Nonparametric *f*-Divergence Estimation and its <u>Application to Eliminating Harmful Variables</u>

XVIth Quark Confinement and the Hadron Spectrum Conference Cairns Convention Centre, Cairns, Queensland, Australia 2024. 8. 22 (Thu.)

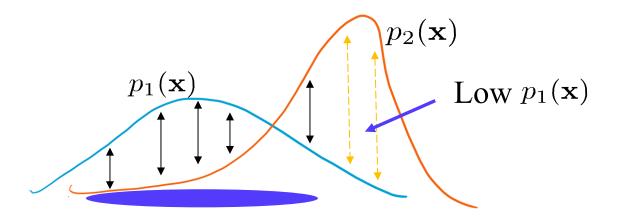
Yung-Kyun Noh

Hanyang University & Korea Institute for Advanced Study

Joint work with Dr. Cheongjae Jang

$$D_f(p_1(\mathbf{x}), p_2(\mathbf{x})) = \int p_1(\mathbf{x}) f\left(\frac{p_2(\mathbf{x})}{p_1(\mathbf{x})}\right) d\mathbf{x}$$

$$D_f(p_1(\mathbf{x}), p_2(\mathbf{x})) = \int p_1(\mathbf{x}) f\left(\frac{p_2(\mathbf{x})}{p_1(\mathbf{x})}\right) d\mathbf{x}$$

