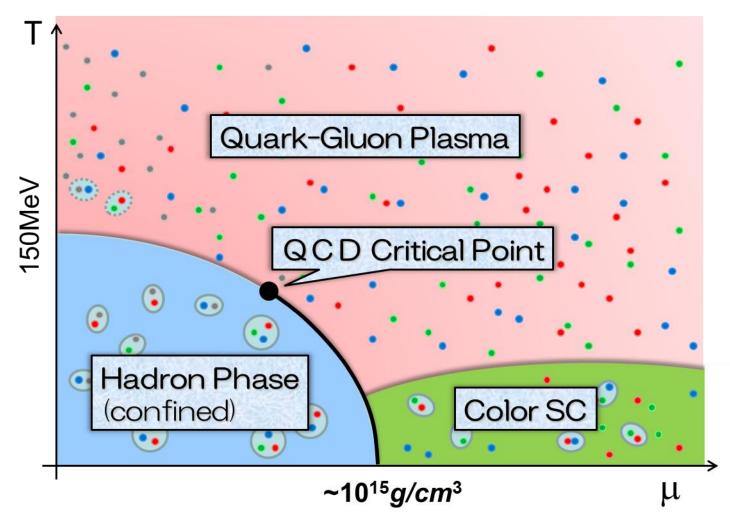
Lee-Yang Zeros in Heavy-Quark QCD

Masakiyo Kitazawa (YITP)


In collab. with Tatsuya Wada, Kazuyuki Kanaya

Finite-Size Scaling of Lee-Yang Zeros (in Heavy-Quark QCD)

Masakiyo Kitazawa (YITP)

In collab. with Tatsuya Wada, Kazuyuki Kanaya

QCD Phase Diagram

Rich phase structure in QCD

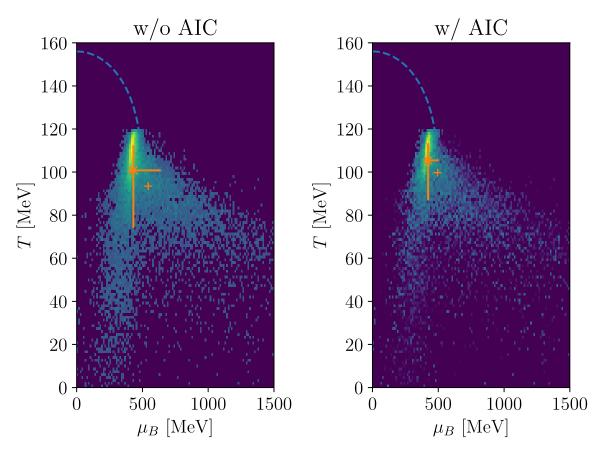
- —QCD critical point(s)
- color superconductivity

Sign problem

— difficulty in lattice QCD Monte-Carlo simulations at $\mu \neq 0$

Various approaches

- Taylor expansion method
- Imaginary chem. pot.
- Complex Langevin
- Lifschetz thimble


— ..

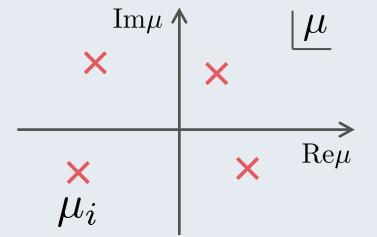
Lee-Yang-Zero Approach to QCD CP

Searching for the QCD critical endpoint using multi-point Padé approximations

arXiv:2405.10196 [hep-lat]

D. A. Clarke, P. Dimopoulos, F. Di Renzo, J. Goswami, C. Schmidt, S. Singh, and K. Zambello D. A. Clarke, P. Dimopoulos, Education of the Renzo, Large Property of the Computation of th

$$\begin{cases} \mu^{\text{CEP}} = 422^{+80}_{-35} \text{MeV} \\ T^{\text{CEP}} = 105^{+8}_{-18} \text{MeV} \end{cases}$$


What are the Lee-Yang zeros? Why they are so useful?

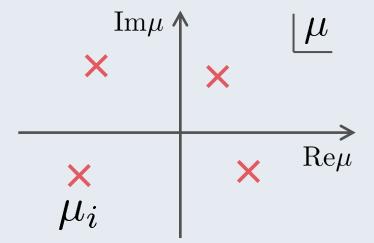
Lee-Yang Zeros

Partition Function $Z(T, \mu)$

Finite $V \longrightarrow Polynomial of \mu (or T)$

$$Z(T,\mu) = \prod_{i} (\mu - \mu_i)$$

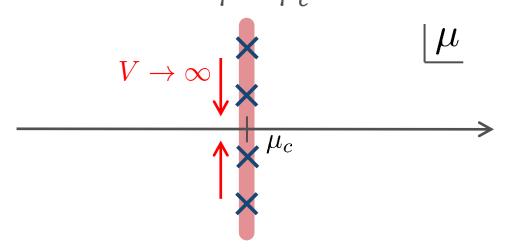
zeros on the complex plane
=Lee-Yang Zeros


Yang, Lee; Lee, Yang ('52)

Lee-Yang Zero

Partition Function $Z(T, \mu)$

Finite $V \longrightarrow Polynomial of \mu$ (or T)


$$Z(T,\mu) = \prod_{i} (\mu - \mu_i)$$

zeros on the complex plane
=Lee-Yang Zeros

Phase Transition & LYZ

First-order transition at $\mu = \mu_c$

— For $V \to \infty$, LYZs are accumulated on the line crossing the real axis at $\mu = \mu_c$.

