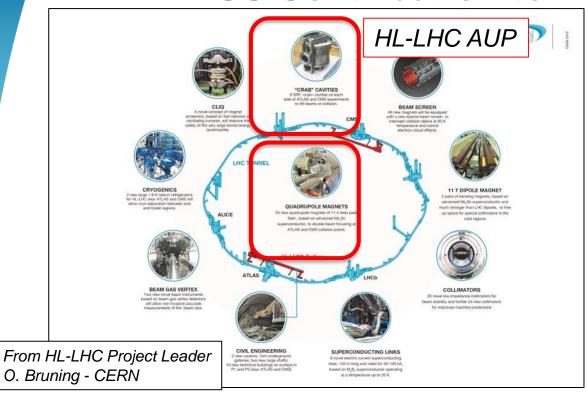
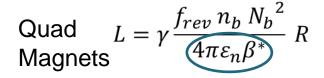


Status of US AUP Contribution

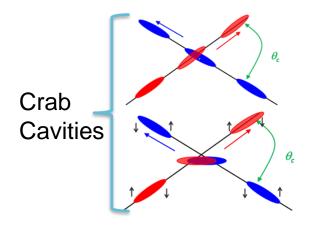
Giorgio Apollinari – FNAL HL-LHC AUP Project Manager

13th HL-LHC Collaboration Meeting Vancouver, Canada - September 2023




Outline

- Introduction
- Project Overview
- Overview of AUP Status
- Summary



US Contribution to HL-LHC

Beam size

- HL-LHC: from 300 fb⁻¹ to 3000/4000 fb⁻¹
- LARP (DOE supported R&D Program) established the necessary technology for the HL-LHC Focusing Magnets and Crab Cavities
- DOE baselined HL-LHC AUP Project in 2019 (FNAL, BNL, LBNL with contributions from ANL, SLAC, JLAB, ODU & FSU)
- DOE re-baseline AUP in 2023 to absorb COVID impacts on Cost and Schedule

HL-LHC AUP Deliverable Scope Technical Details

Dressed RFD Cavity

(10 Dressed Cavities & Ancillaries`

High Order Mode
Antennas

Bare RFD Cavity

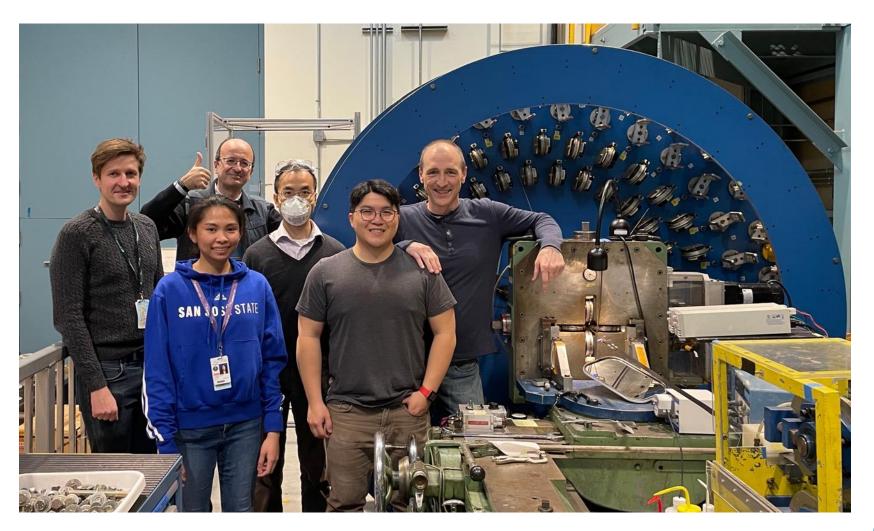
(front wall removed to show internal components)