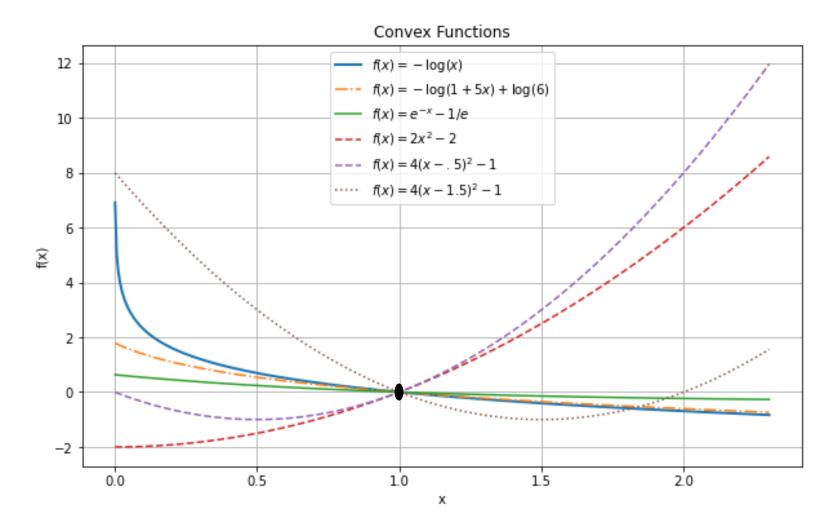


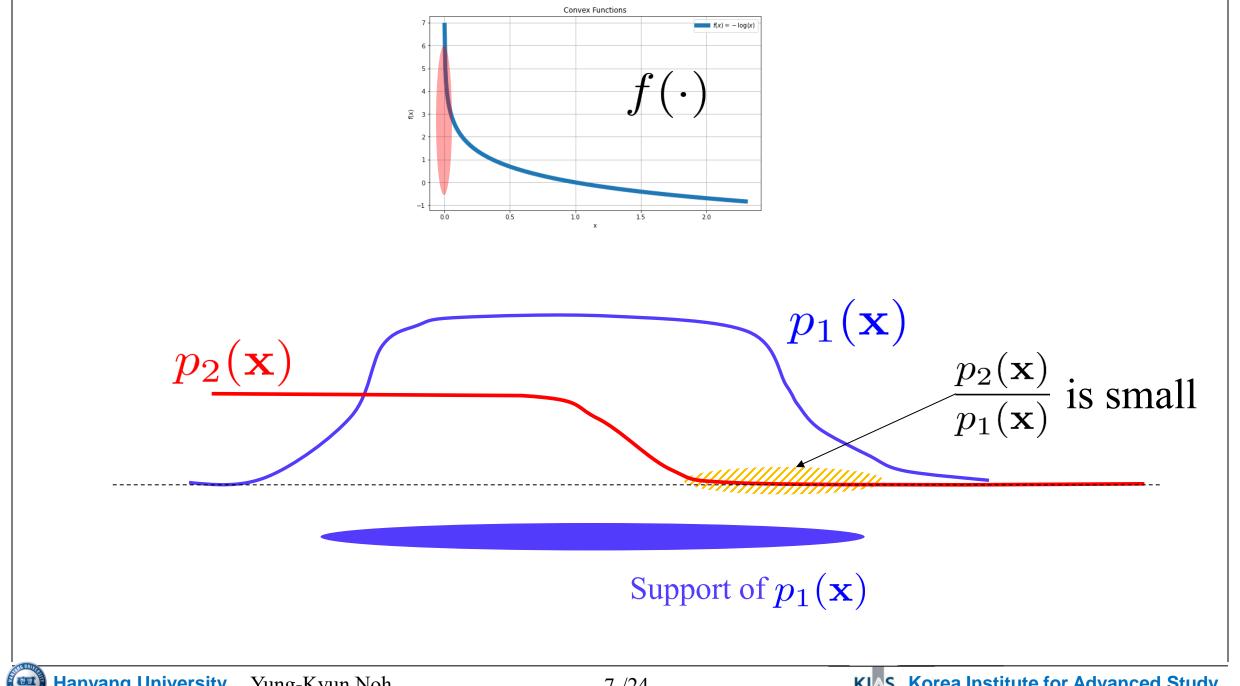
$$D_f(p_1(\mathbf{x}), p_2(\mathbf{x})) = \int p_1(\mathbf{x}) f\left(\frac{p_2(\mathbf{x})}{p_1(\mathbf{x})}\right) d\mathbf{x}$$

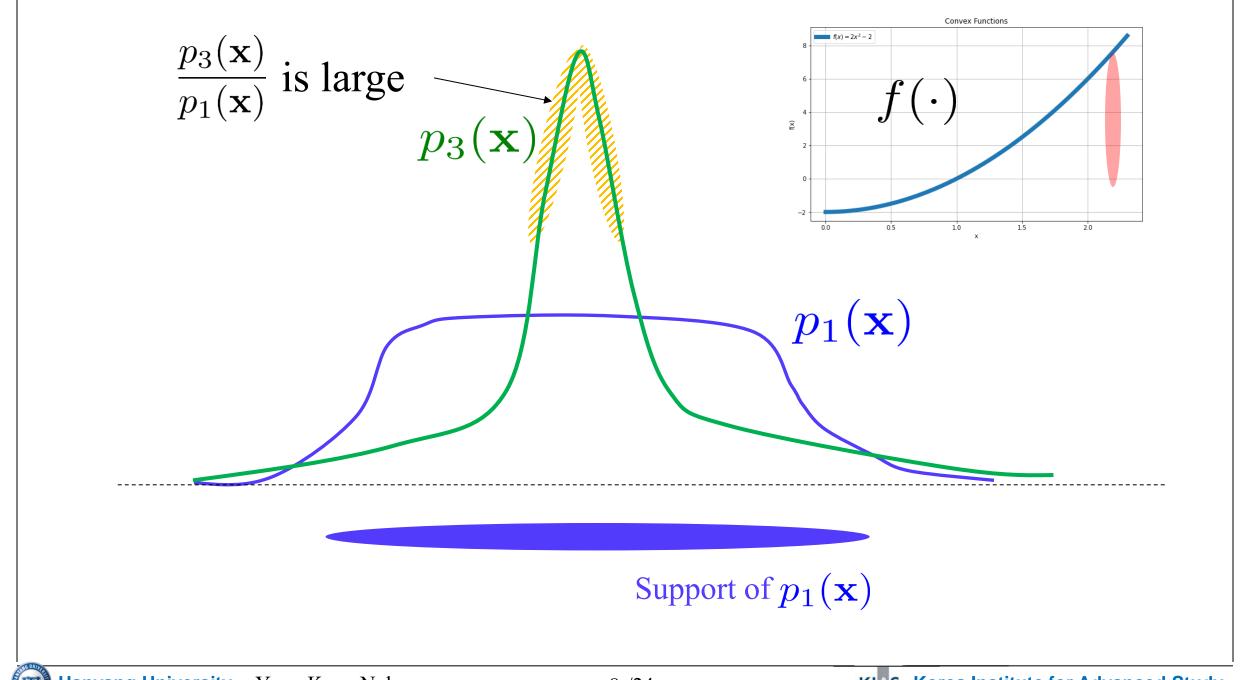
$$f(.)$$
: convex
$$D_f(p_1(\mathbf{x}), p_2(\mathbf{x})) = 0$$
 and is minimized when
$$\mathcal{E}_f(1) = 0$$

