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f-divergences

f() convex <:> D¢(p1(x),p2(x)) =0

and 1s minimized when

& f(l) =0 p1(x) = p2(x) for all x
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Candidates of f~-functions

Convex Functions
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Equi-Divergence contour
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Our Research with f-divergences

« Construction of nonparametric estimators
(using nearest neighbors)
— [Ryu et al. (2022) IEEE TIT]

« Addressing finite sampling bias of estimation

— [Noh et al. (2010) NeurIPS, Noh et al. (2017) NeurlPS, Noh
et al. (2018) IEEE TPAMI, Noh et al. (2018) Neural
Computation, Yoon et al. (2023) NeurlPS]

« Application to eliminating harmful variables — ongoing work
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Nearest Neighbor Density Functional Estimation
From Inverse Laplace Transform

J. Jon Ryu
Yung-Kyun Noh

Abstract— A new approach to La-consistent estimation of a
general density functional using k-nearest neighbor distances is
proposed, where the functional under consideration is in the form
of the expectation of some function f of the densities at each
point. The estimator is designed to be asymptotically unbiased,
using the convergence of the normalized volume of a k-nearest
neighbor ball to a Gamma distribution in the large-sample limit,
and naturally involves the inverse Laplace transform of a scaled
version of the function f. Some instantiations of the proposed
estimator recover existing k-nearest neighbor based estimators of
Shannon and Rényi entropies and Kullback-Leibler and Rényi
divergences, and discover new consistent estimators for many
other functionals such as logarithmic entropies and divergences.
The Lz-consistency of the proposed estimator is established
for a broad class of densities for general functionals, and the
convergence rate in mean squared error is established as a

F function of the sample size for smooth, bounded densities.

, Student Member, IEEE, Shouvik Ganguly
, Member, IEEE, and Daniel D. Lee, Fellow, IEEE

, Member, IEEE, Young-Han Kim™, Fellow, IEEE,

where f: R, — R is a given function and p is a probability
density over R?. Table I lists examples of f and the corre-
sponding functional Ts. The goal is to estimate T¢(p) based
on independent and identically distributed (i.i.d. ) samples
Xim = (X4,...,X,,) from p by forming an estimator
fﬂ?”'(Xl:m) that converges to Ts(p) in L2 as the sample size
m grows to infinity, that is,

Tf(p)]z] = 0.

More generally, let f: R, x Ry — R and consider a

divergence functional
~ [ 10, a(x)p

lim E[(T7(X1:m) —

M — 00

T (p,q) = Ex~p[f(p(X (x) dx

udy
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Density Function for Nearest Neighbor Distances

Volume of sphere
ulk) = N'yde, v =

m

(2 +1)

Gamma (Erlang) function of order k&

N — 00,

)\k
p(u(k)p\) = — - Xp (—)\fu,(k)) (u(k))k—l

(k)
(A = p(x))

Karl W. Pettis et al. (1979) TPAMI
Hertz, P. (1909) Mathematische Annalen
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Construction of the Estimator

Dy (p1 (%), pa(x)) = / (%) f (”(X)) Ix

p1(x)

Dy (p1(x), pa(x)) = Z o(u™ (%), ug™ (x,))
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Example — How to Build an Estimator

o Kullback-Lelbler Estimator

Dy (p1(x), p2(x)) = — / p1(x) log (p2 (%) ) dx

B, om0 (@] =

o0 oo k
p k=1 ph k)F—1 k) (k k) 5 (k
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Laplace transform: L.[f(t)] = / - f(t) exp(—st)dt
0
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Laplace Transtorm

Uy = ngl)a U2 = UékZ)
I'(k)I'(K
[ b0 sy 1) = L) (2
P71 Po P1

« Perform the inverse Laplace transform of
B 0 (22) with respect to py and py, then

p'f1p§2 pll _
multiply mr ot (O obtain ¢(uy, us).
Uy 2

« Use the Laplace Transforms

Lt logt] =T (n+ 1)s D (p(n+1) —logs), n>—1
L [t"] =T (n+1)s (T n > —1
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d(u1,u2) =loguy —logus — Y (k1) + (k)

P
Eu1,u2 ¢(u17 UQ) — log =2
P1

 Convergence?

— It Is practically working to check whether
the variance (expectation of the square)
diverge or not.

Var [¢(U1;U2)2] —
Eul,uz [¢(u17 UZ)Z] _ Eul,uz [¢(u17u2)]2 < o0
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Dy (p1(x), p2(x)) Estimator ¢(u1,uz) f(t)

| (1-a) a 1 T(kp )T (k) w\®  DRTk)  w| 75—
o — 1 (/pl pydx — 1) a—1 (F(a+k1)F(k2—a) <u_2> F(k1+1)F(k2—1)u_2> o — 1

(a #1)
_/p1 log (%) dx log ugkl) — log ugkz) — Y (k1) + Y (k2) _logt
Y (.): digamma
! _/ /D12 dx ! oy
e b= L(15)0(2.5)\ o) 1 -Vt
B p1p2 Laplace transform 1
- o TN

Inverse Laplace transform
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Extension to Engaging Problems

* We use information-theory to construct complex, non-trivial
problems.

* For example, by using estimators of the Kullback-Leibler (KL)
divergence, we can formulate information-theoretic objective
functions, such as conditional mutual information:

I(r;mly) = I(r,y;m) — I(y:m)
= K L(p(r,m,y)||p(r,y)p(m)) — KL(p(m,y)||p(m)p(y))

550 . . .
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Application - We know m should not be a relevant feature

Y: target to predict

X: feature variables used to predict Y

m: Contains information about Y, but a variable that
should “not” be used. (harmful variable)

Z: feature variables containing its own information
about Y, but corrupted by m

We do not want to include m into the set of relevant features

for various reasons:

moral reasons

prohibited by law

Real data will not have the effect from m.

We want to eliminate the effect of one variable (e.g. medicine)
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Reconstruction of W-jet Decorrelation Experiment
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Kasieczka, G., Shih, D. (2020) Robust Jet Classifiers through
Distance Correlation, Phys. Rev. Lett. Vol. 125, Iss. 12 — 18

Experimented by Do-Hyun Song
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sSummary

 f-divergence iIs a fundamental information-theoretic measure
that can be used for making many interesting machine
learning problems.

« Since f-divergence is defined with underlying densities, we
need estimators.

* The flow of harmful information can be blocked using these
estimators to construct reliable machine learning models.
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