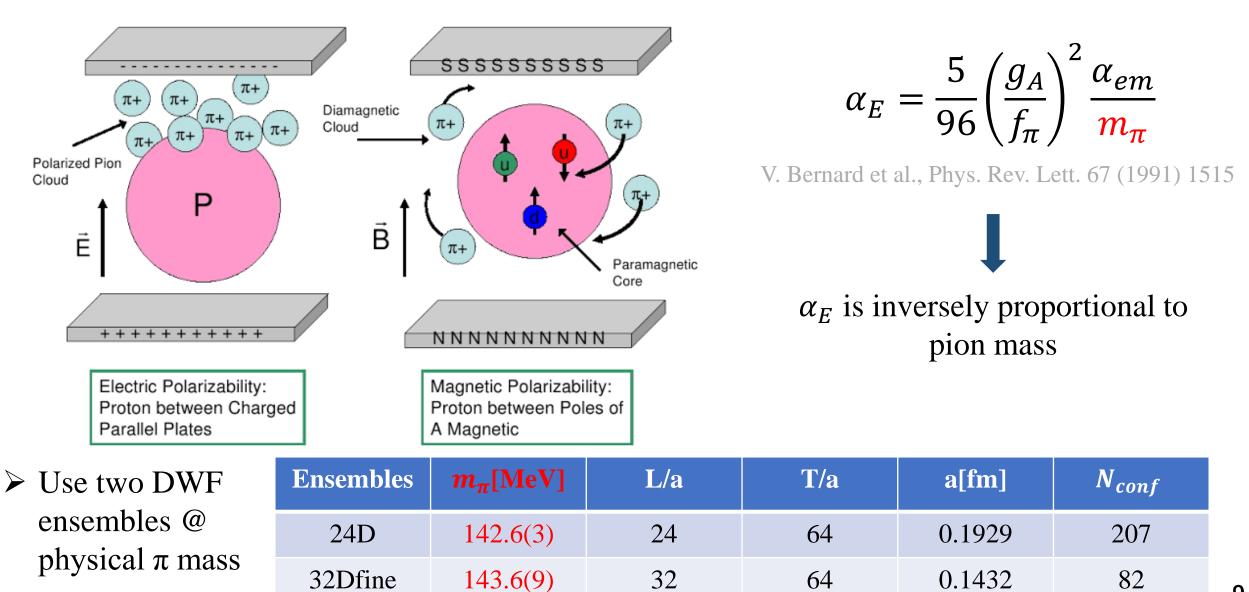
(2) Background field technique is used, which converts 4pt function to 2pt function using Feynman-Hellman theorem

Hard to explore intermediate-state contributions and control systematics

Perform calculation at physical pion mass, using 4pt function

Why physical pion mass is important

Pion cloud in nucleon polarizabilities

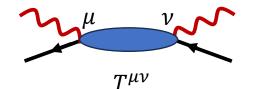


 \succ LO in χ_{PT} :

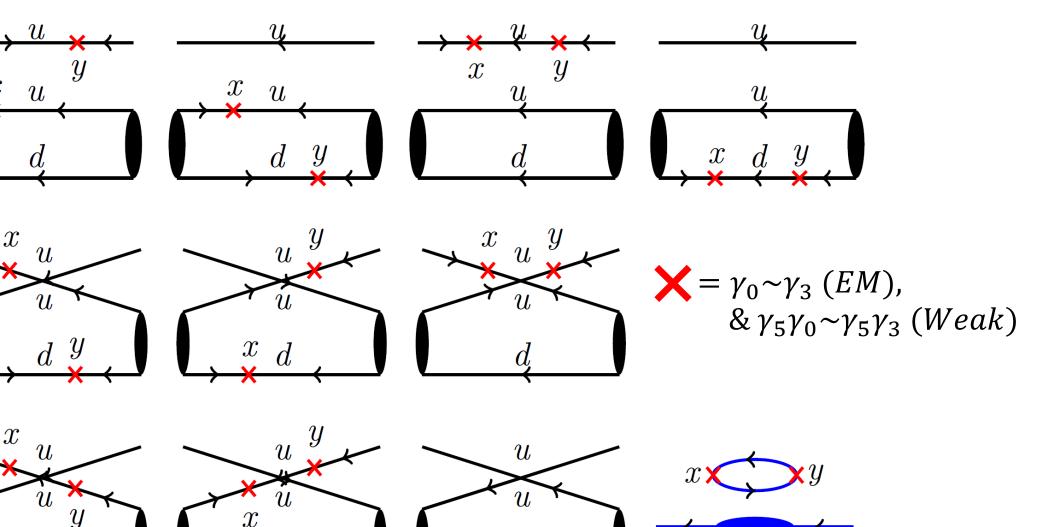
Numerical calculations

 ${\mathcal X}$

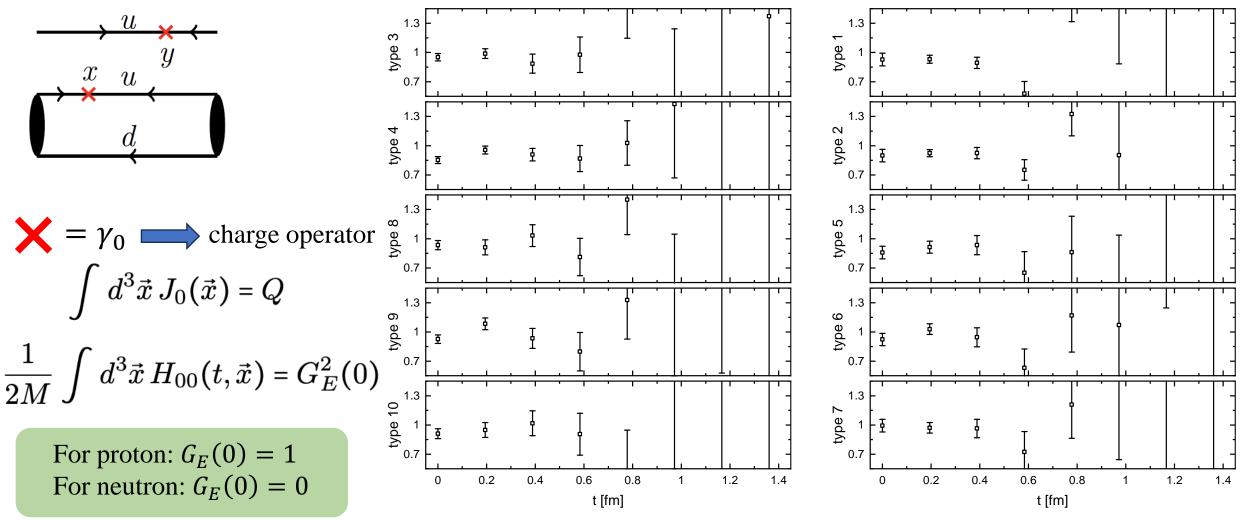
Complicated quark field contractions with two current insertions