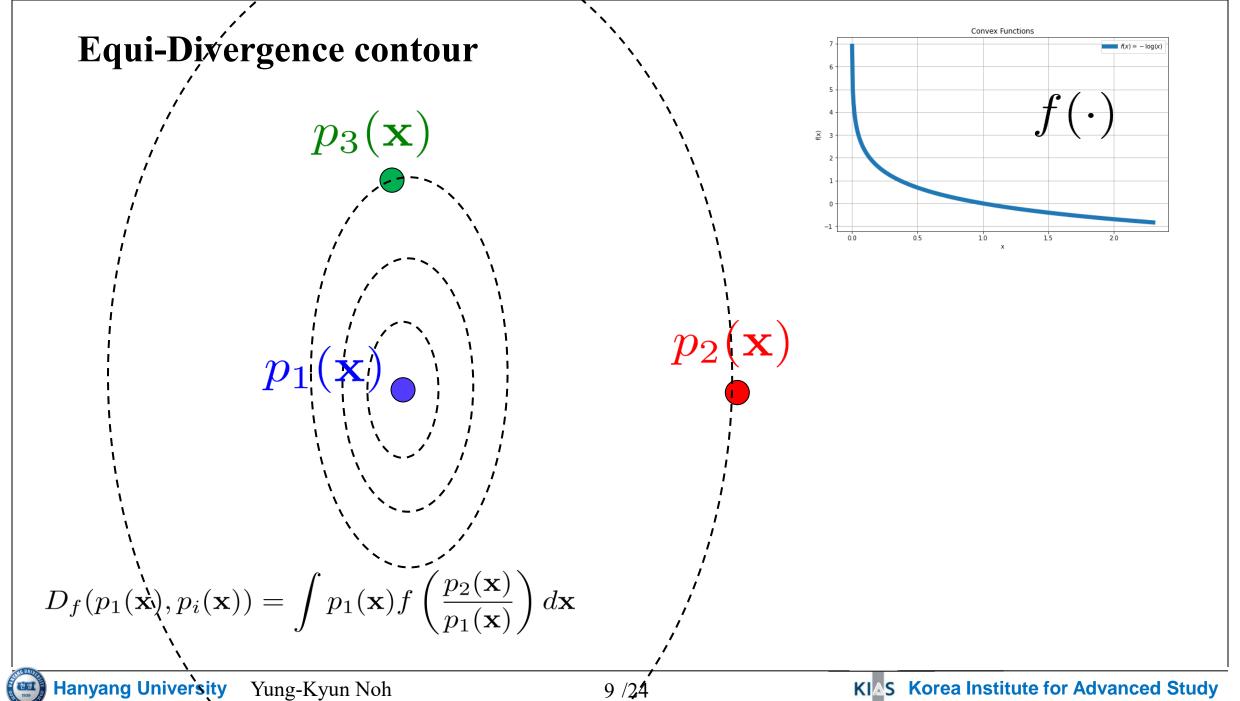
$$p_1(\mathbf{x}) = p_2(\mathbf{x}) \text{ for all } \mathbf{x}$$