Why should we care about the complex space

Why should we care about the complex space

Photos from HP of this conference

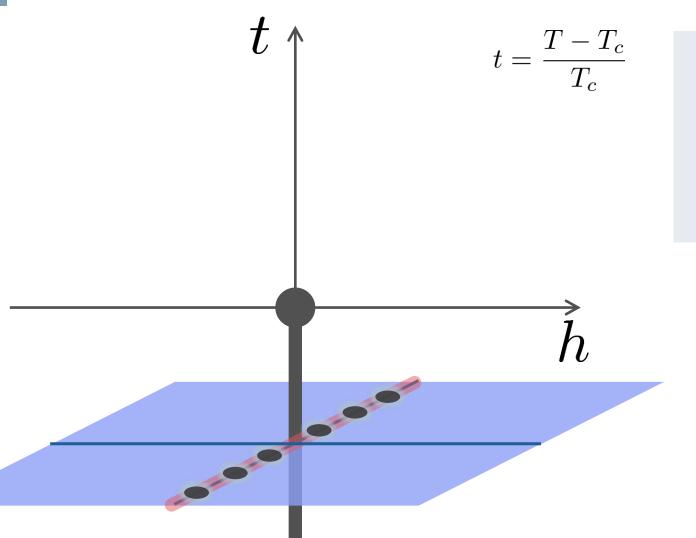
Why should we care about the complex space

$$t = \frac{T - T_c}{T_c}$$

1st-transition

singularity on the real h axis

Crossover


no singularity on the real axis

h

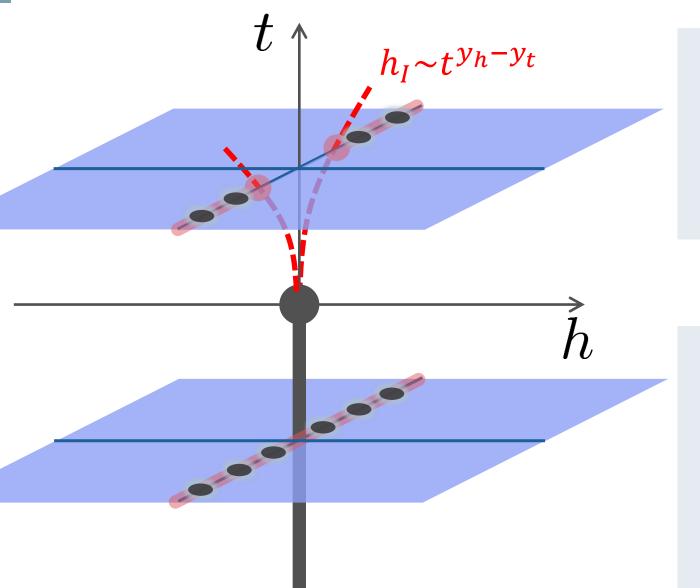
Note:

LYZ in complex-h plane are purely imaginary.

Lee-Yang, 1952

1st-transition

singularity on the real h axis


Crossover

no singularity on the real axis

Note:

LYZ in complex-h plane are purely imaginary.

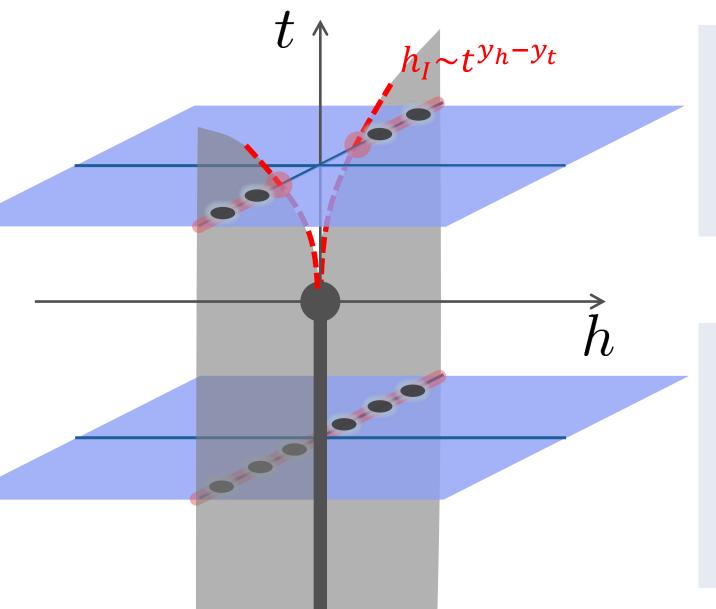
Lee-Yang, 1952

1st-transition

singularity on the real h axis

Crossover

no singularity on the real axis



LY edge singularity

Starting from the CP

Its behavior is governed by the the scaling function.

$$h_I \sim t^{y_h - y_t}$$

1st-transition

singularity on the real h axis

Crossover

no singularity on the real axis

LY edge singularity

Starting from the CP

Its behavior is governed by the the scaling function.

singularity on the real h axis

a Critical Point in Ising Model LYZ ar Ocean **Outer Reef** in between Corals of

1st-transition

singularity on the real h axis

Crossover

no singularity on the real axis

LY edge singularity

Starting from the CP

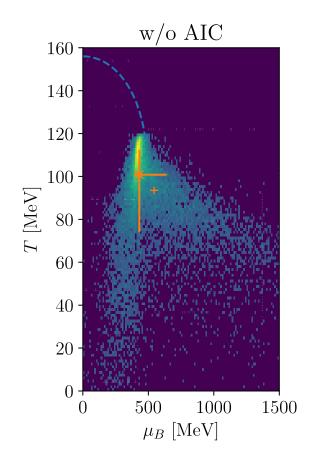
Its behavior is governed by the the scaling function.

singularity on the real h axis

Recent Progress in LYZ/LYES and Lattice

Analytic Structure

— Scaling functions, FRG, ...