Proton



Examination of 4-pt function: charge conservation

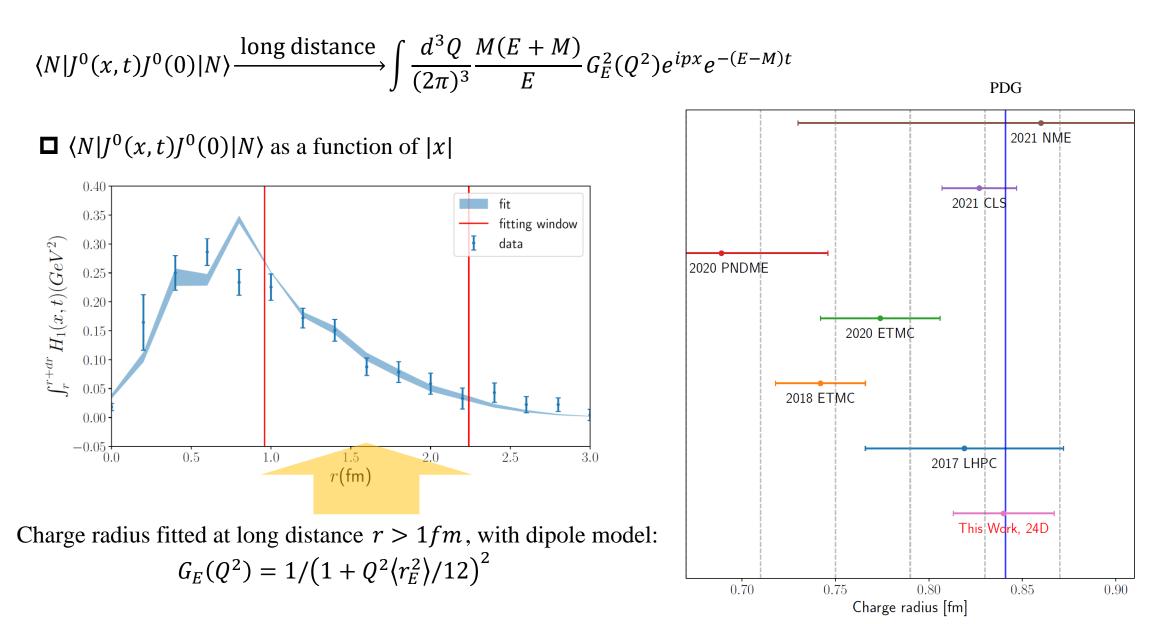


Two currents inserted in one quark line

Two currents inserted in two quark lines

Using the charge conservation to verify the contraction code

Examination of 4-pt function: charge radius



Electric polarizability from 4-pt function

 \blacktriangleright Derive 3 formula to calculate α_E

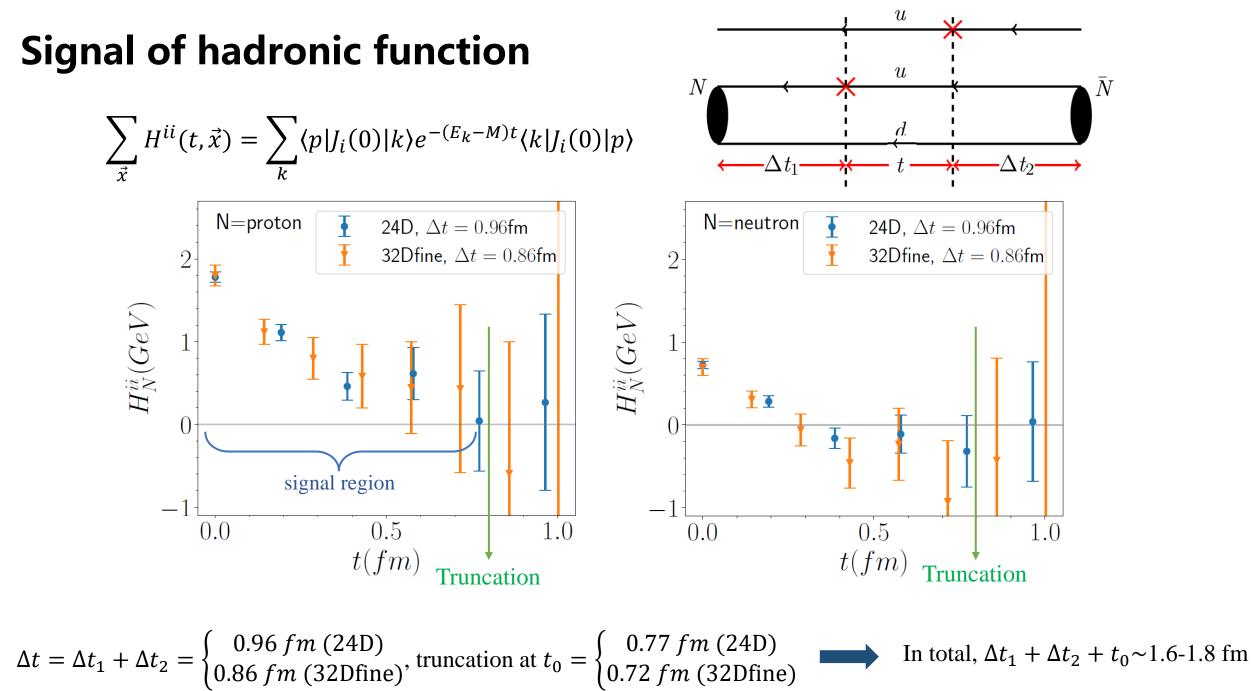
•
$$P = (M, 0), q = (0, \vec{\xi}):$$
 $\alpha_E = -\frac{\alpha_{em}}{12M} \int d^4x \, \vec{x}^2 \left(H^{00}(x) - H^{00}_{GS}(x) \right) + \alpha_E^r$
• $P = (M, 0), q = (\xi, 0, 0, \xi):$ $\alpha_E = \frac{\alpha_{em}}{4M} \int d^4x \, (t + x_i)^2 \left(H^{0i}(x) - H^{0i}_{GS}(x) \right) + \alpha_E^r$
• $P = (M, 0), q = (\xi, 0):$ $\alpha_E = -\frac{\alpha_{em}}{12M} \int d^4x \, t^2 H^{ii}(x) + \alpha_E^r$ Our choice
Residual term α_E^r is analytically known $H^{ii}(x, t) = \langle N | J^i(x) J^i(0) | N \rangle$

