

WP4-Series cryomodules design

13th HL-LHC Collaboration Meeting, CERN – 25-28 September 2023

Teddy Capelli on behalf of the WP4 collaboration

LHC Cryomodules overview

RFD Cryomodule

- Overall dimensions (L/l/h): 3350/950/1900mm
- Mass : ~4400kg
- Cavities : RadioFrequency Dipole
- HOM filters : 4 pces (2 per cavity)
- Pick Up Antenna : 2 pces (1 per cavity)
- Position of installation : Point 1 (Before and after ATLAS)

DQW Cryomodule

- Overall dimensions (L/l/h): 3120/1000/1800mm
- Mass : ~4300kg
- Cavities : Double Quarter Wave
- HOM filters : 8 pces (4 per cavity)
- Pick Up Antenna : 2 pces (1 per cavity)
- Position of installation : Point 5 (Before and after CMS)

Overview of cryomodule design updates

Detailed design and simulation for DQW/LHC cryomodule

- New input imposing a modification of the design of both DQW and RFD cryomodules
- Optimisation of the design integrating the feedback from RFD cryomodule
 - Feedback provided by STFC on RFD assembly :
 - Clean room
 - String assembly
 - MLI design and installation

see presentations of N.Templeton & E.Jordan

OVC updates and simulations

Design optimization for mechanical performances and new interfaces needed for LHC

- Simulations :
 - Operation and transport load cases check
 - Overall buckling check
 - Bolted and welded joints checks

DQW OVC simulations

Total deformation

Courtesy T. Hernandez - E.Cano Pleite

Load case : Normal operation

- Vacuum inside / Atmospheric pressure outside
- The overall deformation impact cavity alignment

Teddy Capelli CERN/EN-MME

RFD OVC simulations

Total deformation

Stress intensity

C: Static Structural FULL MODEL

Total Deformation

0.25851

0.08617 0 Min

Static Structural Stress Intensity Unit: MPa

133

116.38 99.76 83.14 66.52 49.9

33.28

16.66

0.039553 Min

243.05 Max

Unit: mm

Time: 1 s

Type: Total Deformation

0.77553 Max 0.68936 0.60319 0.51702 0.43085 0.34468 Load case : Normal operation

- Vacuum inside / Atmospheric pressure outside
- The overall deformation impact cavity alignment

Sub modelling for bolted joint analysis

Worst bolt (combination of maximum axial, bending, shear, torsional)

Conditions	Preload [N]	Axial Force [N]	Bending moment [N·mm]	Torsional moment [N∙mm]	Shear force [N]	Safety factor
Frictional	22600	22719	9250.7	512.3	2016.8	1.3

OVC strength assessment :

See EDMS 2272855 - RFD vacuum vessel strength assessment Courtesy T. Hernandez – E.Cano Pleite

Cryogenic for series cryomodules

Design and drawing for manufacturing for DQW cryogenic lines Detailed study of the cryogenic extension for LHC Definition and integration of cryogenic instrumentation for DQW cryomodule

- Update RFD drawing with feedback from RFD/SPS
 - Minor geometry changes
 - Material specification update

7

DQW Cryogenic biphase support

- Adapted from RFD design
- Design optimization for minimal deformation and assembly sequence improvement
- Operation and transport mechanical check
- Overall buckling check
- Welded joint stress assessment

Cryogenic biphase support alternative solution for both DQW and RFD

Alternative solution:

- Bolted design (no welds required)
- Reduction of cost of manufacturing
- Easier installation on cavities
- Modular design (easy to change)

Preliminary analysis feedback:

- Larger deformation : optimisation needed
- Safety factor of screw to be checked

Cavity support DQW & RFD for LHC

Thermal screen updates RFD & DQW

LHC series design

St.steel cooling pipe

Aluminium half clamps

and fastener

A

Welding test with optical mechanical measurement

Thermal screen DQW & RFD

- Strength check .
- Fasteners preload ٠
- Thermal analysis •
- Thermo-mechanical sim. of cooldown