AUP Q1/Q3 and RFD Cavities KPPs

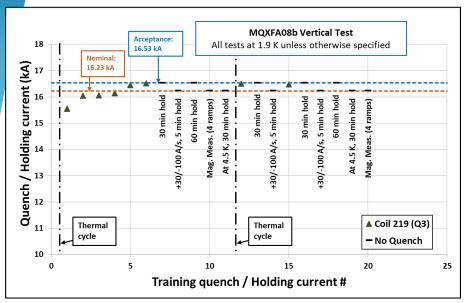
	71 1 1 1 2 7		
Inner Triplet Focusing Quadrupoles (Q1 and Q3)	a) 6 Q1/Q3 Cryoassemblies are accepted by CERN after testing at HL-LHC agreed upon Acceptance Criteria for the Cryoassembly. The Cryoassemblies will be assembled from Cold Masses built by HL-LHC AUP and Cryostat kits provided by CERN. b) 3 Q1/Q3 Cold Masses built with magnets tested vertically at HL-LHC agreed-upon Acceptance Criteria	4 additional Q1/Q3 Cryoassemblies are accepted b CERN after testing at HL-LHC agreed-upon Acceptance Criteri for the Cryoassembly. The Cryoassembly will be assemble from Cold Masses built by HL-L AUP and Cryostat kits provided CERN	ia d HC by
	c) Complete coils and remaining components for 1 additional Q1/Q3 Cold Mass		10 Q1/Q3 Cryoassemblies (8 Operations + 2 Hot Spares)
SRF Crab Cavities	a) 8 Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities include HOM couplers, pick-ups, He Vessel and magnetic shields.	2 additional Radio Frequency Dipoles (RFDs) Dressed cavitie for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities includ HOM couplers, pick-ups, He	
	b) Procurement of components for 2 additional RFD Dressed Cavities	Vessel and magnetic shields.	10 RFD Dressed Cavities (8 Operations + 2 Hot Spares)

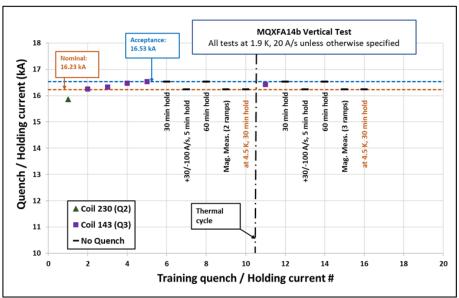
HL-LHC AUP Project includes Objective KPPs

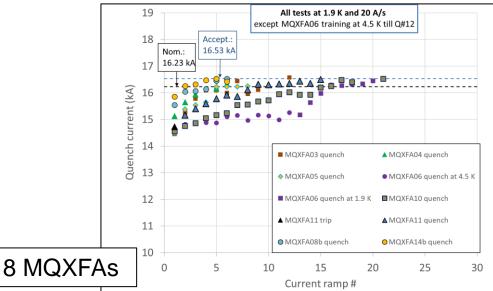
Progress since last CM on Magnets


- LBNL Cable Factory ~completed Production
 - 2 more cables recently added to absorb Coils yield impact
- FNAL and BNL Factories at end of Production (~2-3 coils left)
- MQXFA11 assembled and tested
 - ✓ Successfully passed BNL Vertical Test
- MQXFA08b (COVID impact) had coil replaced
 - Successfully passed BNL Vertical Test
 - ✓ First demonstration of Coil replacement in long (4.2m) production magnet
- MQXFA13 assembled and tested
 - Failed BNL Vertical Test on ramp-rates NC, probably due to insufficient azimuthal pre-load on Magnet ends
 - Plan to replace limiting coil.
- MQXFA14b assembled and tested
 - ✓ MQXFA14 failed on QH Hipot during Fabrication. Coil Replaced. Also benefited from lesson learned in MQXFA13 with increase in pre-stress
 - ✓ Fastest training to date among AUP magnets.
- MQXFA15, MQXFA16 and MQXFA17 in various states of completion
 - MQXFA07b to be tested next in Nov. '23, after BNL cryo system maintenance

Magnets Assembly & Test History


	<u> </u>		
MQXFA03	VTS Tested OK	LQXFA/B-01	
MQXFA04	VTS Tested OK	LQXIA/D-01	
MQXFA05	VTS Tested OK	1 OVEA /D 00	
MQXFA06	VTS Tested OK	LQXFA/B-02	
MQXFA07	VTS COVID Limitations, coil replaced	MQXFA07b	TBT ₁
MQXFA08	VTS COVID Limitations, coil replaced	MQXFA08b	VTS Tested OK
MQXFA09	Assembly NCR (2 coils affected by folded Kapton)	Cannibalized	2 coils rejected 2 coils used in 14b and 5, structure used in 11
MQXFA10	VTS Tested OK	LQXFA/B-03	LQXFA/B-
MQXFA11	VTS Tested OK	LQXFA/D-03	LQXI A/B-
QXFA12	Assembly NCR (Hipot fail) coils to be replaced	MQXFA12b	TB ['] Γ₄
MQXFA13	VTS Limitations (end prestress), coil replaced	MQXFA13b	TBT ₃
MQXFA14	Assembly NCR (QH hipot fail), coil replaced	MQXFA14b	VTS Tested OK
MQXFA15	TBT ₂		

