

HL-LHC IT String : Status and Perspectives

M. Bajko TE-MPE-SF/HL-LHC WP16

On behalf of the SF section and WP16 team

Integration by. A. Kosmicki

CERN

13th HL-LHC Collaboration Meeting meeting, Vancouver 25-28th September 2023

OUTLINE

STATUS- PERSPECTIVES

- Word Cloud of the IT STRING web site
- STRING Integration and Installation
- STRING Validation Program
- STRING Safety
- STRING OPERATION
- Schedule and Resources
- Summary

STRING ACTIVITY WORLD COULD

some word increases size, such as **INSTALLATION** and **PROGRESS**, **DONE** while some others reduces : ex. WILL wrt the last time, in February 2023 in Chamonix, when I showed the

image.

Courtesy of S. Blanchard

CRYOGENIC EQUIPMENT

DEMINERALISED WATER

COMPLETED including a system allowing to make comparative test of series or parallel distribution Demineralised water distribution with EN-CV and STRING team

CIRCUIT DISCONNECTOR BOXES

CDB installed in the STRING with SY-EPC and STRING team

COMPLETED

the CDBs were the first equipment belonging to a HL-LHC WP (the WP6b) installed into the STRING

CDBs at reception

Marta Bajko, HL-LHC Annual Meeting Vancouver, 2023

WATER COOLED CABLES

WCC-positioned on the CDB side

https://videos.cern.ch/record/2297271

COMPLETED

positioned and connected to the CDBs. This is an important milestone and achievement as last year we had to take over this task from EN-EL (design, specification, contract placement and follow up, installation)

Marta Bajko , HL-LHC Annual Meeting Vancouver, 2023

1

ENERGY EXTRACTION AND POWERING INTERLOCK

COMPLETED The EE and PIC belonging to WP7 are installed on the platform

EE racks with TE-MPE, WP7 and STRING team

POWER CONVERTERS

All Power Converter racks are installed

https://www.youtube.com/watch?v=hnXyvxRCMGw

10

OTHER INFRASTRUCTURES

LESSONS LEARNED: few examples

See rapport given at the

184TH HL-LHC Technical Coordination Committee (TCC) By D. Bozzini

CONTROL AND SOFTWARE FOR IT STRING

RoadMap

- Control, supervision and analysis software for the HL-LHC IT String defined in line with the software for the LHC
- Responsibilities of the software development have been defined for the HL-LHC IT String
- In 2023, monthly meetings are proposed to follow-up the software progress within the series of the String Validation Program (SVP) meetings

Control, Analysis and Supervision Software for the HL-LHC IT String HWC Powering Tests

Courtesy of S. Yammine

Marta Bajko , HL-LHC Annual Meeting Vancouver, 2023

HWC Powering Procedures and Acceptance Criteria for HL-LHC

TIME PLI

Circuit

14

Step	Current level	Test description	
PCC.23	I_PCC	Power converter configuration	12000 PN0.123
PIC2	I_MIN_OP	Power interlock controller check	PLI3.123 PLI2.123
PLI1.c23	I_INTERM_1	Fast power abort via PIC at intermediate current 1	
PLI2.d23	I_INTERM_2	Powering failure at intermediate current 2	8000 -
PLI2.f23	I_INTERM_2	QDS provoked quench at intermediate current 2	3
PLI3.e23	I_INTERM_3	Slow power abort via PIC at intermediate current 3	1 teg 6000 -
PLI3.c23	I_INTERM_3	Powering failure at intermediate current 3	
PLI3.f23	I_INTERM_3	QDS provoked quench at intermediate current 3	4000
PLI4.s23	I_INTERM_4	Splice mapping till intermediate current 4	
PLI4.d23	I_INTERM_4	Powering failure at intermediate current 4	
PLI4.f23	I_INTERM_4	QDS provoked quench at intermediate current 4	
PNO.c23	I_PNO+I_DELTA	Fast power abort after a current plateau at I_PNO+I_DELTA	inno [a.o.]
PNO.f23	I_PNO	QDS provoked quench at I_PNO	Engunala , Stang for DD
PNO.a23	I_PNO	Current cycle to I_PNO with splice measurement	Example : Sleps for RDI

HL-LHC Test Procedure and Acceptance Criteria Document	EDMS no.	Status	Work already start	ьđ		
Inner Triplet (RQX)	<u>2771115</u>	In Preparation	with a collaboration	:и 1		
Separation Dipole (RD1)	<u>2771114</u>	Eng. Check	between MCF with			
IT Orbit Correctors (RCBX)	<u>2771111</u>	Eng. Check	MP3			
200 A Circuit (RQSX3)	<u>2922509</u>	In Preparation	Applicable to			
High Order Corrector (120 A) Circuits	<u>2922510</u>	In Preparation	HL-LHC and			
Parameters for the HL-LHC Circuit Powering Tests	<u>2771118</u>	In Preparation	String			
Test of Grouped Circuits Courtesy of S. Yammine	To be created ta Bajko,	HIn Preparation Meeting	Vancouver, 2023	ŀ		

STRING CONTROLS ARCHITECTURE

Last animation

IT STRING – SAFETY

We consider six main safety sections covering the entire IT String life cycle

16

SAFETY CHALLANGES

INDIVIDUAL SYSTEM TEST: CRYOGENICS

IT STRING – SAFETY: CRYO IST HWC PHASE 1A

Coordinated with WP16 team, SM18 team and TE-DSO to define access zones, procedures, communication. During the first cooldown, a managed-access area were defined around the IT String.