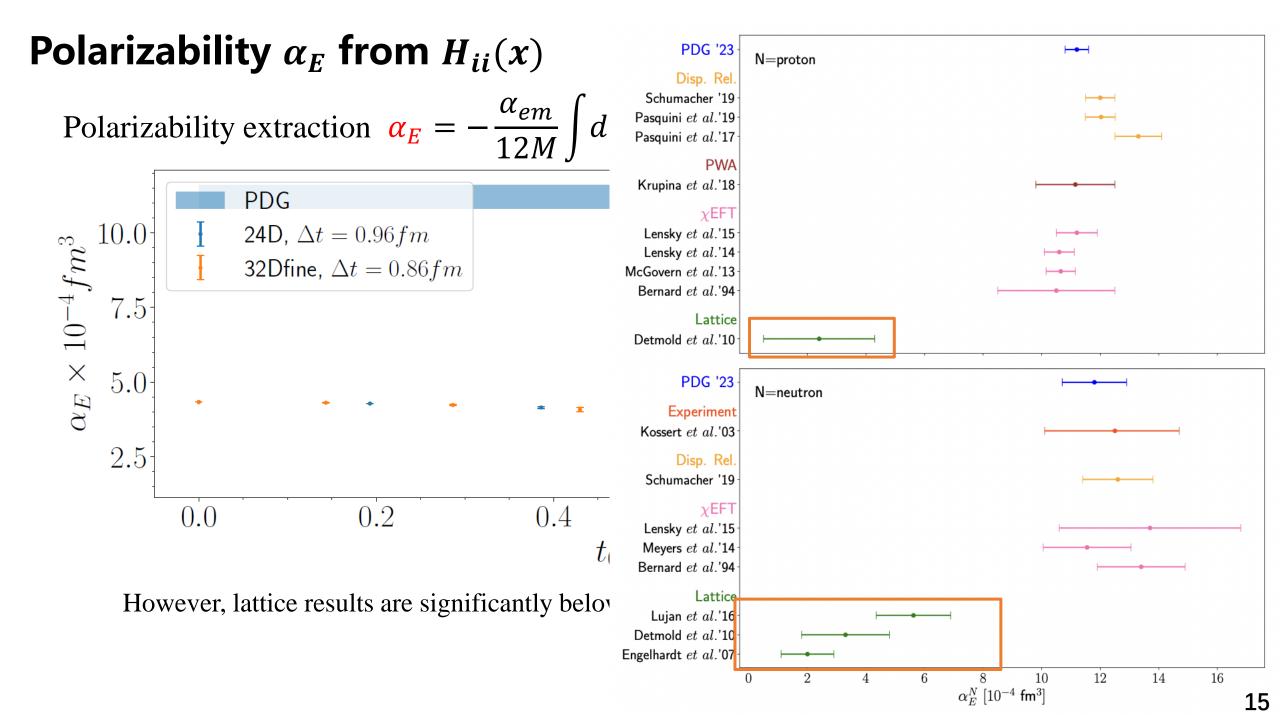
 \succ Residual term α_E^r is analytically known

$$\alpha_E^r = \frac{\alpha_{em}}{M} \left(\frac{G_E^2(0) + \kappa^2}{4M^2} + \frac{G_E(0) \langle r_E^2 \rangle}{3} \right),$$

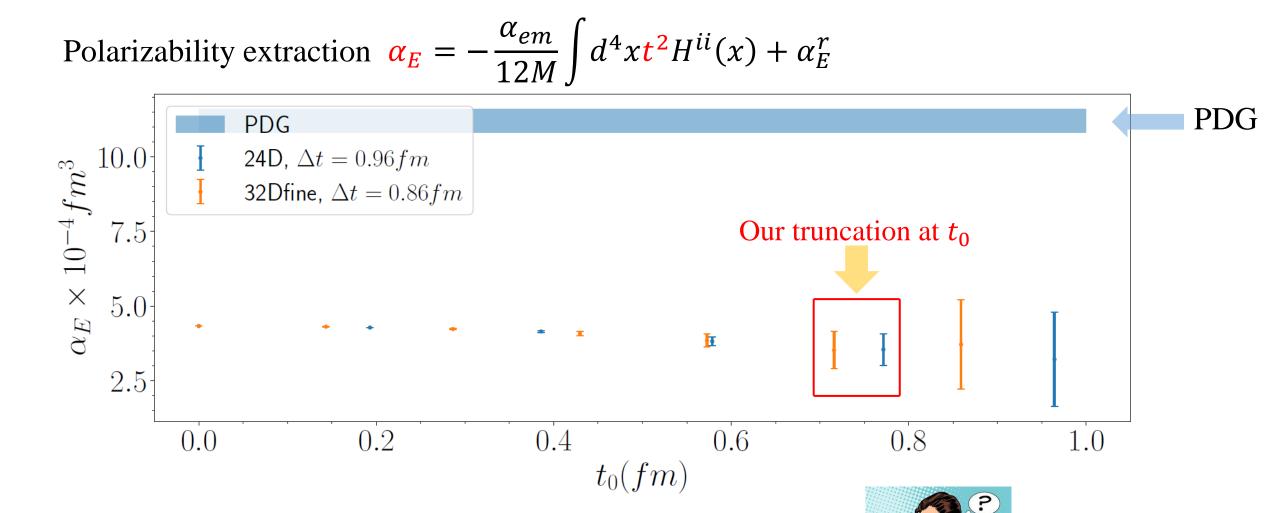
= anomalous magnetic moment & charge radius $G_E(0) = 1/0$, for proton/neutron