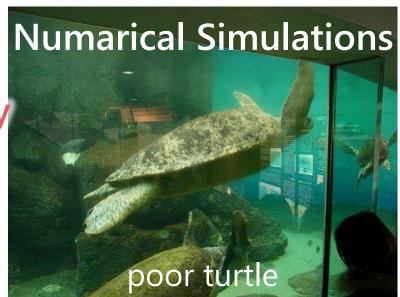

An, Mesterhazy, Stephanov ('16) Johnson, Rennecke, Skokov ('23) Karsch, Schmidt, Singh ('23)

• • •

Locating QCD-CP at $\mu \neq 0$ on the lattice?

Clarke+, arXiv:2405.10196

- Taylor exp. + Imaginary μ + Pade approx.
- Identify the 1st LYZ to be LYES



Our Motivations

Numerical simulations are performed on finite volume.

Discrepancy

Purpose of this study:

- **▶** Study finite-volume effects on the LYZ near CP.
- Propose a new method to explore the CP via LYZ.

Finite-Size Scaling

Scaling Hypothesis

$$F_{\operatorname{sing}}(t, h, L^{-1}) = \tilde{F}_{\operatorname{sing}}(L^{y_t}t, L^{y_h}h)$$

$$Z_{\operatorname{sing}}(t, h, L^{-1}) = \tilde{Z}_{\operatorname{sing}}(L^{y_t}t, L^{y_h}h)$$