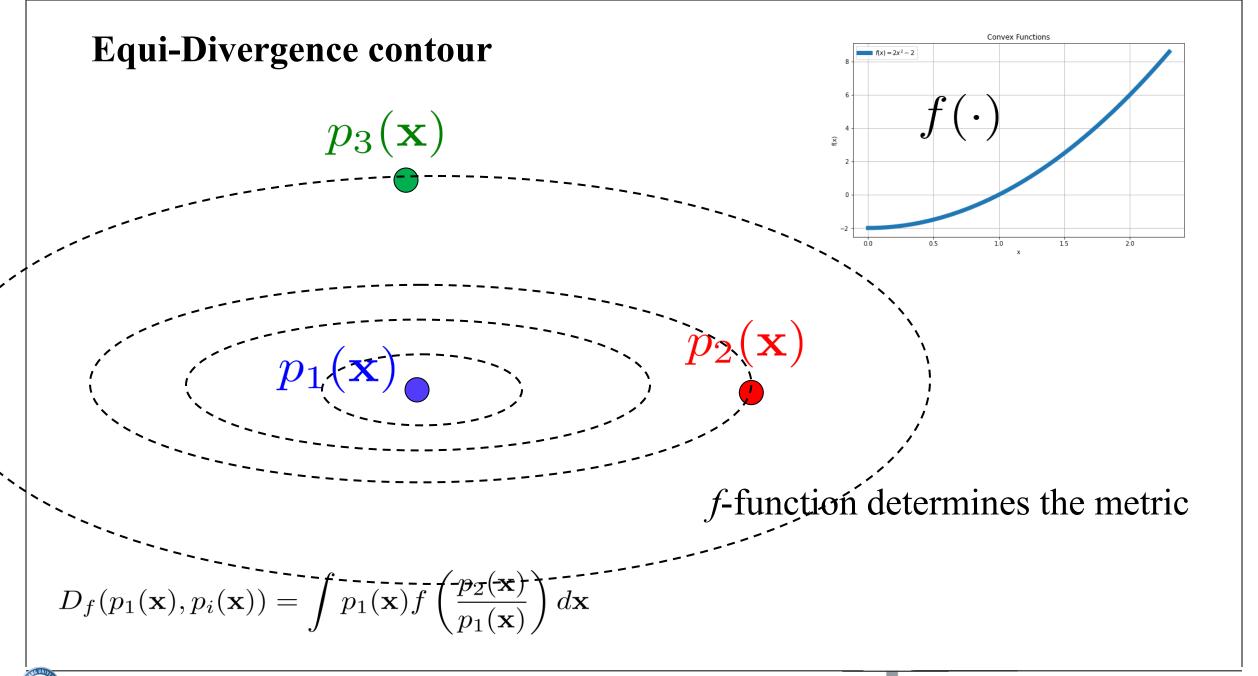
Candidates of f-functions











Our Research with *f*-divergences

- Construction of nonparametric estimators (using nearest neighbors)
 - [Ryu et al. (2022) *IEEE TIT*]
- Addressing finite sampling bias of estimation
 - [Noh et al. (2010) NeurIPS, Noh et al. (2017) NeurIPS, Noh et al. (2018) IEEE TPAMI, Noh et al. (2018) Neural Computation, Yoon et al. (2023) NeurIPS]
- Application to eliminating harmful variables ongoing work

Nearest Neighbor Density Functional Estimation From Inverse Laplace Transform

J. Jon Ryu[®], Student Member, IEEE, Shouvik Ganguly[®], Member, IEEE, Young-Han Kim[®], Fellow, IEEE, Yung-Kyun Noh[®], *Member, IEEE*, and Daniel D. Lee, *Fellow, IEEE*