 $q \sim u \sim v \sim$





Polarizability α_E from $H_{ii}(x)$



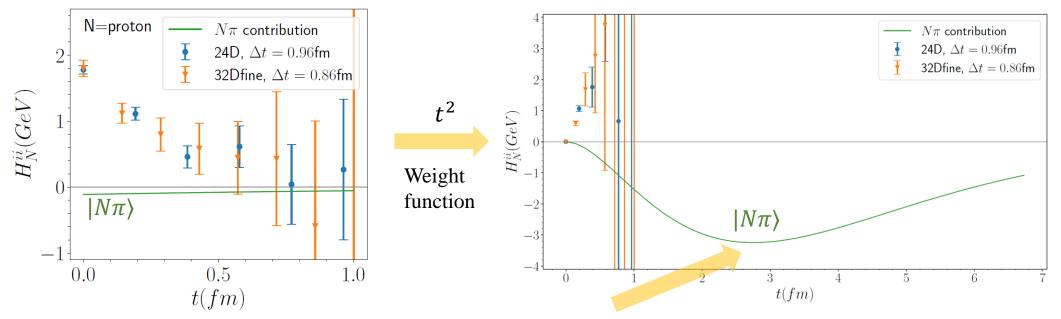
However, lattice results are significantly below the PDG value.

Need new insight to turn the decent to the magic!

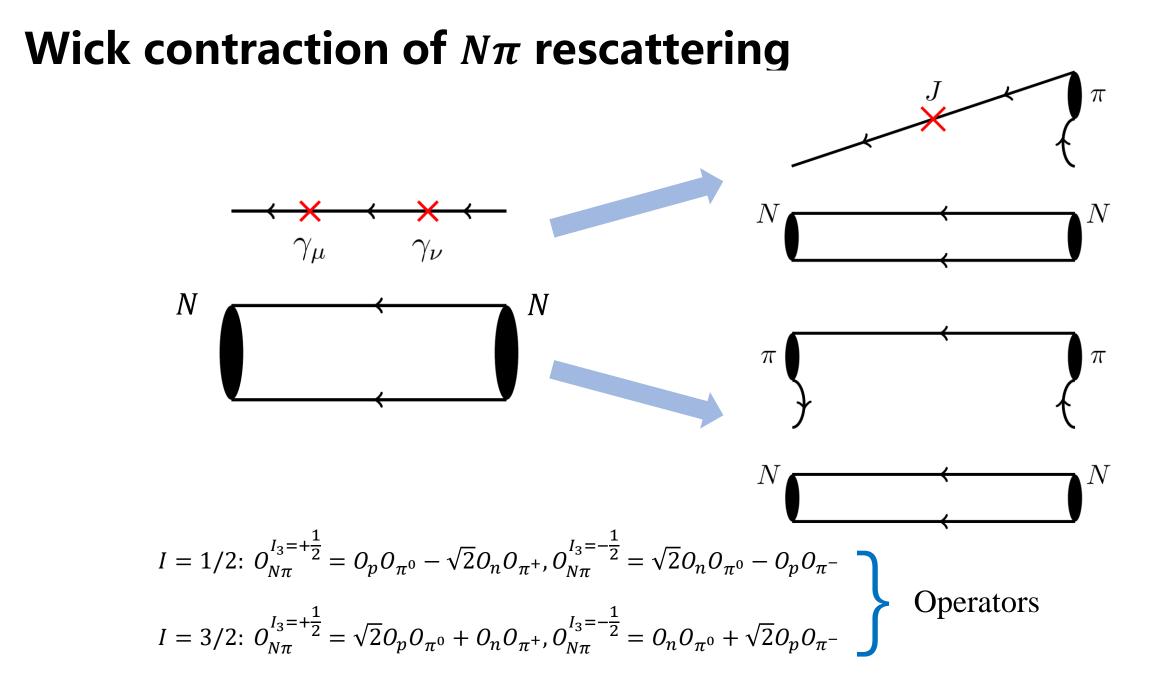
Nucleon polarizabilities and $N\pi$ scattering

Structure of hadronic function
$$\int d^4x \, t^2 H_{ii}(x,t) = \int dt \, t^2 \sum_k \langle p | J_i(0) | k \rangle e^{-(E_k - M)t} \langle k | J_i(0) | p \rangle$$
$$= 4 \sum_k \frac{\langle p | J_i(0) | k \rangle \langle k | J_i(0) | p \rangle}{(E_k - M)^3}$$

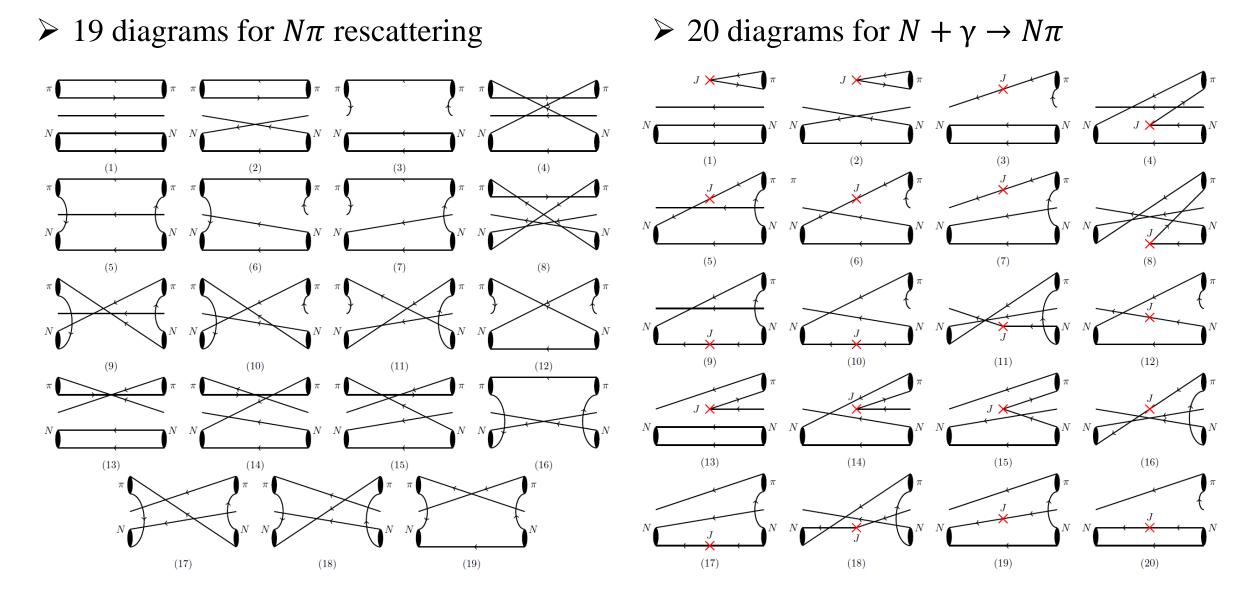
The dominant contribution is given by $|k\rangle = |N\pi\rangle$ states



 $|N\pi\rangle$ states contribution exhibits a peak at $t = 2.8 \ fm$, far exceeding our truncation at $t_0 \approx 0.75 \ fm$ Must calculate $N\pi$ contribution directly!