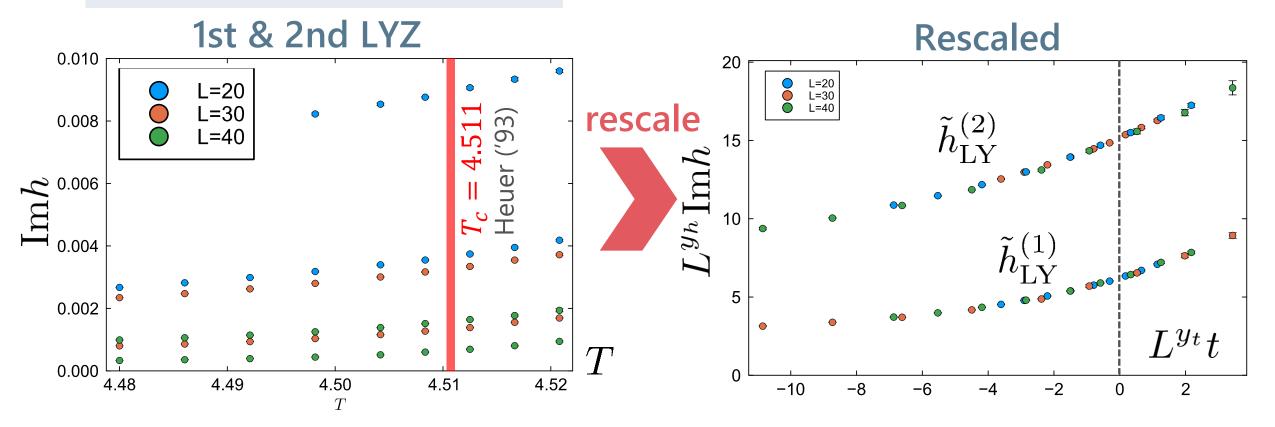
$$F = F_{\rm sing} + F_{\rm reg}$$

$$Z = Z_{\rm sing} \times Z_{\rm reg}$$

LYZ in the scaling region on finite volume

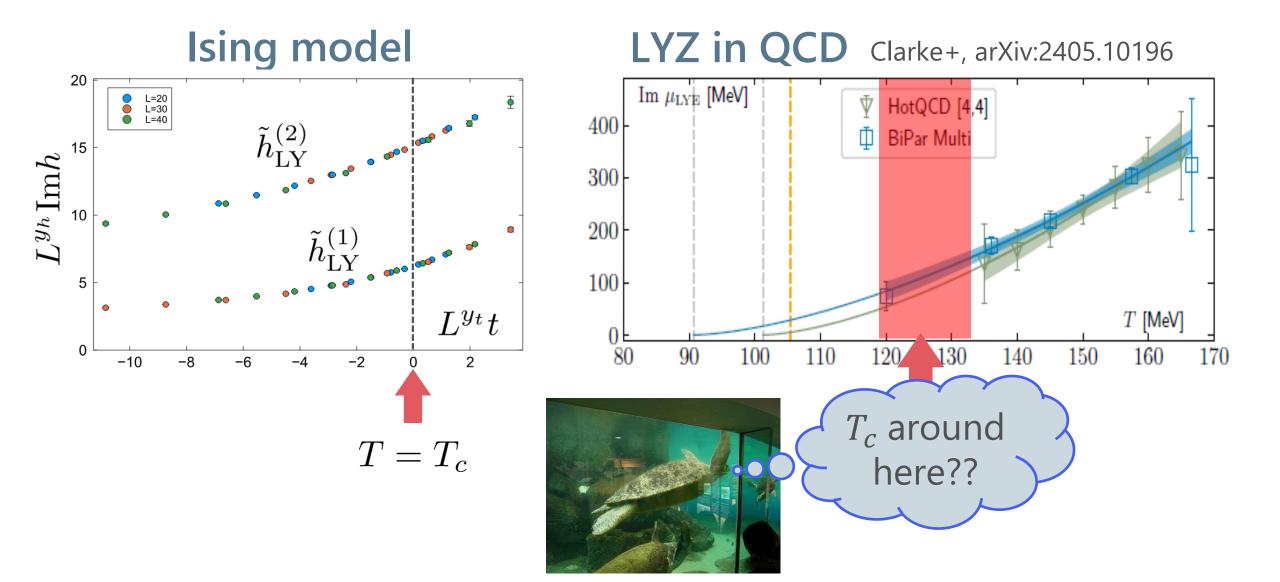
$$Z(t, h, L^{-1})$$

$$\sim \tilde{Z}_{\text{sing}}(L^{y_t}t, L^{y_h}h) = 0$$

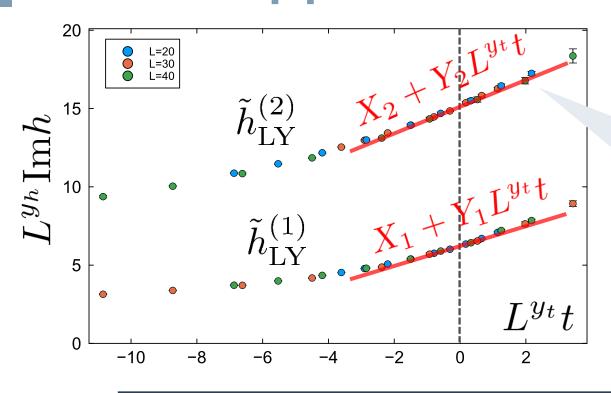

$$L^{y_h} h^{(i)} = \tilde{h}_{LY}^{(i)}(L^{y_t}t)$$

LYZ in 3d-Ising Model

$$H = -\sum_{\langle i,j\rangle} s_i s_j - h \sum_i s_i$$


Monte-Carlo + reweighting

$$L^{y_h} h^{(i)} = \tilde{h}_{\mathrm{LY}}^{(i)}(L^{y_t} t)$$



LYZ is away from the real axis at the CP on finite L.

Where is QCD Critical Point?

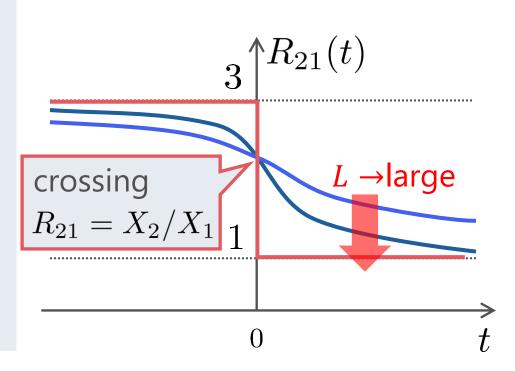
Linear Approximation & LYZ Ratio

Linear Approx. at t = 0

$$L^{y_h} h = \tilde{h}_{LY}^{(i)}(L^{y_t}t)$$
$$= X_i + Y_i L^{y_t}t + \mathcal{O}(t^2)$$

Cooperate!

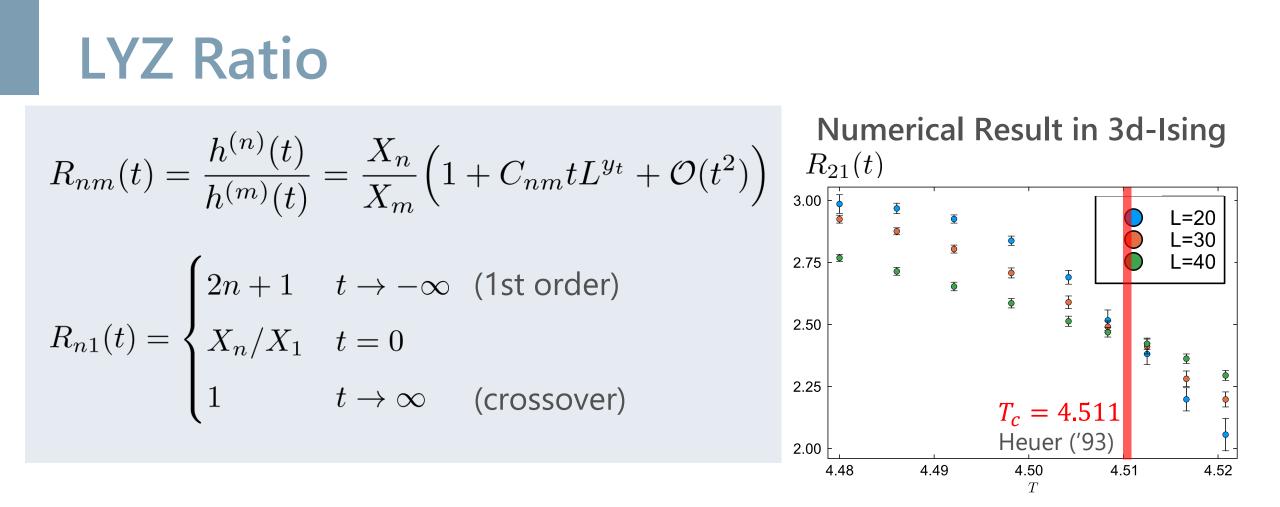
Take Ratio between nth/mth



$$R_{nm}(t) = \frac{h^{(n)}(t)}{h^{(m)}(t)} = \frac{X_n}{X_m} \left(1 + C_{nm} t L^{y_t} + \mathcal{O}(t^2) \right) \qquad C_{nm} = \frac{Y_n}{X_n} - \frac{Y_m}{X_m}$$