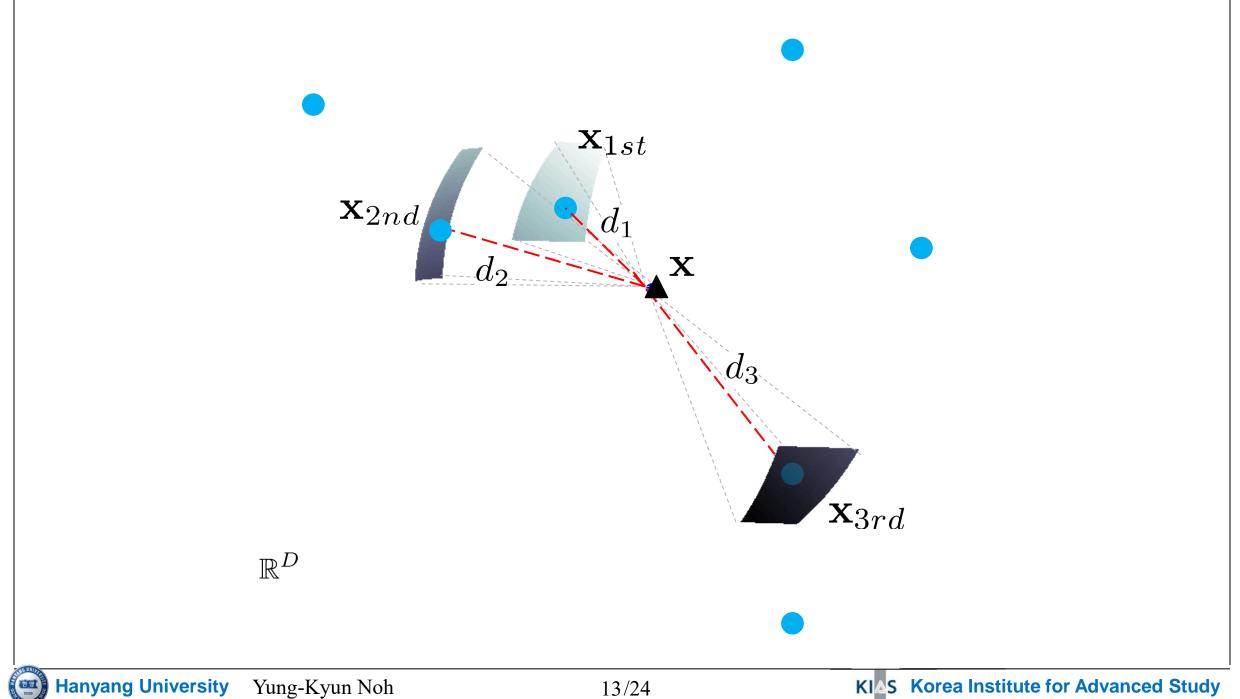
Abstract—A new approach to L_2 -consistent estimation of a general density functional using k-nearest neighbor distances is proposed, where the functional under consideration is in the form of the expectation of some function f of the densities at each point. The estimator is designed to be asymptotically unbiased, using the convergence of the normalized volume of a k-nearest neighbor ball to a Gamma distribution in the large-sample limit, and naturally involves the inverse Laplace transform of a scaled version of the function f. Some instantiations of the proposed estimator recover existing k-nearest neighbor based estimators of Shannon and Rényi entropies and Kullback-Leibler and Rényi divergences, and discover new consistent estimators for many other functionals such as logarithmic entropies and divergences. The L_2 -consistency of the proposed estimator is established for a broad class of densities for general functionals, and the convergence rate in mean squared error is established as a function of the sample size for smooth, bounded densities.