Wick contraction of $N\pi$ Rescattering



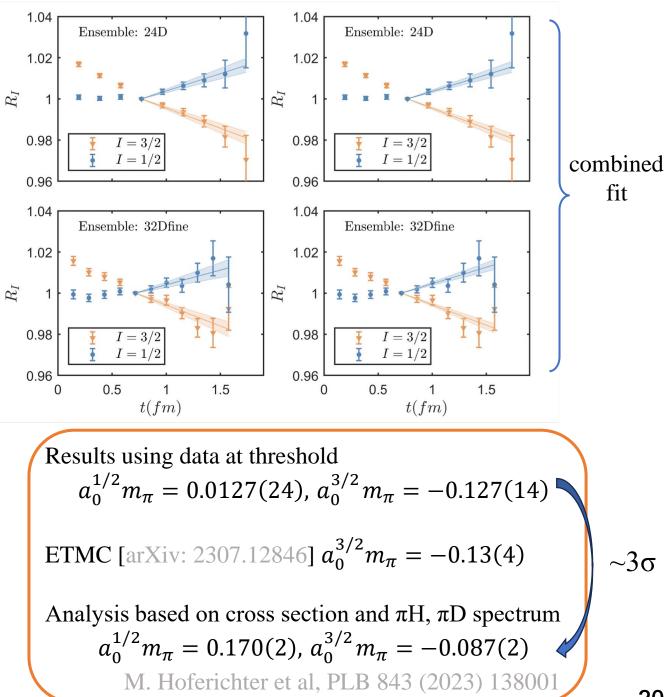
Results of $N\pi$ **Scattering**

> N π scattering at m_{π}=142 MeV

$$R = \frac{C_2^{N\pi}(t)}{C_2^N(t)C_2^\pi(t)}$$
$$= \frac{A_{N\pi}}{A_N A_\pi} \frac{e^{-E_{N\pi}t}}{e^{-(M_N + M_\pi)t}}$$
$$\approx R_0(1 - \Delta Et)$$

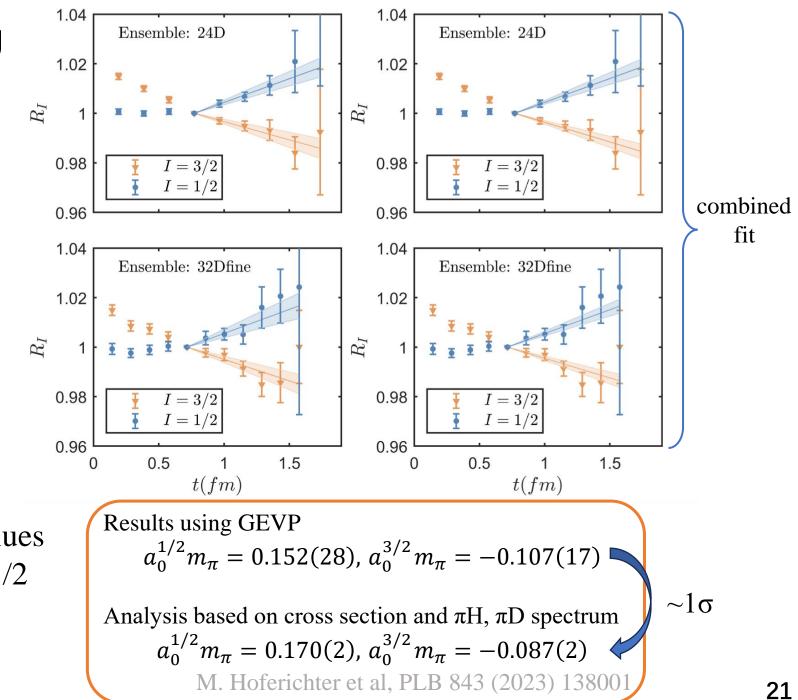
with
$$\Delta E = E_{N\pi} - M_N - M_{\pi}$$

- Scattering for different isospin channel
 - $I = 1/2, \Delta E < 0$, attractive interaction
 - $I = 3/2, \Delta E > 0$, repulsive interaction