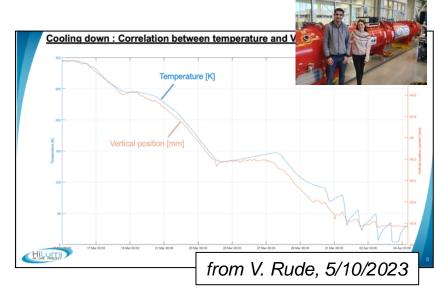

Celebrations for Last Cable Completed @ LBNL

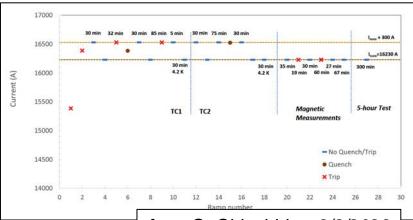


MQXFA08b and MQXFA14b

- Approximately 60% MQXFA Magnets Produced
- 40% MQXFAs Magnets (8/20)
 Accepted for CM/CA

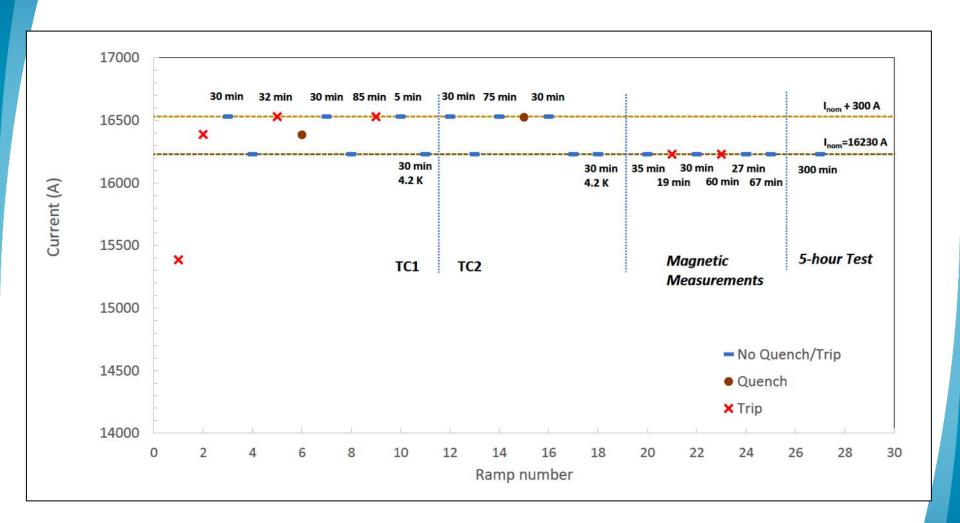
LQXFA/B-01 Progress & Achievements





LQXFA/B-01 Progress & Achievements (cont.)

- Validated Cold Mass design
 - Magnet alignment, quench performance, pressure test, etc.
- Validated Cryostat Design and FSI (CERN)
 - 1.9K, 80K, heat loss, etc.
- Re-validated Magnet performance
 - Nominal and Acceptance, 1.9K and 4.2K, 5h test, ramp rates, field measurements, etc.