where $f: \mathbb{R}_+ \to \mathbb{R}$ is a given function and p is a probability density over \mathbb{R}^d . Table I lists examples of f and the corresponding functional T_f . The goal is to estimate $T_f(p)$ based on independent and identically distributed (i.i.d.) samples $\mathbf{X}_{1:m} = (\mathbf{X}_1, \dots, \mathbf{X}_m)$ from p by forming an estimator $\hat{T}_f^m(\mathbf{X}_{1:m})$ that converges to $T_f(p)$ in L_2 as the sample size m grows to infinity, that is,

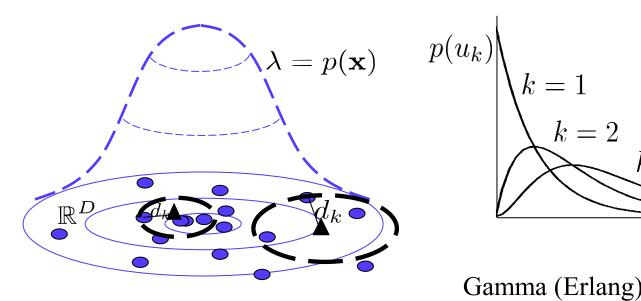
$$\lim_{m \to \infty} \mathbb{E}\left[\left(\hat{T}_f^m(\mathbf{X}_{1:m}) - T_f(p)\right)^2\right] = 0.$$

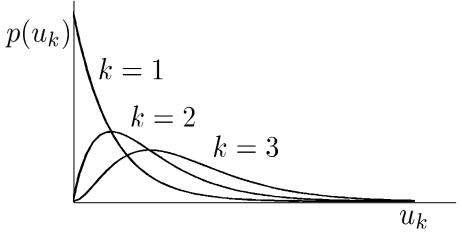
More generally, let $f: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ and consider a divergence functional

$$T_f(p,q) := \mathbb{E}_{\mathbf{X} \sim p}[f(p(\mathbf{X}), q(\mathbf{X}))] = \int f(p(\mathbf{x}), q(\mathbf{x}))p(\mathbf{x}) d\mathbf{x} \frac{1}{\mathsf{udv}}$$



Density Function for Nearest Neighbor Distances





Gamma (Erlang) function of order *k*

$$N \to \infty$$
,

$$p(u^{(k)}|\lambda) = \frac{\lambda^k}{\Gamma(k)} \exp\left(-\lambda u^{(k)}\right) (u^{(k)})^{k-1}$$

$$(\lambda = p(\mathbf{x}))$$

Volume of sphere $u^{(k)}=N\gamma d_k^D, \ \ \gamma=rac{\pi^{\frac{D}{2}}}{\Gamma(\frac{D}{2}+1)}$

Karl W. Pettis et al. (1979) TPAMI Hertz, P. (1909) Mathematische Annalen

Construction of the Estimator

$$D_f(p_1(\mathbf{x}), p_2(\mathbf{x})) = \int p_1(\mathbf{x}) f\left(\frac{p_2(\mathbf{x})}{p_1(\mathbf{x})}\right) d\mathbf{x}$$

$$\widehat{D_f}(p_1(\mathbf{x}), p_2(\mathbf{x})) = \frac{1}{N} \sum_{\mathbf{x}_i \sim p_1(\mathbf{x})} \phi(u_1^{(k_1)}(\mathbf{x}_i), u_2^{(k_2)}(\mathbf{x}_i))$$
classes

Let
$$\mathbb{E}_{u_1^{(k_1)}, u_2^{(k_2)}} \left[\phi(\mathbf{x}) \right] = f\left(\frac{p_2(\mathbf{x})}{p_1(\mathbf{x})} \right)$$