Courtesy of D. Bozzini

CB VB

IL-LHC PROJECT

will be installed

Marta Bajko, HL-LHC Annual Meeting Vancouver, 2023

IT STRING – SAFETY

We consider six main safety sections covering the entire IT String life cycle

SAFETY SC LINK SYSTEM INSTALLATION

The most formidable task ahead of us, slated for the 1st quarter of 2024, is the installation of the cold powering system. This undertaking presents a unique set of challenges, primarily centered around the handling of the SC link connected to the DFHX and its positioning on the platform. This unique challenge requires the simultaneous use of two overhead cranes.

STRING OPERATION STRUCTURE, ROLES AND RESPONSABILITIES

HL-LHC IT STRING OPERATION PHASE SCHEME

HL-LHC IT String Operation

M. Bajko

CERN, TE Department, Genève 23, CH-1211, Switzerland

The HL-LHC IT String is the test stand to validate the collective behavior of the Inner Triplet (IT) magnets and circuits in conditions as near as possible to the operational ones. This document describes the modus operandi of the hardware commissioning and the operation of the HL-LHC IT String.

1. Introduction

The goal of the HL-LHC project is to upgrade the existing LHC machine by incorporating new technologies that enable it to achieve its objectives [1]. The individual component tests do not fully capture their behavior when integrated into the HL-LHC, where several components are interconnected through a common electrical and cooling circuit. The HL-LHC IT String test stand allows for the comprehensive validation and testing of an entire Inner Triplet (IT) region of the HL-LHC under normal operational conditions, providing insight into the collective behavior of its components [2]. The HL-LHC IT String represents a significant intermediate milestone for the HL-LHC IT String represents a significant intermediate of the HL-LHC string represents a significant intermediate milestone for the HL-LHC project, enabling system integration verification and smooth hardware commissioning of the final machine.

2. Description of the HL-LHC IT String

The HL-LHC IT String is installed in a surface building and functions as a representative model of the Inner Triplet (IT) region located on the left side of the HL-LHC at Point 5 as shown in Fig.1. However, the HL-LHC IT String setup does not replicate the tunnel inclination, does not include the modified matching section region and exclude the beam screen from the setup.

EDMS 2956328 Under approval

STRING SCHEDULE

SHORT CIRCUIT TEST (SCT) by end 2023

Warm powering sequential activities before short circuit test

Courtesy of S. Blanchard

MAJOR STEPS towards SCT ex. ACC cabling and Bus-Bars – Readiness

DFHX current leads connections model

STRING RESOURCES

The overlap with LS3 may potentially bring us to conflicts . A study is done (and is updated at every baseline change), showing the needs of STRING. The document is circulated at baseline change within the concerned GL at CERN.

SUMMARY

- STRING Integration and Installation
 - Infrastructure advanced following the schedule. The 2023 perspectives as presented last year have been achieved or no show stoppers seen till the end of the year (goal SCT).
- STRING Validation Program
 - Work advanced on the HL-LHC HWC procedures (as part of the WP16 mandate), starting with the circuits used in the HL-LHC IT STRING, to be finalised together with the HL-LHC like software and control layers in 2023. Responsibilities and road map for software and control layers defined.
- STRING Safety
 - Responsibilities defined, safety is followed following the different subjects (6 legs). 67 IMPACT request from all departments, 22 groups are processed or in process. 1st IST at cold by the cryo system has been successfully completed following the well established procedures. The most challenging activity (installation of the Sc link system in January 2024) is on front of us.
- STRING Operation
 - The Operation structure, roles and responsibilities has been defined and documented. Today is under approval (String II days recommendation).
- Schedule and Resources
 - The start of the cold commissioning is foreseen by June 2025. First important results on the collective behaviour is expected at the end of the first thermal cycle: by May 2026. End of the String Validation Program is planned by August 2026.

27

HL-LHC IT String Infrastructure team

General Integration: Antoine Kosmicki, Alparslan Tursun (EN-ACE), Philippe Orlandi (EN-EL) Civil Engineering: Alejandro Martinez Selles, Wolfgang Bastien (SCE) AC Powering: Nuno Dos Santos, Mathieu Rigollet (EN-EL) Control Cables: Gael Girardot (EN-EL) DC Cables: Matheus Silva (EN-EL) IT Infrastructure: Maryse Da Costa (IT-CS) CV infrastructure: Francesco Dragoni, Dominique Piednoir (EN-CV) Cryogenic infrastructure: Gabriella Rolando, Jeremy Mouleyre, Jos Metselaar, Andrew Lees, Luis Fernandez, Benoit D'Hulster (TE-CRG) Transport: Serge Pelletier, Erik Richards, Antonio Jorge-Costa (EN-HE) Design and drawing: Robin Betemps, Oussama Id Bahmane, Hector Perez (EN-MME) Alignment: Andreas Herty, Jean-Frederic Fuchs, Kacper Widuch (BE-GM) Mechanical works: Jordi Bossy, Pascal Catherine (EN-ACE) Control HW infrastructure: Benjamin Ninet (BE-CEM), Enzo Genuardi (BE-CSS)

