

HL-LHC Crab Cavities: DQW HOM couplers & FPC challenges

Simon Barrière, Eric Montesinos – CERN on behalf of the WP4 manufacturing team

13th HL-LHC Collaboration Meeting – Vancouver, Canada – 27th September 2023

Outline

- A status update on ongoing productions and some fabrication highlights for:
 - DQW High-Order Modes Couplers;
 - RFD & DQW Fundamental Power Couplers;

with particular focus on:

- Scope of Production
- Status & Planning
- Manufacturing Challenges & Highlights

Many interactions between HL-WP4 teams

Production Scope

 HOM Couplers, Feedthrough & Field Antennas for all LHC-series* DQW crab cavities are being manufactured at CERN Main Workshop

Why are these Objects a Manufacturing Challenge?

Specific (and expensive!) materials

• Extra-pure niobium, OFE copper, titanium grade 23 (TA6V ELI), stainless steel 316LN

(S)RF performance highly dependent on geometry and surface quality

- Final tolerances in few tens of millimetres after many assembly (welding!) steps
- Machined and welded RF surfaces = specific parameters

Multi-Technology components with pressure joints

- ~13 technologies involved and intertwined
- Multiple activities and actors in parallel in different groups
- Advanced follow-up to fulfil HL-LHC quality standards (PED-related normative, MTF steps, traceability)

From Prototypes to Series Production

- DQW series production built according to consolidated design thanks to prototyping at CERN: **DQW SPS** (2015 – 2016) & **RFD SPS** (2019 – 2020)
- Key updates:
 - Easier welding configurations to ease assembly and improve precision

LHC-DQW HOM Coupler

Brazed feedthrough design: stress reduction on ceramics

Production Status

Manufacturing and Inspection Plans

• Strong commitment from WP4 teams to fulfil HL-LHC quality standards

Raw Material Procurement

• 316LN stainless steel, OFE copper

CERN "standard" materials, no shortages expected as of today (procurement anticipated)

RF Field Antennas Status

• Bulk-machined OFE copper hook welded to a "standard" 25Ω RF brazed feedthrough

CERN

HF-HOM Couplers Status

Cu-Nb transitions

- Complex joining of two heterogenous materials
- New process developed at CERN fully tested and

qualified

CERN

Brazed HOM Feedthrough Status

- Machining of inner volume to reduce weight as much as possible
- Improved quality control thanks to µ-computed tomography (quality and dimensions of inner surfaces)

HOM Couplers

- 160+ fabrication steps to be managed in series production: intense intertwining of techniques
- PED requirements impose full qualification of all weld & inspection processes with full traceability down to all subcomponents

S. Barrière, CERN

S. Barrière, CERN

CERN

I HC PROJEC

12

Master Planning

A Few Technical Highlights

Machining

• Recent developments for hook machining & drilling (200 mm depth in Nb!)

 Machining is key to ensure optimum EB welding morphology (thickness uniformity, 3D profiles)

Electron Beam Welding

• Neat processes for series production of SRF ancillaries (tooling, shrinkage management)

Calibration

- Final EB welds on FPC antennas induce deformation leading to hook position out of tolerance (> 0,5 mm)
- Manual (delicate!) calibration needed to bring the hooks closer to nominal position

EBW

3D Laser Scans

S. Barrière, CERN

Lessons Learned

- Many techniques intertwined: advanced coordination and follow-up <u>daily</u> through all processes
- Fragile and high added-value components: require specific processes for <u>clean</u> handling and storage, especially for series production. Logistics, packaging, transport... to be tackled as soon as possible
- Typical issues inherent to this kind of productions debugged and documented on the field, NCR written and checked by project when needed

Synergy between SY-RF, EN-MME and TE-VSC groups at CERN

Conclusion

- Fabrication of RF couplers & antennas at CERN for DQW series is currently on track for assembly on series cavities in coming months/years
- We are still **learning many things on-the-field** during this series production phase and implementing actions to improve quality & production lead times.
- RF Lines will be another challenge efforts are ongoing to conclude production for 1x DQW and 1x RFD cryomodule as soon as possible
- We stay attentive and flexible **to meet the Project needs**, both for CERN and collaborations activities

Many thanks to all the colleagues involved in the production of such beautiful objects!

Special thanks to Thomas, Julien, Sébastien, Stefanie & Eric for the inputs

Thank you!