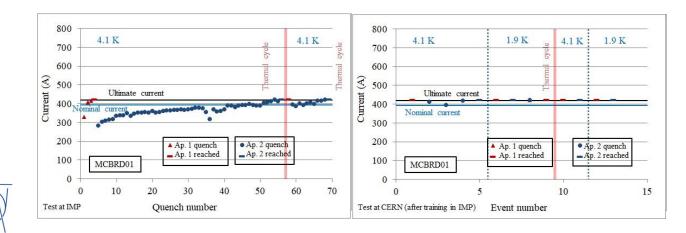

Status of CCT D2 correctors

E. Todesco, on behalf of <u>Q. Xu</u> (IHEP-CAS) For the CCT D2 corrector Magnet Team: Y. Wang, J. Wang (IHEP) X. Ou, D. Ni (IMP) and A. Foussat (CERN)

20 September 2023

MCBRD: the HL-LHC D2 orbit correctors, 12+1 units, providing a 5 Tm integrated field in two apertures, vertical in one and horizontal in the other

Main design parameters of the magnet



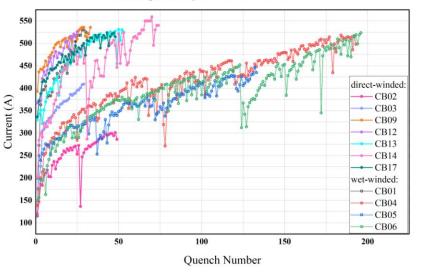
			Comparison of Central Field		
	Items	Values	$\underbrace{\text{Comparison of Central Field}}_{\mathfrak{B}^{2n}}$	Cooling hol	e
	CCT skew angle	30°		Hole f	for tie rod
	No. of turns per layer	365	$B_{y} = 1.69$	Hole	for fixing pin
	Slot size in former (mm)	2×5			
	Spacing per turn	5.222	with yoke	Ap	erture
	Inside/Outside diameter of the former (mm)	Inner former:105.35/119.35 Inner former:120.80/134.85	³ -1500 -1000 -500 0 500 1000 1500 Longitudinal position, <i>z</i> (mm) 1200 → NbTi(0.5m prototype 1000 → NbTi(2.2m prototype		Yoke alignment
	Inside diameter of the groove/slot(mm)	1 st layer: 109.15/119.15 2 nd layer: 124.65/134.65		Ø 614 1	
	Reference radius (mm)	35	400		
	Diameter of aperture	105	200	Items	Values
	(mm) Current (A)	395	$0 \qquad \qquad$	Diameter of yoke (mm)	614
9	Surfacesegneters: B	Surface-contours 8	<i>B</i> (T)	Thickness of yoke lamination (mm)	5.8
					5.0
	- 2.500000E +000	3.000000E+000		Diameter of aperture (mm)	167
	2.500000E+000	3.00000E+000 2.50000E+000		•	
				Diameter of aperture (mm)	167
	2.00000E+000	3.000000E+000 2.500000E+000 2.000000E+000 1.500000E+000		Diameter of aperture (mm) Position of aperture (mm)	167 94.19
	2.000000E+000 - 1.500000E+000			Diameter of aperture (mm) Position of aperture (mm) Yoke key slot(mm)	167 94.19 8(3.01) ×6

The beginning of the production

- Out of the 12 series magnets, 4 have been built in BAMA
- MBCRD01 and MCBRD02 coils were built with a variant of the CERN procedure (wet impregnation)
- Both magnets reached ultimate current, and had limited retraining after thermal cycle, at the edge of the requirements
 - They are now at CERN, where they have also been tested at 1.9 K

The test strategy

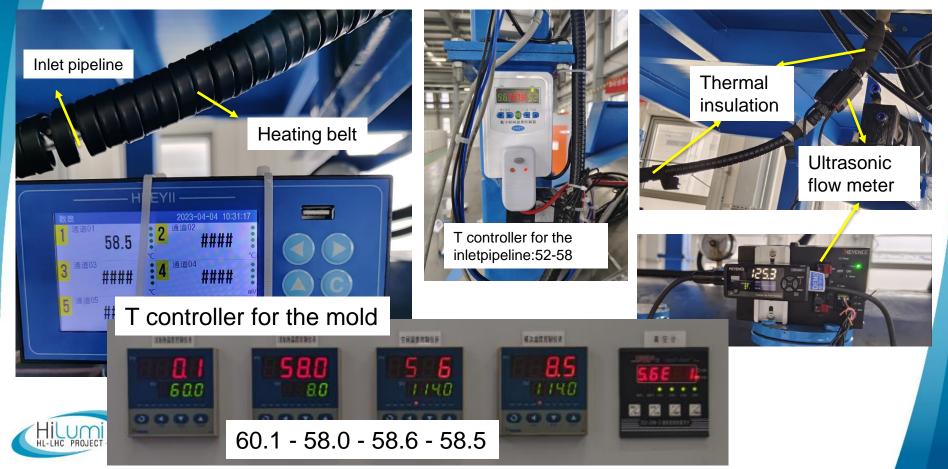
• IHEP added to the baseline the test of individual coils in IHEP test station at 4.1 K, to have a fast feedback on production and to cope with the long training