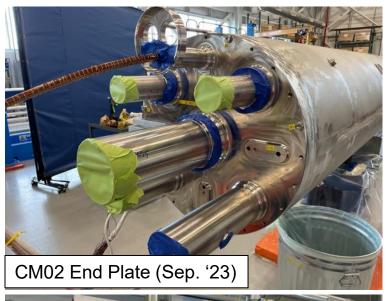
LQXFA/B-01 Horizontal Test

LQXFA/B-01 Path to Acceptance by CERN

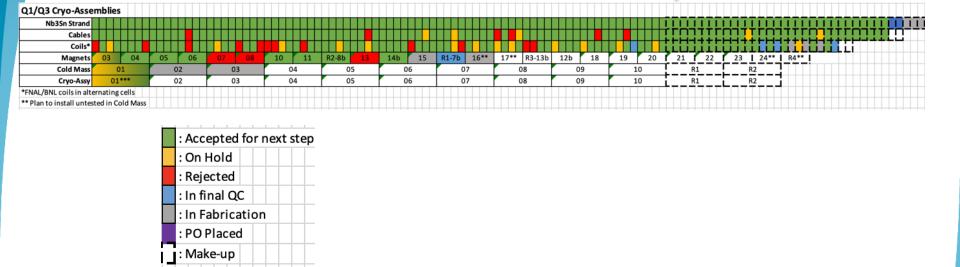
- 2 major type of NCRs in LQXFA01
 - Welded by ASME Code in Jan. 2022
 - No <u>formal</u> and timely (i.e. before weld execution) approval by CERN for WPS/PQR according to "Safety Agreement"
 - For LQXFA/B-01 used the same welding rod, WPS/PQR and volumetric inspection eventually approved by CERN in April 2023.
 - 2 missing QH in one of the magnets (2 out of 16)
 - Lack of redundancy in QP if installed in the tunnel
- Mutual suggestion for Acceptance of LQXFA/B-01 + 1 additional vertically tested MQXFA Magnet (+ misc.) for potential swap of magnet at CERN at a later date if necessary.
 - Important for US to be a reliable partner to support the CERN String Test schedule. In addition, timely experience on Integration and Shipments to CERN is critical.
 - Letter from AUP PO to HiLumi Leader with response starting the clock.

Q1/Q3 Transportation Readiness Review LQXFA/B-01 Delivery to CERN

- Review of testing results from local road testing and full-scale dummy load test shipment to CERN
 - Included discussion of previouslyreviewed shipping matters for a thorough examination of the transportation process.
- Results show the transportation frame performed nominally, attenuating expected shipping loads to acceptable levels.
- With one minor process recommendation, the committee endorsed proceeding with the first Q1/Q3 shipment.
- Ship for LQXFA/B-01 reserved for Nov. 5th 2023 anticipating LQXFA/B-01 convergence on acceptance path by late September



CM02 and CM03





Production Dashboard

"Basic" deliverables 80 coils, 20 magnets, etc.

Technical Production Details in WPs presentations

Progress since last CM on RFD Crab Cavities

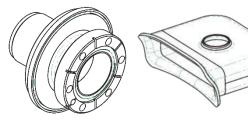
- Demonstrated RFD HOMs at JLAB
- Completed receipt of all Nb Raw Material at ZANON
- 2 Pre-series at ZANON in final phases
 - Unable to polish a small damage on beampipe flange. Will need complex re-machining process with estimated delay of 1-2 months.
- Documentation under control
- Placed order for 10 Series Cavities, production at peak with majority of components formed.
- 1st Prototype Cavities at ZANON for He Vessel installation
 - 2nd Prototype at FNAL (for validation of ZANON processing) might require additional HPR.
- Cracked ceramic window at CERN in leak test preparation
- Order for He Vessels expected to be placed by the end of September '23

NRFD002+HOMs 3rd Test Summary 14th – 18th Aug. '23

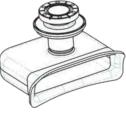
Pre-Series RFD Cavities

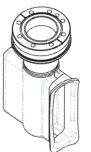
- NRFD01: Reshaping and trim-tuning completed successfully, needs re-machining prior to EBW.
- NRFD02: Reshaping complete, undergoing trim-tuning.

Series RFD Cavities


Series RFD Bare Cavity @ ZRI

- Processing procedures approved by CERN
- ZRI QCP/ MIP global advancement: 11% completed





QCP STEP No.	1	2	3	4	5	6
Items	V-HOM Port Weldment	V-HOM WG with Insert	V-HOM WG Weldment	FPC Port Weldment	FPC WG with Insert	FPC WG Weldment
Drawing	3326.14.121.000	3326.14.122.000	3326.14.120.000	3326.12.131.200	3326.12.132.000	3326.12.130.000
NRFD03	13%	15%	0%	13%	16%	0%
NRFD04	13%	15%	0%	13%	16%	0%
NRFD05	13%	15%	0%	13%	16%	0%
NRFD06	13%	15%	0%	13%	16%	0%
NRFD07	13%	15%	0%	13%	16%	0%
NRFD08	13%	15%	0%	13%	16%	0%
NRFD09	13%	15%	0%	13%	16%	0%
VRFD10	13%	15%	0%	13%	16%	0%
VRFD11	13%	15%	0%	13%	16%	0%
NRFD12	13%	15%	0%	13%	16%	0%