Thermal shield analysis :

See EDMS 2869783 - Bolted clamp evaluation

See EDMS 2936498 - Thermo-mechanical simulations for RFD

See EDMS 2894500 - Thermo-mechanical simulations for DQW Courtesy J.Swieszek

Stress intensity

D: only mechanical loads Total Deformation 2 Type: Total Deformation Unit: mm Time: 5 25/08/2023 10:53 0.6915 Max 0.61467 0.53784 0.461 0.38417 0.30733 0.2305

Total deformation

12

LHC integration

To have more dimensions use the drawing LHCLJ___002 Pour avoir plus de dimension utiliser le dessin LHCLJ____

- Integration and position of motorized jack (collaboration with BE/GM and ATS/DO)
- Vacuum interconnexion (collaboration with TE/VSC and ATS/DO)
- Position and rooting of RF lines (collaboration with S.Calvo SY/RF)
- Integration and position of the connexion boxes for cryogenic instrumentation
- Request from survey team to change the WPS reserved space position
- Accessibility of the tuner actuation in the Tunnel
- Design of the safety extension to improve accessibility to cryogenic equipment
- Detailed integration in collaboration with G.Cipolla (SY/RF) and the team of P.Fessia (ATS/DO)

LHC integration- courtesy G. Aparicio - P. Fessia - ATS/DO

DQW assembly sequence updates

- Iterative work (updating individual component -> Cryomodule -> Assembly seq.-> Compatibility with spec)
- >12'000 parts in the cryomodule (Wo tooling)
- Different team involved with specific requirements (Cryo, RF, Vacuum, Survey, ext. collab, Manufacturing)
- 7 top configurations (transport, test x2, storage, LHC x4)

TTP PROMALANA

- Additional components to be considered for thermal budget compared to DQW/SPS cryomodule :
 - Secondary beam line
 - Internal shielding of beam bellows
 - Cryogenic safety line
 - New design of RF coaxial lines
- Additional 4-20K cooling line
- New technical solution for the thermal intercept

Evaluation and optimisation of the DQW cold warm transitions

Similar design between RFD and DQW (longer CWT on jumper side)

Thermal simulation/calculations of the cryogenic instrumentation and safety extension

A: Gas conductivity insulated Temperature Type: Temperature Unit: K Time: 1 1/10/2020 11:02 AM 299.7 Max 250

17

Table 3 : Heat-loads							
Temperature range	Heat-load [W]						
300K - 80K	$\dot{q}_{_{80K_tot}}$	8,5					
80K - 2K	$q_{2K_{1}a}$	2,2					
300K - 2K	Q ref_tot	4,1					

Thermal evaluation of Cryo. Instrum. See EDMS 1760706 Courtesy J.Swieszek

	Heat loss, 2 K [W]	Heat loss, 80 K [W]
Solids conduction + surface-to-surface radiation	0.3	4.3
He gas conduction	0.3	-
Multi layer insulation	0.004	0.43
TOTAL	0.7	4.8

Thermal evaluation of Cryo. Safety extension See EDMS 2323043 Courtesy E.Cano Pleite

Evaluation of the new RF coaxial lines designed by the team of E.Montesinos – SY/RF

- Similar modular design between RFD and DQW
- Coated stainless steel straight section
 - Coating 5 µm copper:
 - inner face of external tubes
 - outer face of internal tubes
- Copper elbows and connexions
- 2D axis-symmetric modelling used for simulation