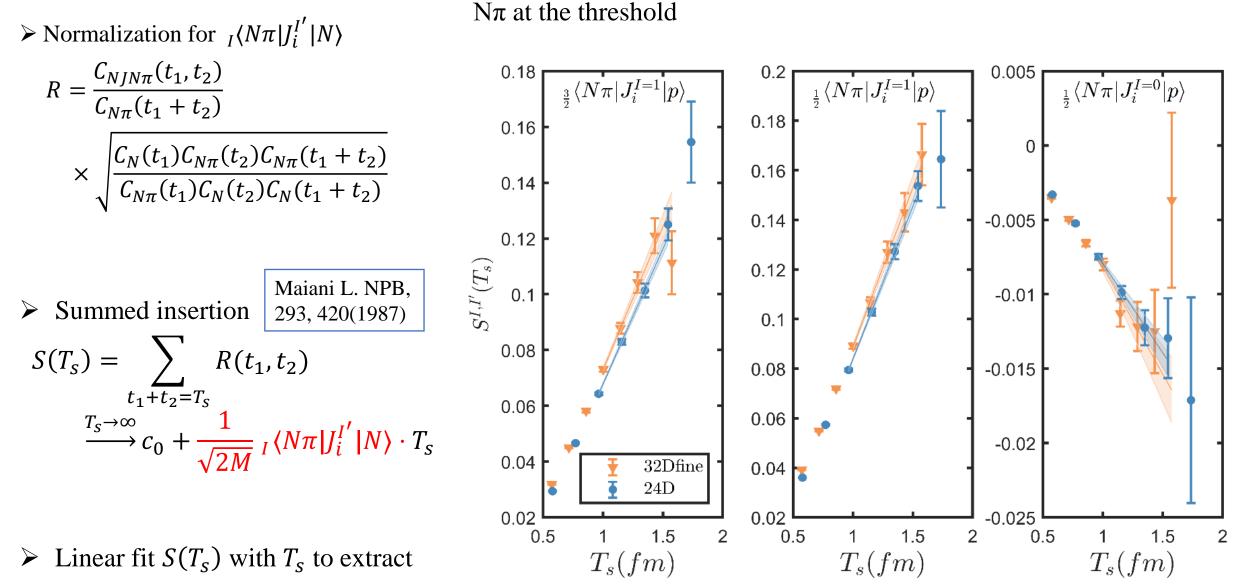


Results of $N\pi$ Scattering

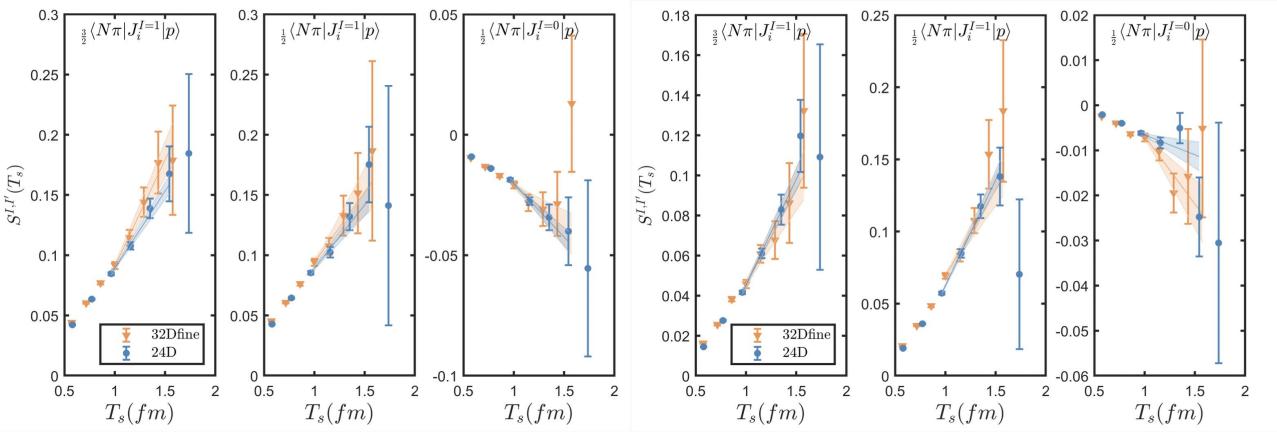
Solution Use $N\pi$ operators with 4 lowest momenta & apply GEVP method



 After GEVP, energy eigenvalues shift downwards for both I=1/2 & 3/2



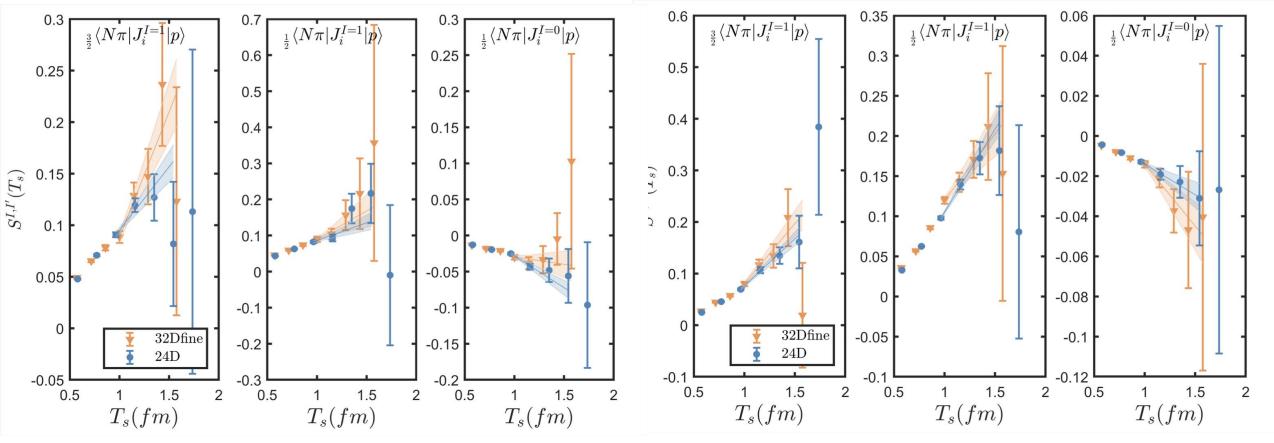
 $N\pi$ in the center of mass frame with mom. mode (100)



 G_1^- representation

 H^- representation

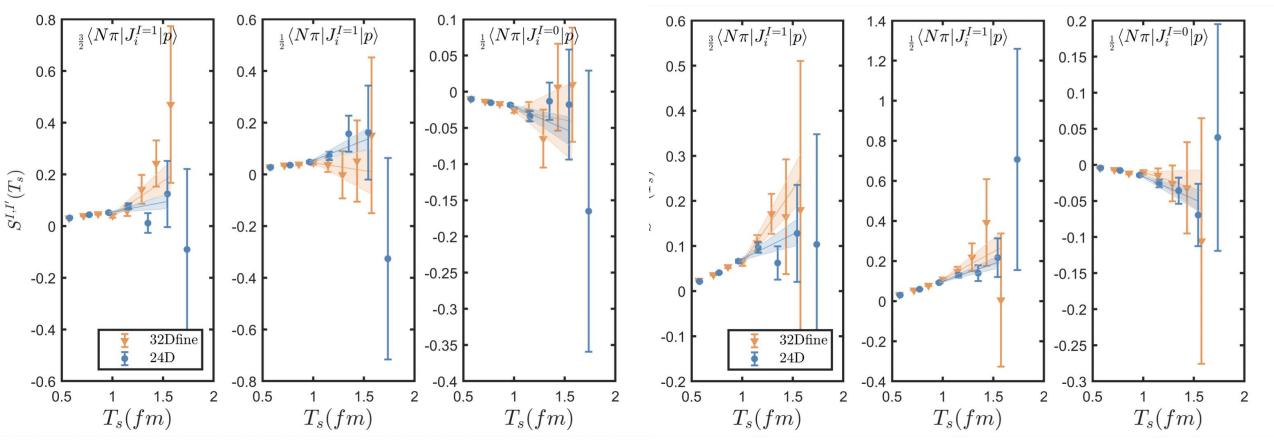
 $N\pi$ in the center of mass frame with mom. mode (110)