RFD Pre-series QA: EDMS Status

Manufacturing Drawings RFD Bare Cavities	EDMS 2080712	Released				
Test Plan PQR	EDMS 2479595	Released				
Welding Book	EDMS 2397280	Released				
Manufacturing and Inspection Plan	EDMS 2069490	Released				
Cleaning & Etching Procedure	EDMS 2069492	Released				
Identification, Marking and Traceability Procedure	EDMS 2069496	Releas				
Procedure of Radiographic Examination of Welds	EDMS 2069497	Releas				
Leak Test Procedure	EDMS 2080831	Releas				
Dimensional Control Procedure	EDMS 2080834	Releas				
Visual Testing	EDMS 2100569	Releas				
Grinding Procedure	EDMS 2630567	Releas				
RF measurements & Trimming	EDMS 2080833	Releas				
Packing Procedure	EDMS 2642947	Ongoir				
- Dro Carico Draduction Dropadures						

Pre-Series Production Procedures fully approved by CERN

Rebaseline Process

- DOE has acknowledged that the impact of unexpected events such as COVID and Abnormal Cost/Escalations due to geopolitical events are placing AUP in jeopardy of not completing its KPPs and has allowed AUP to "apply for rebaseline" in late 2022
- A "Rebaseline Process" was initiated with funding agency (DOE) with the following goals:
 - Maintain Objective Deliverables to CERN as approved in 2019 (10 Q1/Q3 CA, 10 Dressed RFD Cavities)
 - Modify TPC and CD-4 dates:

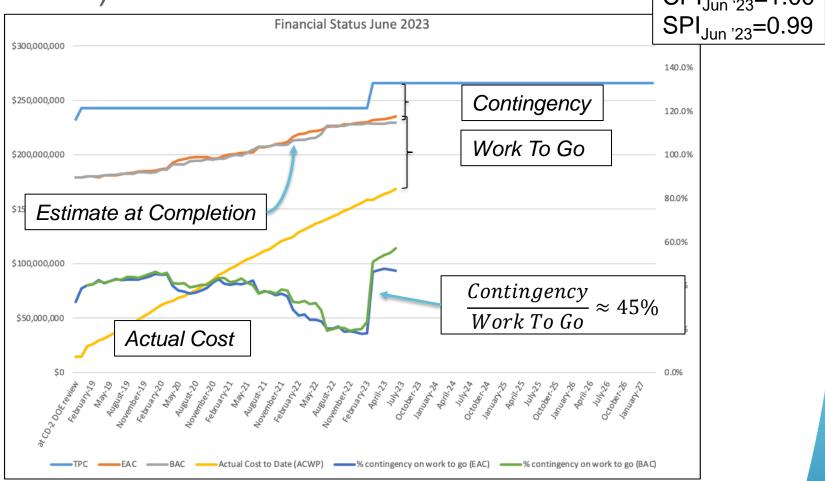
2019 Baseline

 $TPC_{CD2} = $242.7M$

CD4_{CD2}= Mar. '28

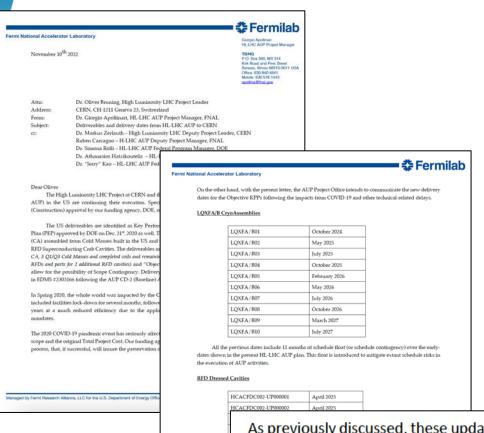
2023 Re-Baseline TPC_{Reb} = \$266.0M

 $CD4_{Reb}$ = Dec. '29


- Rebaseline Reviews and Approval:
 - DOE Review in Dec. 13th-15th '22 (*thanks to Oliver for help !*)
 - **ESAAB** approval in February 2023.