LYZ Ratio

$$R_{nm}(t) = \frac{h^{(n)}(t)}{h^{(m)}(t)} = \frac{X_n}{X_m} \left(1 + C_{nm} t L^{y_t} + \mathcal{O}(t^2) \right)$$


$$R_{n1}(t) = egin{cases} 2n+1 & t o -\infty & ext{(1st order)} \ X_n/X_1 & t=0 \ 1 & t o \infty & ext{(crossover)} \end{cases}$$

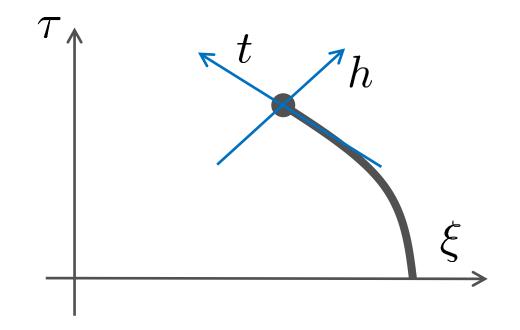
- -R(0) is L independent, the universal value.
- —Crossing point of various L gives the CP.
- —Reminiscent of Binder-cumulant analysis

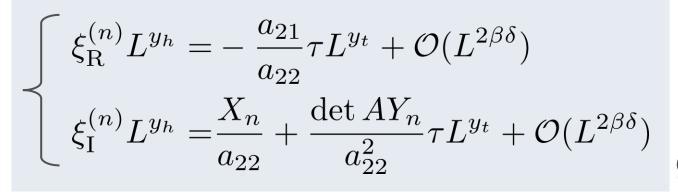
$$R_{nm}(t) = \frac{h^{(n)}(t)}{h^{(m)}(t)} = \frac{X_n}{X_m} \left(1 + C_{nm} t L^{y_t} + \mathcal{O}(t^2) \right)$$

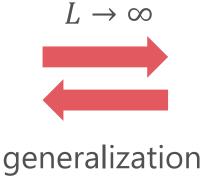
$$R_{n1}(t) = egin{cases} 2n+1 & t o -\infty & ext{(1st order)} \ X_n/X_1 & t=0 \ 1 & t o \infty & ext{(crossover)} \end{cases}$$

- -R(0) is L independent, the universal value.
- —Crossing point of various L gives the CP.
- —Reminiscent of Binder-cumulant analysis

 $R_{21}(0) \simeq 2.40$



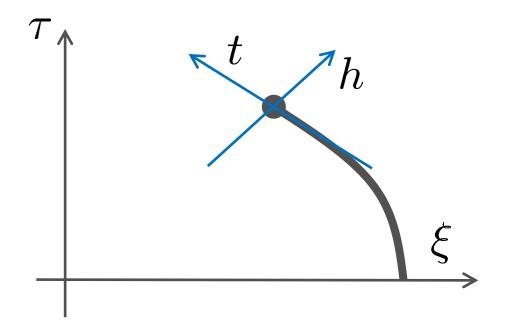

General CP


- \square CP on a $\tau \xi$ plane
- \square Search for LYZ on the complex ξ plane

$$\begin{pmatrix} t \\ h \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \tau - \tau_c \\ \xi - \xi_c \end{pmatrix} = A \begin{pmatrix} \delta \tau \\ \delta \xi \end{pmatrix}$$

$$L^{y_h}h^{(n)} \simeq X_i + Y_iL^{y_t}t$$

LY Edge Singularity $\begin{cases} \operatorname{Re}\xi_{\mathrm{LYES}} \simeq c_1 \tau \\ \operatorname{Im}\xi_{\mathrm{LYES}} \simeq c_2 \tau^{\beta \delta} \end{cases}$ Stephanov, 2006


LYZ Ratio for General CP

LYZ Ratio

$$R_{nm}(t) = \frac{\xi_{\rm I}^{(n)}(\tau)}{\xi_{\rm I}^{(m)}(\tau)} = \frac{X_n}{X_m} \left(1 + C\tau L^{y_t} + \mathcal{O}(t^2) \right) \left(1 + D L^{2(y_t - y_h)} + \mathcal{O}(L^{4(y_t - y_h)}) \right)$$

$$= \frac{\det A}{a_{22}} \left(\frac{Y_2}{X_2} - \frac{Y_1}{X_1} \right), \quad D = \frac{a_{12}^2}{a_{22}^2} (Y_1^2 - Y_2^2)$$

$$\begin{pmatrix} t \\ h \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \tau - \tau_c \\ \xi - \xi_c \end{pmatrix} = A \begin{pmatrix} \delta \tau \\ \delta \xi \end{pmatrix}$$