Thermal analysis : See EDMS 2367094 - Simulation of RF coaxial line (V-HOM, H-HOM for RFD) Courtesy J.Swieszek – L.Giordanino

mm

300

250

200

150

100

50

0

-50

-100

-150

-200

-250

-300

-350

-50

300 K

74 K

24 K

2 K

50

Evaluation of the new RF coaxial lines

move	Q 2K (W)	Q therm1 (W)	Q therm2 (W)	Q 300K (W)	
0	0.565	7.064	1.192	-5.494	
0.02	0.517	7.009	1.163	-5.494	
0.04	0.481	6.974	1.152	-5.735	
0.06	0.482	6.982	1.171	-6.057	
0.08	0.518	7.028	1.204	-6.248	
0.1	0.566	7.080	1.229	-6.181	
0.12	0.594	7.105	1.230	-5.899	
0.14	0.583	7.087	1.208	-5.590	

worst scenario (biggest heat loss in the 2K bath)

• Thermal contact resistance included in the study :

- Copper / St. Steel
- St.Steel / St.Steel

h_cu_ss	Q 2K (W)	Q therm1 (W)	Q therm2 (W)	Q 300K (W)
h_cu_ss_2MPa	0.542	6.779	1.231	-5.386
perfect contacts	0.594	7.105	1.230	-5.899

Thermal analysis :

See EDMS 2367094 - Simulation of RF coaxial line (V-HOM, H-HOM for RFD)

hermal budget RFD

	Static loads					
	2 K bath	10 K intercept	80 K intercept			
Radiation [2] [5]	3.4		30			
CWT [6]	6	1	50.6			
6	0.4	2.1	8			
Supports [7] [8]	0.5	0.9	5			
FPC [9] [10] [11]	2.6	2.4	44.4			
VHOM lines [12]	0.3	1	10.8			
VHOM antennas [13]	-		•			
HHOM lines [12]	0.3	1	10.8			
HHOM antennas [13]	-	-	-			
Pickup lines [14]	2	-	10.6			
Pickup antennas [13]	-	-	-			
Tuner [15]	0.8	-	10.2			
Instrumentation [2] [16]	2.3	-	10			
He level sensor [17]	0.4	-	0.8			
Cryo safety device [18]	0.7	-	4.8			
Beam screen [19]	-	-	-			
Beam impedance in cavity [20]	4	-	-			
Cavity [21]	-	-	-			
		Static				
TOTAL	<mark>23.7</mark>	8.4	196			

Thermal budget DQW

Static loads (estimates)

	2 K bath	10 K intercept	80 K intercept	
Radiation	3.4	-	30	
сwт	5.5	1	50.6	
	0.4	2.1	8	
Supports	0.6	1.1	6	
FPC	3	2.8	50	
HOM lines	0.9	7.2	42	
HOM antennas	-	-	-	
Antennas coax lines	4	-	21.2	
HF and Field antennas	-	-	-	
Tuner	0.8	-	10.2	
Instrumentati on	2.3	-	10	
He level sensor	0.4	-	0.8	
Cryo safety device	0.7	-	4.8	
Beam screen	-	-	-	
Beam impedance in	4	-	-	
Cavity	-	-		
		Static		
TOTAL	26	14.2	233.6	

Thermal budget report for DQW to be updated

Thermal budget estimate DQW/SPS - 2016

EDM0 4700070	
EDMS 1729079	2 K bath
Static	
Radiation [1]	3.4
CWT [2]	0.2
Supports [3],[4]	2
FPC [5]	4
Instrumentation [6]	2.3
HOM/Pickup [7],[8]	3.9
Tuner [9]	1
Total Static	16.8

Revised estimation using measurements taken during cold tests DQW/SPS – 2017/2018

	2 K bath
Radiation	3.1 W
СМТ	0.1 W
Supports	2.1 W
FPC	5.3 W
Instrumentation	2.4 W
ном	3.2 W
Pickup	0.6 W
Tuner	1.4 W
Total Static	18.1 W

Thermal budget report for RFD:

See EDMS 2310389 - Thermal budget RFD cryomodule Courtesy J.Swieszek – L.Giordanino