HL-LHC IT String Validation Program team

Work Packages	WP Leader	DWP Leader	GL	SVPM Members
WP2/BE-ABP	Rogelio Tomas Garcia	Elias Metral	Yannis Papaphilippou	Davide Gamba
WP3/TE-MSC	Ezio Todesco	Delio Duarte Ramos	Arnaud Devred	Ezio Todesco and Sandrine Le Naour
WP6a/TE-MSC	Amalia Ballarino	Paul Cruikshank	Arnaud Devred	Amalia Ballarino, Paul Cruikshank and Jerome Fleiter
WP6b/SY-EPC	Michele Martino	Valerie Montabonnet	Valerie Montabonnet	Louis de Mallac, Hugues Thiesen and Shruti Seshadri
WP7/TE-MPE	Daniel Wollmann	Reiner Denz	Felix Rodriguez Mateos	Daniel Wollmann and Jens Steckert
WP9/TE-CRG	Serge Claudet	Antonio Perin	Dimitri Delikaris	Antonio Perin and Gabriella Rolando
WP12/TE-VSC	Vincent Baglin	Giuseppe Bregliozzi	Paolo Chiggiato	Willemjan Maan
WP15/BE-GM	Paolo Fessia	Michele Modena	Helene Mainaud Durand	Michele Modena and Andreas Herty
WP16 (HWC)	Marta Bajko - Mirko Pojer		Felix Rodriguez Mateos	Marta Bajko and Mirko Pojer
WP18	Javier Serrano	Greg Daniluk	Alessandro Masi	Greg Daniluk and Odd Oyvind Andreassen

- A. Verweij, E. Ravaioli for MP3
- M. Giovannozzi, Riccardo De Maria for WGA-
 - M. Zerlauth for the Project Office
 - S. Blanchard for IT String Installation
 - D. Bozzini for IT String Safety Coordinator

- M. Guinchard for Mechanical TF Measurements
- M. Jakub Bednarek for ElQA tests
- S. Yammine (Chair)
- N. Heredia Garcia (Scientific Secretary)
 - Others for specific topics (software, control layers, protection equipment, etc.)

Marta Bajko , HL-LHC Annual Meeting Vancouver, 2023

Schedule as presented 2022

The first important results on the collective behaviour is expected at the end of the first thermal cycle: by Sept 2025.

WP16 - Baseline - C&S review - 2021

first thermal cycle: by Sept 2025.								September 2022																					
	SM18		LS2	SM18		SM18	YETS		YI	ETS 8IWS		YE	ETS SM18			EYETS 81WS			SM18		SM18		LS3		-				
	2019		2020		2	021		2022		2023			2024			2025	L	2	2026		2027			2028			2029		
	Q1 Q2 Q	3 Q4	Q1 Q2 Q3	Q4 (Q1 Q2	Q3	Q4 Q3	1 Q2 Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2	Q3 Q4	Q1	Q2 Q3	Q4	Q1 Q	2 Q3	Q4 (Q1 (Q2 Q3	Q4	Q1 0	2 Q3	Q4	Q1	Q2
The YETS advanced e IT String Analysis delay activ	2022 ha with 2 v Infrastru of altern vities is a	s bee veeks ucture ative Iread	en recent impactir plannin options y ongoin	tly ng _ g. to g.			Prepa Metallic st	eres ready for (1980). The ration of the zo	e L		W172 Careparette re	WP3.Lue NP3.Lue VP3.Lue VP3.Lue VP3.Lue VP3.Lue VP3.Lue VP3.Lue VP3.Lue VP3.Lue	t vogret delver TSTRAVO Test 6 Test Cryogen	nic infras	In th delay expe tructure + con caused by	ne la y. erier	ast ye Today nce co		, we the cides	accu end with	ımu of the	late the sta	ed 1 e IT art of	yea S LS	ar of string 3.				
rring SM18 Sh confirm These da in operation	utdown ed for 20 ates will apact on	dates 22/20 have the S sc	are not 023 yet. a direct STRING chedule.	-				Interface a	d Short Cl	rcuit I	Rack inst AC infrastructur CV infr DC connection	Contro restruction Cold pc Ma	owering agnet ir	ng installa g installatio	ation	cooling g	Powerin	tests Pc	The the to t The sys s surver re- owering tests warning	e ci e delir the Si e nex stem o	ritica very tring xt c deliv	al / of g. It ritic	path f the t is sl cal it y and	n i las now em d in	is cry st cry n in is th stalla	Iriver /o-m red. ne S ation	n agr c li	by net nk	

Magnet interconnection now coincides with YETS 2023, impacting the availability of some teams: VSC, Alignment, ELQA etc.