Example – How to Build an Estimator

Kullback-Leibler Estimator

$$D_{\mathrm{KL}}(p_{1}(\mathbf{x}), p_{2}(\mathbf{x})) = -\int p_{1}(\mathbf{x}) \log \left(\frac{p_{2}(\mathbf{x})}{p_{1}(\mathbf{x})}\right) d\mathbf{x}$$

$$\mathbb{E}_{u_{1}^{(k)}, u_{2}^{(k)}} \left[\phi\right] = \int_{0}^{\infty} \int_{0}^{\infty} \frac{p_{1}^{k}}{\Gamma(k)} \exp(-p_{1}u_{1}^{(k)}) u_{1}^{(k)^{k-1}} \frac{p_{2}^{k}}{\Gamma(k)} \exp(-p_{2}u_{2}^{(k)}) u_{2}^{(k)^{k-1}} \underline{\phi(u_{1}^{(k)}, u_{2}^{(k)})} du_{1}^{(k)} du_{2}^{(k)}$$

$$= \frac{p_{1}^{k} p_{2}^{k}}{\Gamma(k)^{2}} \mathcal{L}_{p_{1}} \left[\mathcal{L}_{p_{2}} \left[\phi(u_{1}^{(k)}, u_{2}^{(k)}) u_{1}^{(k)^{k-1}} u_{2}^{(k)^{k-1}} u_{2}^{(k)^{k-1}}\right]\right] = -\log \left(\frac{p_{2}}{p_{1}}\right)$$

Laplace transform:
$$\mathcal{L}_s[f(t)] = \int_0^\infty f(t) \exp(-st) dt$$

Laplace Transform

$$u_1 = u_1^{(k_1)}, u_2 = u_2^{(k_2)}$$

$$\mathcal{L}_{p_1} \left[\mathcal{L}_{p_2} \left[\phi(u_1, u_2) u_1^{k_1 - 1} u_2^{k_2 - 1} \right] \right] = -\frac{\Gamma(k_1) \Gamma(k_2)}{p_1^{k_1} p_2^{k_2}} \log \left(\frac{p_2}{p_1} \right)$$

Perform the <u>inverse Laplace transform</u> of

$$-rac{\Gamma(k_1)\Gamma(k_2)}{p_1^{k_1}p_2^{k_2}}\log\left(rac{p_2}{p_1}
ight)$$
 with respect to p_1 and p_2 , then multiply $rac{1}{u_1^{k_1-1}u_2^{k_2-1}}$ to obtain $\phi(u_1,u_2)$.

Use the Laplace Transforms

$$\mathcal{L}_s[t^n \log t] = \Gamma(n+1)s^{-(n+1)}(\psi(n+1) - \log s), \quad n > -1$$

$$\mathcal{L}_s[t^n] = \Gamma(n+1)s^{-(n+1)}, \quad n > -1$$

$$\phi(u_1, u_2) = \log u_1 - \log u_2 - \psi(k_1) + \psi(k_2)$$

$$\mathbb{E}_{u_1, u_2} \phi(u_1, u_2) = -\log \frac{p_2}{p_1}$$

- Convergence?
 - It is practically working to check whether the variance (expectation of the square) diverge or not.

$$Var \left[\phi(u_1, u_2)^2\right] =$$

$$\mathbb{E}_{u_1, u_2} \left[\phi(u_1, u_2)^2\right] - \mathbb{E}_{u_1, u_2} \left[\phi(u_1, u_2)\right]^2 < \infty$$