Thermal budget RFD Thermal budget DQW

Static + dynamic

		NOMINA	AL.			DESIGN CASE			
	St 3.4	atic + Dyn MV (40 k	amic W FPC)		St 4.1	amic N FPC)			
	2 K bath	10 K intercept	80 K intercept		2 K bath	10 K intercept	80 K intercep		
Radiation [2] [5]	3.4	-	30		3.4	-	30		
CWT [6]	6	1	50.6		6	1	50.6		
Supports [7] [8]	0.4	2.1	8		0.4	2.1	8		
	0.5	0.9	5		0.5	0.9	5		
FPC [9] [10] [11]	4.8	4.6	46.4		4.8	4.6	46.4		
VHOM lines [12]	1.4	2.6	13		1.4	2.6	13		
VHOM antennas [13]	0.2	-	-		0.2	-			
HHOM lines [12]	1.4	2.6	13		1.4	2.6	13		
HHOM antennas [13]	0.3	-			0.5		-		
Pickup lines [14]	2		10.6		2		10.6		
Pickup antennas [13]	0	•	•		0	•	-		
Tuner [15]	0.8	-	10.2		0.8	-	10.2		
Instrumentati on [2] [16]	2.3	-	10		2.3	-	10		
He level sensor [17]	0.4	•	0.8		0.4	-	0.8		
Cryo safety device [18]	0.7	-	4.8		0.7	-	4.8		
Beam screen [19]	1.4	-	-		1.4	-	-		
Beam impedance in cavity [20]	-	-	-		-	-	-		
Cavity [21]	14	-	-		20	-	-		
	St	atic + Dyn	amic		St	atic + Dyn	amic		
TOTAL	40	13.8	202.4		<mark>46.2</mark>	13.8	202.4		

ADDITIONAL (EXCEPTIONAL) Static + Dynamic									
5 MV (40 kW FPC) 2 к 10 к 80 к									
2 K bath	10 K intercept	80 K intercept							
3.4	-	30							
6	1	50.6							
0.4	2.1	8							
0.5	0.9	5							
4.8	4.6	46.4							
1.4	2.6	13							
0.3	-	-							
1.4	2.6	13							
0.7	-	-							
2	-	10.6							
0	-	-							
0.8	-	10.2							
2.3	-	10							
0.4	-	0.8							
0.7	-	4.8							
1.4	-	-							
-	-	-							
50		-							

Static + Dynamic

202.4

13.8

76.5

Static + dynamic (estimates)

	NOMINAL			1	D	ESIGN CAS	SE		(EXCEPTIONAL)				
	Stat	tic + Dyna	mic		Stat	ic + Dyna	mic	ľ	Static + Dynamic				
	3.4 N	IV (40 kW	FPC)		4.1 MV (40 kW FPC)				5 MV (40 kW FPC)				
	2 K bath 10 K 80 K intercept intercept			2 K bath	10 K intercept	80 K intercept	L	2 K bath	10 K intercept	80 K intercept			
Radiation	3.4	-	30		3.4	-	30	L	3.4	-	30		
сwт	5.5	1	50.6		5.5	1	50.6		5.5	1	50.6		
Supports	0.4	2.1	8		0.4	2.1	8		0.4	2.1	8		
	0.6	1.1	6		0.6	1.1	6		0.6	1.1	6		
FPC	5.5	5.3	54		5.5	5.3	54		5.5	5.3	54		
HOM antennas	-	-			•	-	-		-	-	-		
HOM lines	4.2	7.8	39		4.2	7.8	39		4.2	7.8	39		
HF and Field antennas	-	-	-		-	-	-		-	-	-		
Antennas coax lines	4	-	21.2		4	-	21.2		4	-	21.2		
Tuner	1	-	12		1	-	12		1	-	12		
Instrumentati on	2.3	-	10		2.3	-	10		2.3	-	10		
He level sensor	0.4	-	0.8		0.4	-	0.8		0.4	-	0.8		
Cryo safety device	0.7	-	4.8		0.7	-	4.8		0.7	-	4.8		
Beam screen	1.4	-	-		1.4	-	-		1.4	-	-		
Beam impedance in cavity	-	-	-		-	-	-		-	-	-		
Cavity	14	-	-		20	-	-		50	-	-		
	Stat	tic + Dyna	mic	1	Static + Dynamic				Static + Dynamic				
TOTAL	43.4	17.3	236.4		49.4	17.3	236.4		79.4	17.3	236.4		