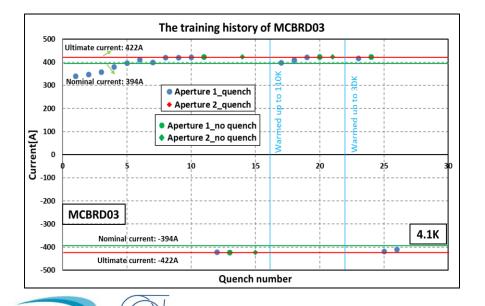
Test of individual coil in IHEP

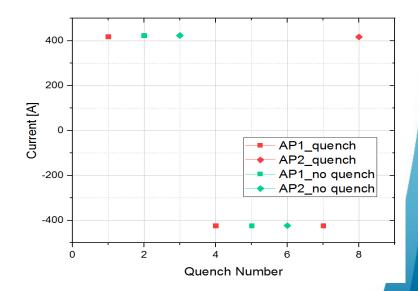
Performance of individual coils

- The long training also induced an iteration on the impregnation procedures (VPI) and a fine tuning of the groove size (reduction of the height of the groove from 5.1 to 4.8 mm) to better fit the conductor in the former
- The iteration on coil procedures was positive, and more recent coils train faster



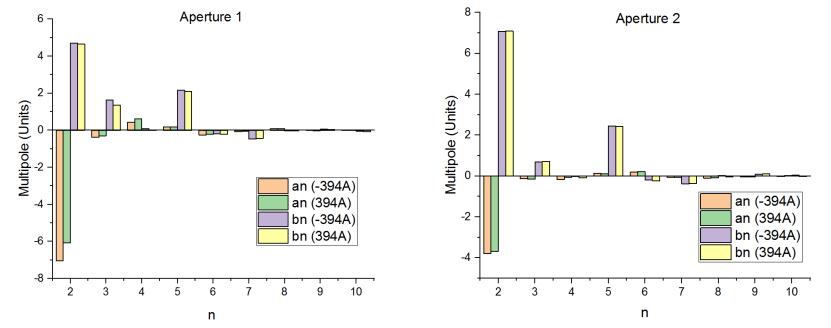
Training History of the HL-LHC CCT Coils


Corrective actions of the VPI station

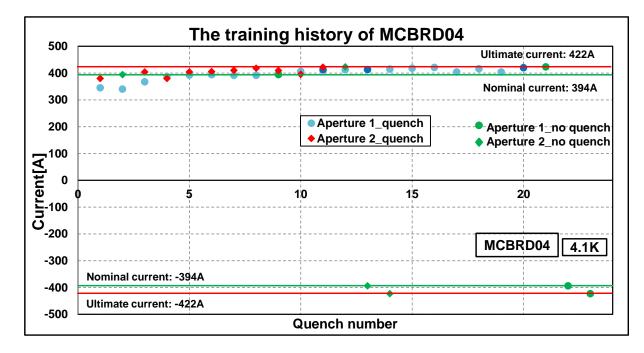


MCBRD03 (third series magnet) performance

- MCBRD03 was tested in IMP, reached performance and is now at CERN
 - No retraining below nominal current



Field Quality of MCBRD03


• Field quality is systematically measured in China and is within specifications

MCBRD04 (fourth series magnet) performance

- MCBRD04 was tested in IMP, reached performance and thermal cycle will take place in October
 - It also reached ultimate current, with short training to nominal current

Schedule and CERN contribution

- Iteration on procedures induced some delays with respect to initial schedule – but quality comes before schedule
- To mitigate the risk of having limited corrector availability for D2 cold mass, CERN proposed to manufacture two magnets with Chinese components
 - Efforts are ongoing in 927 laboratories, dedicated talk of A. Foussat in the parallel session

Summary

- 4 MCBRD magnets (out of 12 needed) have been fabricated in BAMA
 - All of them reached the ultimate current at 4.1 K
- Long virgin training issues (not in requirements, but consuming IHEP resources) and retraining (at the margin of HL-LHC requirements) induced an iteration on manufacturing procedure and a fine tuning of design this iteration took place after MCBRD02
 - MCBRD03 confirmed the positive effect of the iteration on performance
 - MCBRD04 confirmed reproducibility, thermal cycle is pending
 - MCBRD05 shall be assembled at the end of the year
- This small series of CCT is giving relevant information on this type of design and technology that is considered for many applications well beyond HL-LHC correctors