Jin+, PR**D86**, 2017

LYZ Ratio for General CP

LYZ Ratio

$$R_{nm}(t) = \frac{\xi_{\rm I}^{(n)}(\tau)}{\xi_{\rm I}^{(m)}(\tau)} = \frac{X_n}{X_m} \left(1 + C\tau L^{y_t} + \mathcal{O}(t^2) \right) \left(1 + D \frac{L^{2(y_t - y_h)}}{+ \mathcal{O}(L^{4(y_t - y_h)})} \right)$$

$$C = \frac{\det A}{a_{22}} \left(\frac{Y_2}{X_2} - \frac{Y_1}{X_1} \right), \quad D = \frac{a_{12}^2}{a_{22}^2} (Y_1^2 - Y_2^2)$$

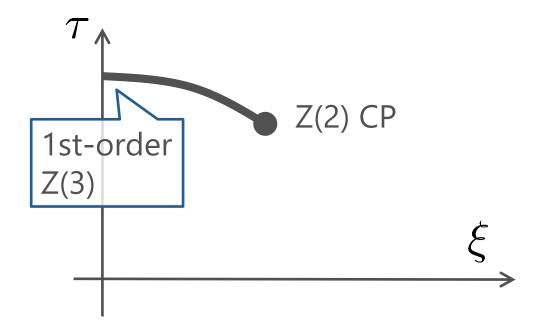
Binder cumulant

$$B_4(t) = b_4 \Big(1 + c\tau L^{y_t} + \mathcal{O}(t^2) \Big) \Big(1 + d \frac{L^{y_t - y_h}}{1 + d L^{y_t - y_h}} + \mathcal{O}(L^{2(y_t - y_h)}) \Big)$$
nonzero for $a_{12} \neq 0$

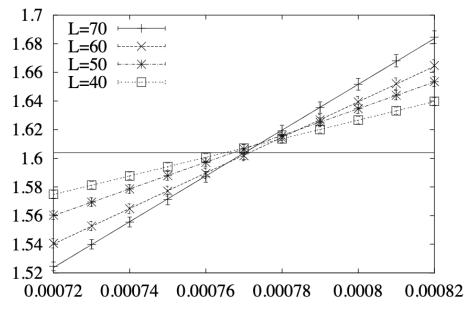
Deviation at t = 0 due to $a_{12} \neq 0$ converges faster in LYZ ratio.

I am superior to Binder cumulant! If you can find us.

Numerical Analysis

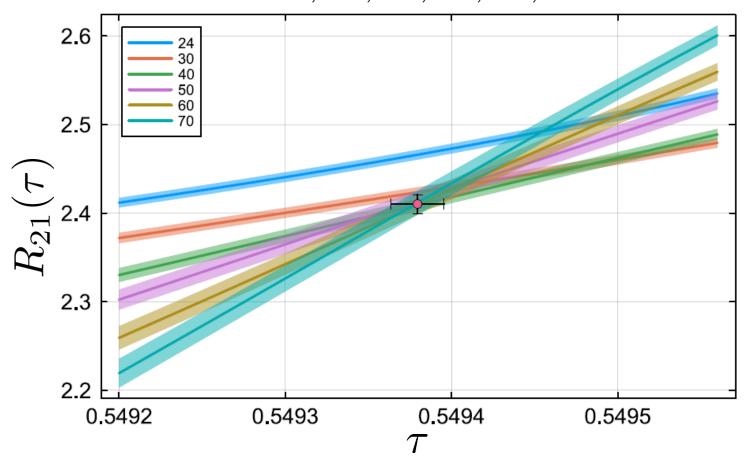

- 1.3d Potts model
- 2. Heavy-quark QCD

3d 3-State Potts Model


$$H = -\tau \sum_{\langle i,j \rangle} \delta_{\sigma_i,\sigma_j} - \xi \sum_{i} \delta_{\sigma_i,1} \quad \sigma_i = 1, 2, 3$$

Monte-Carlo + reweighting

Phase Diagram


Binder-Cumulant Analysis

Karsch, Stickan, 2000

3d 3-State Potts Model: LYZ Ratio

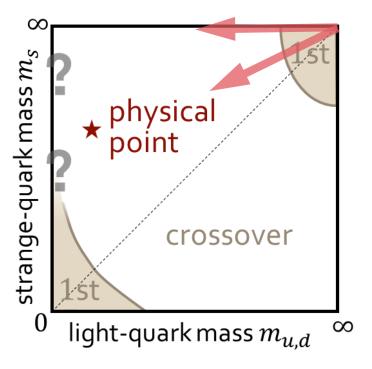
$$L = 24, 30, 40, 50, 60, 70$$

Fit Results (to $L \ge 40$):

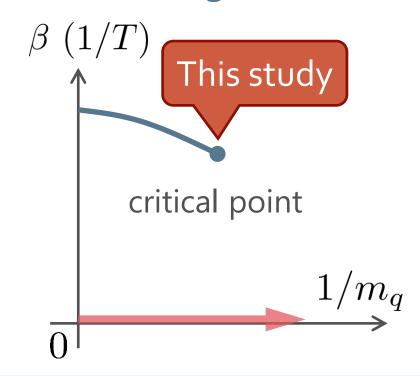
$$R_{21}(0) = 2.410(11)$$

 $y_t = 1.56(14)$
 $\tau_c = 0.549379(16)$

Consistent with


$$R_{21}(0) = 2.40$$
 3d Ising

$$y_t = 1.588$$


$$au_c = 0.549380(20) \; {\rm Karsch+, \, '00}$$

CP in Heavy-Quark QCD

Columbia Plot

Phase Diagram

CP in heavy-quark QCD

- $-\mu_q = 0$ & large m_q
- Easy to handle in lattice simulations!