Thermal budget report for DQW to be updated

Preliminary estimate with margin

Thermal budget report for RFD:

See EDMS 2310389 - Thermal budget RFD cryomodule Courtesy J.Swieszek – L.Giordanino

Status of drawing packages RFD and DQW

- Drawings fully updated
- Control #2 on-going

Beam vacuum equipment:

All drawing are released

Ac coating to be decided for

Cavity support system:

- Material update for the adjustment sets
- New design of the blade head to simplify assembly
- Drawing ready : end of October 23

- Internal cryogenic support :
 - All drawing released or under control #2
 - Alternate solution for the biphase support under evaluation
- Tuner:
 - Improvement for LHC already implemented in CM design for internal parts,
 - Drawing for manufacturing approved oct 23 for internal part,
 - External actuator further changer needed, target for the design : end of 23

- Cryomodule assembly:
 - Regular updates
 - Design freeze step by step

- Outer Vacuum Chamber:
 - All drawing are released

extremity chamber

- Correction of <u>fastener reference</u> to be updated on top drawing
- Thermal screen + MLI :
 - Control 2 on-going
 - MLI 3D spec done, to be reviewed
- Magnetic shield :
 - Modification proposal for the extremity asked by STFC
 - New version of drawing created to be discussed
 - Minor modification (1 part changed)

Al use for the design

07:06

.ıl 穼 <mark>82</mark>4

ask, and I'll do my best to assist you.

TEDDY

How to design a Crab cavity cryomodule ?

СНАТБРТ

The best way to design a Crab cavity cryomodule is to contact the list of people below:

Teddy Capelli

You can also contact the list of people below, but I'm afraid they will just forward your request to the first list of people:

- Ofelia Capatina
- Rama Calaga

Good luck!

Remaining open points

Magnetic shield geometry simplification for assemby improvement (DQW + RFD)

 UHV shielded bellows sequence of assembly (pre-assembled outside of clean room) (See preliminary report on the tests carried out at CERN)

- Extremity vacuum chamber internal Ac coating
- Correct the OVC fasteners listed in the BOM of the OVCs
- DN100 RF joint to improve the string assembly

25

Comparison with RFD experience

RFD 2021 (only a summary is shown here, see presentation of 17.11.2021 for detailed explanations):

*Parts degreased and manually cleaned outside cleanroom ; rinsed and assembled inside cleanroom

Status after rinsing, before assembly :

RF fingers and inside bellow convolutions : ISO 2-3

Bellow outside surface and flanges : ISO 6 with yellow oxide traces

Status after assembly :

Inside RF fingers and bellow convolutions : ISO 6 (really close to ISO 5)

Fixing area with Ag coated screws on both sides (& springs on one side) : ISO 5, it was ISO 8 before a huge effort of cleaning inside cleanroom without rinsing

Maintaining sub ISO 4 is not possible due to complex assembly sequence and need of tightening coated fasteners inside the assembly (between the bellow and the RF finger)

Should not have been accepted for string assembly, but we could not do better with this procedure

DQW 2023 :

*Parts degreased, manually cleaned and assembled outside cleanroom ; whole subassembly rinsed inside cleanroom

After rinsing of the whole subassembly :

Outside surface : ISO 4 (reaches ISO 5 if we carefully check the yellow oxide traces)

Inside surface : ISO 4

Fixing area with springs : ISO 5, without extra blowing or cleaning effort done

Accepted for string assembly !

It requested a strong care in order to dry the subassembly correctly

Around a factor 3 in time saving !

Almost a factor 100 in cleanliness level improvement !

P. Kohler, 3 May 2023

Teddy Capelli CERN/EN-MME