$D_f(p_1(\mathbf{x}), p_2(\mathbf{x}))$	Estimator $\phi(u_1, u_2)$	f(t)
$\frac{1}{\alpha - 1} \left(\int p_1^{(1-\alpha)} p_2^{\alpha} d\mathbf{x} - 1 \right)$ $(\alpha \neq 1)$	$\frac{1}{\alpha - 1} \left(\frac{\Gamma(k_1)\Gamma(k_2)}{\Gamma(\alpha + k_1)\Gamma(k_2 - \alpha)} \left(\frac{u_1}{u_2} \right)^{\alpha} - \frac{\Gamma(k_1)\Gamma(k_2)}{\Gamma(k_1 + 1)\Gamma(k_2 - 1)} \frac{u_1}{u_2} \right)$	$\frac{t^{\alpha} - t}{\alpha - 1}$
$-\int p_1 \log \left(\frac{p_2}{p_1}\right) d\mathbf{x}$	$\log u_1^{(k_1)} - \log u_2^{(k_2)} - \psi(k_1) + \psi(k_2) \ \psi(.)$: digamma	$-\log t$
$1 - \int \sqrt{p_1 p_2} \ d\mathbf{x}$	$1 - \frac{1}{\Gamma(1.5)\Gamma(2.5)} \sqrt{\frac{v_1^{(2)}}{u_2^{(2)}}}$	$1-\sqrt{t}$
$1 - \int \frac{p_1 p_2}{p_1 + p_2} d\mathbf{x}$ \vdots	$1 I(u_1^{(1)} < u_2^{(1)}) \qquad \begin{array}{c} \text{Laplace transfor} \\ \vdots \\ \end{array}$	$\frac{1}{1+t}$
	Inverse Laplace transform	

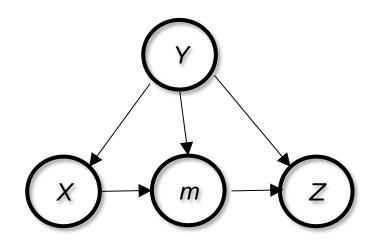
Extension to Engaging Problems

- We use information-theory to construct complex, non-trivial problems.
- For example, by using estimators of the Kullback-Leibler (KL) divergence, we can formulate information-theoretic objective functions, such as conditional mutual information:

$$I(r; m|y) = I(r, y; m) - I(y; m)$$

= $KL(p(r, m, y)||p(r, y)p(m)) - KL(p(m, y)||p(m)p(y))$

Application - We know *m* should not be a relevant feature



Y: target to predict

X: feature variables used to predict Y

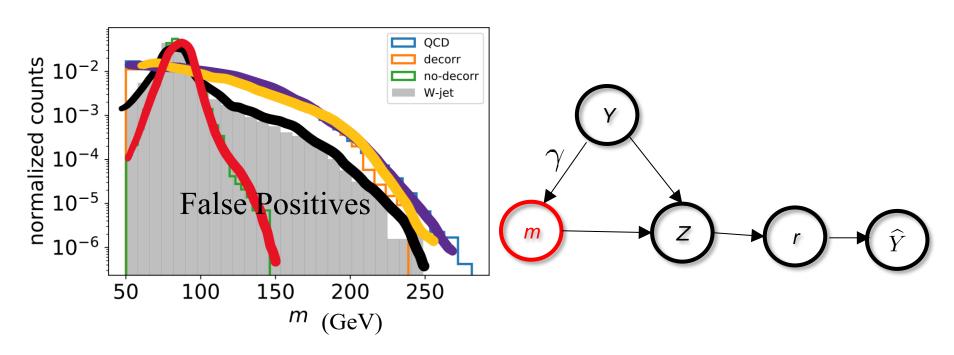
m: Contains information about *Y* , but a variable that should "not" be used. (harmful variable)

Z: feature variables containing its own information about *Y*, but corrupted by *m*

We do not want to include *m* into the set of relevant features for various reasons:

- moral reasons
- prohibited by law
- Real data will not have the effect from m.
- We want to eliminate the effect of one variable (e.g. medicine)

Reconstruction of W-jet Decorrelation Experiment



Reconstruction of decorrelation experiment in Kasieczka, G., Shih, D. (2020) Robust Jet Classifiers through Distance Correlation, Phys. Rev. Lett. Vol. 125, Iss. 12 — 18

Experimented by Do-Hyun Song

Summary

 f-divergence is a fundamental information-theoretic measure that can be used for making many interesting machine learning problems.

 Since f-divergence is defined with underlying densities, we need estimators.

 The flow of harmful information can be blocked using these estimators to construct reliable machine learning models.