 G_1^- representation

 H^- representation

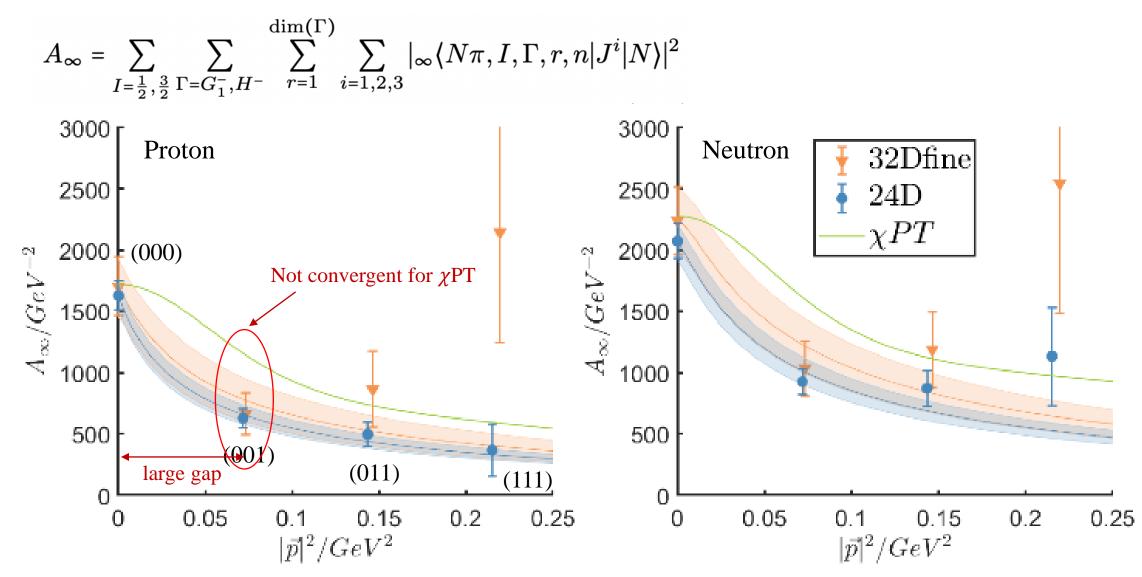
 $N\pi$ in the center of mass frame with mom. mode (111)



 G_1^- representation

 H^- representation

Matrix elements of $N\gamma \rightarrow N(p)\pi(-p)$ with 4 lowest mom modes



Limitations in the comparison between lattice QCD and χ PT:

For lattice, momentum modes are limited For χ PT, photon is very timelike & χ PT does not work well **26**

Momentum dependence of A_{∞}

 $N(p_1) + \gamma^*(k) \to \pi(q) + N(p_2)$

s

$$\frac{\gamma^{*}}{N}$$

$$\frac{1}{s-M_{N}^{2}} = \frac{1}{E_{\pi} + E_{N} + M_{N}} \underbrace{E_{\pi} + E_{N} - M_{N}}_{K}$$

$$\frac{1}{u-M_{N}^{2}} = -\frac{1}{M_{N} - E_{\pi} + E_{N}} \underbrace{A_{\infty}}_{M} = \frac{\sum_{s} a_{s}(\vec{p}^{2})^{s}}{(2E)(2E_{\pi})(E_{N} + E_{\pi} - M_{N})^{2}}$$

$$K = quasi-singular in denominator$$

$$K = quasi-singular in denominator$$

$$Taylor expansion in numerator$$

Finite-volume effects

$$\Delta(L) = \alpha_E^{ii,N\pi}(L) - \alpha_E^{ii,N\pi} = \frac{1}{3} \frac{\alpha_{em}}{M_N} \left(\frac{1}{L^3} \sum_{\vec{p} = \frac{2\pi}{L} \vec{m}} - \int \frac{d^3 \vec{p}}{(2\pi)^3} \right) \frac{A_{\infty}}{(E_N + E_{\pi} - M_N)^3}$$

$$= N = Proton$$

$$= N = Proton$$

$$= N = Proton$$

$$= Always positive and thus only exponentially suppressed FV effects$$

$$= Always positive and thus only exponentially suppressed FV effects$$

$$= I \text{ is crucial to replace mom. summation by mom. integral}$$

$$\alpha_E^{ii,N\pi} = \frac{1}{3} \frac{\alpha_{em}}{M} \int_{|\vec{p}| < \Lambda} \frac{d^3 \vec{p}}{(2\pi)^3} \frac{A_{\infty}}{(E + E_{\pi} - M)^3}$$
After replacement, residual FV effects are estimated to be < 10^{-5} \text{ fm}^3

L/fm

Numerical results

> Our results of α_E , in units of $10^{-4} fm^3$ X. Wang, Z. Zhang, et. al., arXiv:2310.01168

		24D	32Dfine	PDG
Proton	$lpha_E^{N\pi}$	5.65(53)	6.5(1.2)	
	$lpha_E$	10.0(1.3)	9.3(2.2)	11.2(4)
Neutron	$lpha_E^{N\pi}$	8.33(75)	9.8(1.5)	
	$lpha_E$	9.7(1.4)	10.1(2.4)	11.8(1.1)

- Confirm large contributions of $N\pi$ states
- Develop the methodology for lattice QCD computation of polarizabilities
- More sophisticated study to control systematic effects •

Larger volume to have more momentum modes

Excited-state contamination from initial and final states

Finer lattice spacing for continuum extrapolations

Extended projects – threshold pion EW production

≻ Consider the process $\gamma^*(k) + N(p_1) \rightarrow \pi(q) + N(p_2)$

> Threshold pion production means that in the γ^*N center of mass frame, pion is at threshold $q_{\mu} = (M_{\pi}, 0, 0, 0)$