We study the LYZ around the HQ-QCD-CP.

Hopping-Parameter Expansion (HPE)

 $\sim 1/m_q$ expansion

Kiyohara, MK, Ejiri, Kanaya, PRD('21) Ashikawa, MK, Ejiri, Kanaya, arXiv:2407.09156

Wilson Fermion

$$S_q = \sum_{x,y} ar{\psi}_x M_{xy} \psi_y$$
 $\kappa \sim rac{1}{2m_q a}$: hopping parameter $M_{xy} = \delta_{xy} - \kappa B_{xy}$ $B_{xy} = \sum_{\mu=1}^4 \left[(1-\gamma_\mu) U_{x,\mu} \delta_{y,x+\hat{\mu}} + (1+\gamma_\mu) U_{y,\mu}^\dagger \delta_{y,x-\hat{\mu}}
ight]$ nonzero only for neighboring (x,y)

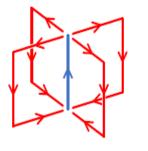
Hopping-Parameer Expansion

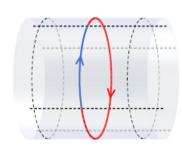
$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U_{\mu} \mathcal{O}e^{-S_g + \operatorname{tr} \ln M(\kappa)}$$

$$\operatorname{tr} \ln M(\kappa) = -\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tr}[B^n] \kappa^n$$

nth order terms in the HPE: closed trajectories of length n.

Higher-Order Terms in HPE


Monte Carlo Simulation @ LO


heat bath & over relaxation with modified staple

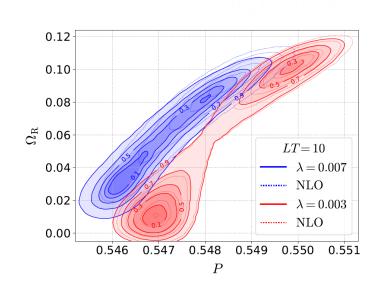
Numerical cost is almost the same as the pure YM!

Kiyohara, MK, Ejiri, Kanaya, PRD('21) Ashikawa, MK, Ejiri, Kanaya, arXiv:2407.09156

$$S_{\rm LO} = -6N_{\rm site}\beta^*\hat{P} - \lambda N_s^3\hat{\Omega}_{\rm R}$$

 \hat{P} : plaquette

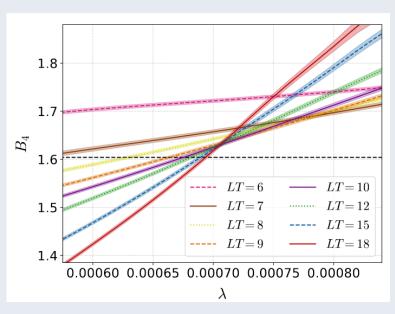
 $\widehat{\Omega}$: Polyakov loop

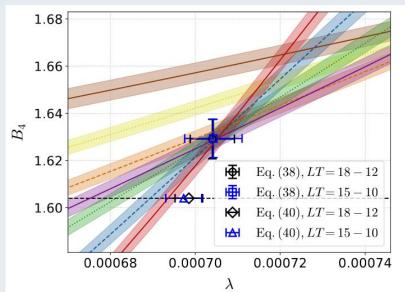

$$\lambda = 2^{N_t + 2} N_c \kappa^{N_t}$$

NLO by Reweighting

$$\langle \mathcal{O} \rangle_{\text{NLO}} = \frac{\langle \hat{O}e^{-S_{\text{NLO}}} \rangle_{\text{LO}}}{\langle e^{-S_{\text{NLO}}} \rangle_{\text{LO}}}$$

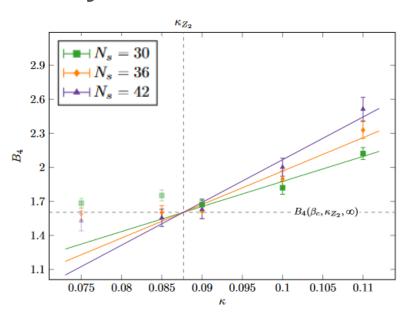
Overlapping problem is well suppressed due to the LO confs.