Financial Situation (Past)

DOE has disbursed \$266M to the US-AUP (fully


funded) CPI_{Jun '23}=1.00

AUP is in the "last leg of the race" (~3/4 complete)

Delivery Dates to CERN

European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

Dr. Oliver Brüning HL-LHC Project Leader

ATS-DO CERN

CH 1211 Geneva 23 Switzerland

Tel. direct: +41 22 767 9161
Cell. +41 75 411 0476
Secretariat: +41 22 767 4321
Email: Oliver.Bruning@cern.ch

Our reference: ATS/OB/cn/2022-016

HL-LHC AUP Project Manager TD/HQ P.O. Box 500, MS 314 Kirk Road and Pine Street Batavia, Illinois 60510-5011

Dr. Giorgio Apollinari

USA

Geneva, 14th November 2022

Subject: Your letter dated November 10th, 2022

Dear Giorgio

Many thanks for sending us at CERN the updated delivery dates for the LQXF Cryo Assemblies and the RFD Dressed Cavities following the impacts of the world-wide COVID pandemic.

As previously discussed, these updated delivery dates are fine for us and compatible with the HL-LHC installation plan.

We understand that the US HL-LHC AUP baseline plan, without risks, includes delivery of the cryomodules 11 months earlier than the communicated dates. I would like to take this opportunity to reiterate, that the IT String schedul: at CERN is driven by these success oriented AUP delivery dates for the first and second Cryo. assemblies. Delays in these first two success oriented delivery dates will have a direct impact or the IT String schedule.

We would also like to underline that the delivery of the final RFD Cryo Modules at CERN is the relevant para neter for the Crab Cavity installation in the HL-LHC. Delivery of the last RFD Cryo Module by e d 2026 or, at the latest beginning 2027, are assumed for the HL-LHC installation schedule which implies a careful coordination by CERN between the AUP and TRIUMF contributions

As previously discussed, these updated delivery dates are fine for us and compatible with the HL-LHC installation plan.

HCACFDC002-UP000008 September 2025
HCACFDC002-UP000009 October 2025
HCACFDC002-UP000010 October 2025

Morappet by Famil Research Alliance, LLC for the LLS. Department of Energy Office of Science www.fnst.gov 2

Oliver Brüning HL-LHC Project Leader CERN ATS-DO

www.cem.ch

Delivery dates agreed with CERN

Delivery Dates to CERN

Assembly Optimistic	Delivery Dates					
	Agreed Early Delivery Date	July 2023 Success Oriented Schedule				Agreed Late Delivery Dates
Q1/Q3 Delivery 01	Nov-23					Oct-24
Q1/Q3 Delivery 02	Jun-24					May-25
Q1/Q3 Delivery 03	Aug-24	Oct-24				Jul-25
Q1/Q3 Delivery 04	Nov-24	Jan-25				Oct-25
Q1/Q3 Delivery 05	Mar-25	May-25				Feb-26
Q1/Q3 Delivery 06	Jun-25	Aug-25				May-26
Q1/Q3 Delivery 07	Aug-25	Oct-25				Jul-26
Q1/Q3 Delivery 08	Nov-25	Jan-26				Oct-26
Q1/Q3 Delivery 09	Apr-26					Mar-27
Q1/Q3 Delivery 10	Aug-26					Jul-27
				1 cell =	1 month	
Cavity Optimistic Deli	ivery Dates					
	Agreed Early Delivery Date	July 2023 Success				Agreed Late Delivery Dates
Cavities 01 & 02	May-24					Apr-25
Cavities 03 & 04	Jul-24	Sep-24				Jun-25
Cavities 05 & 06	Aug-24	Nov-24				Jul-25
Cavities 07 & 08	Oct-24	Jan-25				Sep-25
Cavities 09 & 10	Nov-24		Mar-25			Oct-25

 Success Oriented Schedule provided to CERN WPs as input for upcoming C&S Review

Conclusions

- AUP is ~3/4 complete
- Steady progress on MQXFA Construction
 - 8 magnets passed vertical test, one more ready for test now.
- LQXFA/B-01 Horizontal Test successfully completed, cryomodule soon to be on its way to CERN.
- RFD Crab Cavities series order placed.
 - Pre-production cavities in final assembly completion.
 - Order for He Vessel soon to be placed
- Successfull approval of AUP Rebaseline due to COVID/Abnormal Escalation impact with ~10% increase in funding