V. Bernard, N. Kaiser, T.-S. Lee, U.-G. Meissner, Phys. Rept. 246 (1994) 315

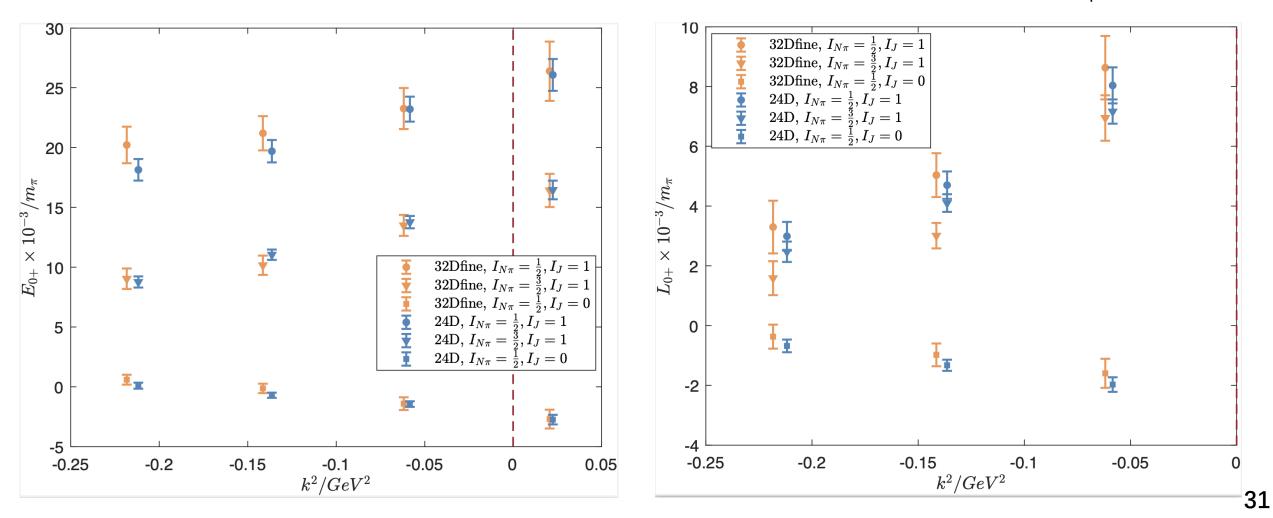
 $\mathcal{V}_{\mu} = \langle N(\vec{0})\pi(\vec{0})|V_{\mu}|N(-\vec{k})\rangle$

$$\vec{\mathcal{V}} = 4\pi i (1+\mu) \chi_f^{\dagger} \left\{ E_{0+}(\mu,\nu) \vec{\sigma} + [L_{0+}(\mu,\nu) - E_{0+}(\mu,\nu)] \hat{k} \vec{\sigma} \cdot \hat{k} \right\} \chi_i$$

- Multipole amplitude describes the transverse and longitudinal coupling of γ^* to the nucleon spin
- Parameters are define as $\mu = \frac{M_{\pi}}{M_N}, \quad \nu = \frac{k^2}{M_N^2}$

Extended projects – threshold pion EW production

- ≻ Consider the process $\gamma^*(k) + N(p_1) \rightarrow \pi(q) + N(p_2)$
- > Threshold pion production means that in the γ^* N center of mass frame, pion is at threshold $q_{\mu} = (M_{\pi}, 0, 0, 0)$

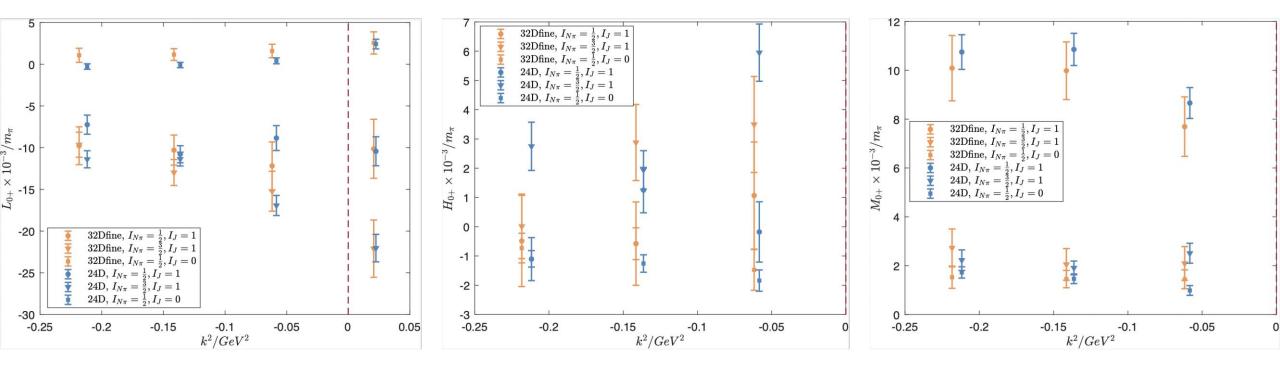


Extended projects – threshold pion EW production

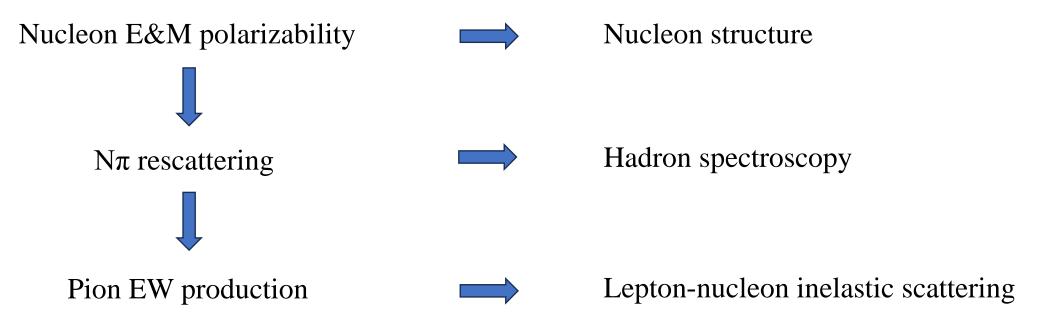
≻ Consider the process $W^*(k)+N(p_1) \rightarrow \pi(q)+N(p_2)$

 $\mathcal{A}_{\mu} = \langle N(\vec{0})\pi(\vec{0})|A_{\mu}|N(-\vec{k})\rangle \qquad \qquad \mathcal{A}\cdot\epsilon = 4\pi i(1+\mu)\chi_{f}^{\dagger}\left\{\epsilon_{0}L_{0+} + \vec{\epsilon}\cdot\hat{k}H_{0+} + i\vec{\sigma}\cdot(\hat{k}\times\vec{\epsilon})M_{0+}\right\}\xi_{i}$

V. Bernard, N. Kaiser, U.-G. Meissner, PLB 331 (1994) 137



Conclusion



An interesting journey to explore nucleon properties!

New frontiers, new methodology and new findings!