Realize high statistical analysis



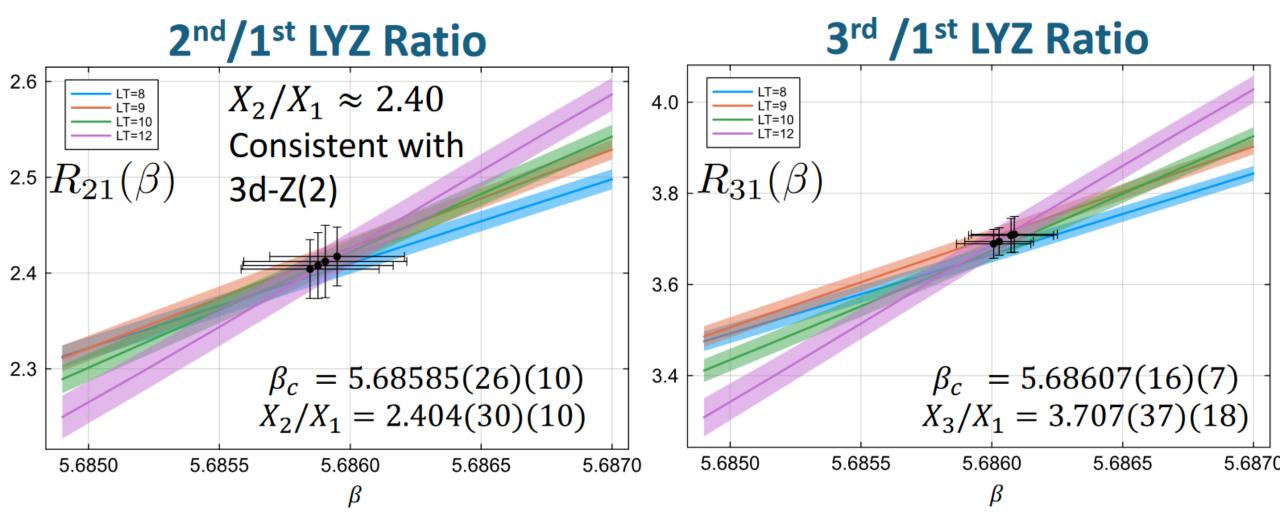
Binder Cumulant Analysis

 $N_t = 4$: Kiyohara, MK, Ejiri, Kanaya, PRD, 2021


 $N_t = 6$: Ashikawa, MK, Ejiri, Kanaya, arXiv:2407.09156

$$LT = N_x/N_t$$
$$\lambda = 2^{N_t+2} N_c \kappa^{N_t}$$

w/ Dynamical Fermions

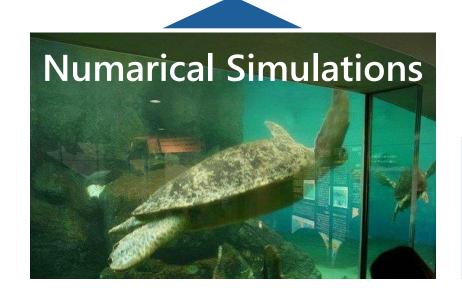

Cuteri, Philipsen, Schön, Sciarra, '21

One order smaller statistical errors on more than twice larger LT!

Precise determination of the location of the CP

LYZ Ratio

 $N_t = 4$, HPE-NLO


Consistent with the Binder-cumulant analysis $\beta_c = 5.68578(22)$.

Summary

LYZ give us invaluable information of phase transitions.

 Finite-size effects are non-negligible in typical numerical simulations.

Outlook: Can lattice QCD find the 2nd LYZ??

backup

QCD-CP and LYZ

arXiv:2405.10196v1 [hep-lat] 16 May 2024

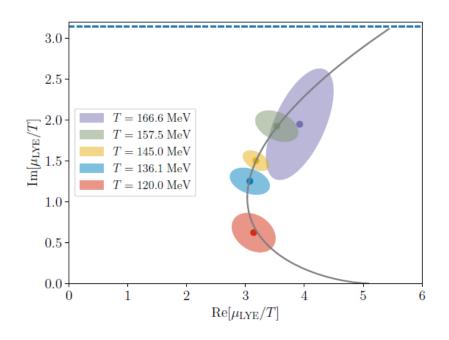
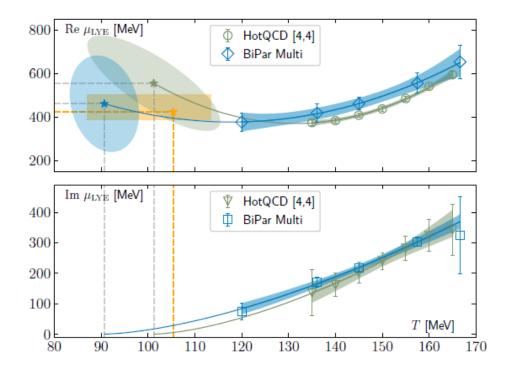
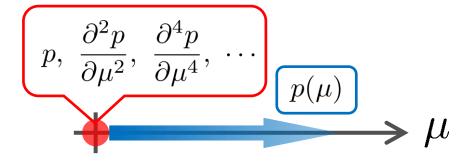
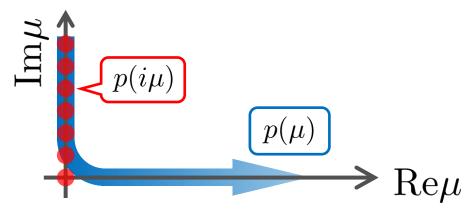


FIG. 3. Singularities at T = 166.6, 157.5, 145.0, 136.1 and 120.0 MeV. The dashed line lies at $\hat{\mu}_B = i\pi$.


FIG. 4. Scaling fits for the LYE singularities related to the CEP. Green data come from a [4,4] Padé from Ref. [7]. Blue data come from the multi-point Padé. *Top*: Scaling of the real part. *Bottom*: Scaling of the imaginary part. The ellipses shown in the top panel represent the 68% confidence region deduced from the covariance matrix of the fit. The orange box indicates the AIC weighted estimate (6).

Using LYZ for the QCD-CP Search

Taylor expansion

Imaginary chem. pot.

Use of Pade approximation