

Vancouver, 24 Sept. 2023

Status report on alignment on RFD prototype : Crab-cavities (Collaboration : STFC / CERN)

Vivien RUDE 2023-09-27

<u>On behalf :</u>

Mateusz SOSIN Clara CALA FRANCO Hélène MAINAUD DURAND Andreas HERTY Vincent BARBARROUX Michel NOIR Roberto FERNANDEZ BAUTISTA

13th HL-LHC Collaboration Meeting, Vancouver (Canada), 25-28 September 2023

Outline

- Alignment objective for HL-LHC internal monitoring
 - Internal monitoring
 - Crab-cavities configuration
 - Alignment requirement
 - Alignment simulation for RFD prototype
- RFD prototype (Survey tasks : STFC-CERN collaboration)
 - Determination of the position of the capacitive plates of the cavities
 - Alignment of the 2 cavities before and after connection in clean room
 - Thermal contraction anticipation
 - Alignment at step 4 : on the trolley
 - Alignment at step 6 : cavities suspended from the top plate
 - Alignment at step 9 : cavities suspended from the top plate inserted in the cryomodule
 - FSI installation
 - Diverse information
 - Schedule expected after reception of the cryomodule at CERN

Internal monitoring for "special" components

Q1, Q2a, Q2b, Q3

Internal monitoring : Configuration

FSI : Frequency Scanning interferometry

 \rightarrow Absolute distance measuring interferometric technique

FSI Head (sensor) on the Cryomodule

FSI target on the flange of Helium TANK of the cavities

Configuration (RFD prototype) : Requirement and Uncertainty

2		
1 9 9		14 X
	9	13
3 TANK1		14

11	7 15	16

TANK 1	Accuracy
Tx (mm) Radial	0.088
Ty (mm) longitudinal	0.044
Tz (mm) vertical	0.015
Rx (mrad)	0.044
Ry (mrad)	0.215
Rz (mrad)	0.233
Scale (ppm)	66

TANK 2	Accuracy
Tx (mm) Radial	0.021
Ty (mm) longitudinal	0.077
Tz (mm) vertical	0.011
Rx (mrad)	0.023
Ry (mrad)	0.180
Rz (mrad)	0.047
Scale (ppm)	101

Requirement
< 0.1
< 0.1
<0.3
<1.7
<0.3

1 Z

Outline

- Alignment objective for internal monitoring
 - Internal monitoring
 - Configuration
 - Alignment requirement
 - Simulation for RFD prototype
- RFD prototype (Survey tasks)
 - Determination of the position of the capacitive plates of the cavity
 - Alignment of the 2 cavities before and after connection in the clean room
 - Thermal contraction anticipation
 - Alignment at step 4 : on the trolley
 - Alignment at step 6 : cavities suspended from the top plate
 - Alignment at step 9 : cavities suspended from the top plate inserted in the cryomodule
 - FSI installation
 - Diverse information
 - Schedule expected after reception of the cryomodule at CERN

Determination of the position of the capacitive plate of the cavity

Alignment of the 2 cavities before connection in the clean room

Nominal axis (cavity line) → trajectory of the rails

Coordinate frame :

- Primary axis : Nominal axis (cavity line) \rightarrow trajectory of the rails
- Secondary axis : Normal vector to vertical plane of rails
- Origin : Beginning of the rail

Take into account of thermal contraction and vacuum

Configuration (DQW-SPS-2018) : Cooling down

Position after STEP 4 (June 2023)

Vertical : Difference to nominal Max : 0.1 mm

Radial : Difference to nominal Max : 0.1 mm

Radial position of the cavities w.r.t. Nominal

Vertical position of the cavities w.r.t. Nominal

6

5

4

3

2

1

0

-1

-2

Z axis (vertical)

[mm]

	Longitudinal	Nominal	After step 4
	TANK1	809.6 mm	809.6 mm
MOJECT	TANK2	1992.1 mm	1992.1 mm

Longitudinal . Difference to nominal Max : 0.1 mm

3000

10

Position after STEP 6 (July 2023)

Position after STEP 6 (August 2023)

Vertical : Difference to nominal Max : 0.2 mm

Radial : Difference to nominal Max : 0.2 mm

Z500

3000

Radial position of the cavities w.r.t. Nominal

			Difference
Longitudinal	Nominal	After step 6	to nominal
TANK1	809.6 mm	813.6 mm	+4.0 mm
TANK2	1992.1 mm	1995.5 mm	+3.4 mm

Vivien RUDE

Position after STEP 9 (September 2023)

Radial and vertical objectives for the final alignment : < 0.1 mm (will be done at CERN, before Bunker test)

Vertical : Difference to nominal Max : 0.6 mm

Radial : Difference to nominal Max : 0.3 mm

Radial position of the cavities w.r.t. Nominal

3000

			Difference
Longitudinal	Nominal	After step 9	to nominal
TANK1	809.6 mm	813.5 mm	+3.9 mm
TANK2	1992.1 mm	1995.6 mm	+3.5 mm

13

FSI installation

targets

Vivien RUDE

14

FSI targets (installation done in June 2023)

	Difference To nominal position			
	X [mm] Y [mm] Z [mm			
1	-1.1	0.4	0.8	
2	-0.8	0.2	1.5	
3	0.1	-0.3	1.9	
4	0.1	-0.2	0.6	
5	0.8	0.5	-2.0	
6	1.1	0.2	-2.6	
7	0.6	-0.4	-2.1	
8	0.3	-0.3	-1.7	
9	-0.9	2.1	-0.9	
10	-0.5	1.8	0.0	
11	0.2	2.1	0.4	
12	0.3	2.3	-0.7	
13	0.3	-1.1	-0.2	
14	0.5	-1.4	-0.2	
15	0.3	-1.4	0.3	
16	0.6	-1.2	0.2	

FSI heads / installation on top plate and cryomodule

Validation of FSI observation (June and September 2023)

				Serviceship STARSART, etc.		
		After	step 4	After	After step 9	
	Optical sight	WARM Angle (°) [< 0.5°]	Estimated COLD Angle (°) [< 0.5°]	WARM Angle (°) [< 0.5°]	Estimated COLD Angle (°) [< 0.5°]	
TANK1	Head1 \rightarrow Target 1	0.36	0.42	0.40	0.40	
TANK1	Head2 \rightarrow Target 2	0.23	0.33	0.20	0.22	
TANK1	Head3 \rightarrow Target 3	0.05	0.12	0.42	0.29	
TANK1	Head4 → Target 4	0.20	0.05	0.55	0.42	
TANK1	Head5 → Target 5	0.17	0.22	0.48	0.51	
TANK1	Head6 \rightarrow Target 6	0.32	0.24	0.56	0.53	
TANK2	Head7 $ ightarrow$ Target 11	0.33	0.27	0.47	0.43	
TANK2	Head8 \rightarrow Target 12	0.17	0.09	0.31	0.32	
TANK2	Head9 \rightarrow Target 9	0.40	0.42	0.64	0.60	
TANK2	Head10 $ ightarrow$ Target 10	0.11	0.18	0.34	0.28	
TANK1	Head11 → Target 7	0.27	0.24	0.19	0.07	
TANK1	Head12 → Target 8	0.25	0.37	0.18	0.26	
TANK2	Head13 $ ightarrow$ Target 13	0.13	0.19	0.37	0.40	
TANK2	Head14 $ ightarrow$ Target 14	0.26	0.31	0.26	0.32	
TANK2	Head15 $ ightarrow$ Target 15	0.23	0.24	0.20	0.27	
TANK2	Head16 \rightarrow Target 16	0.26	0.26	0.13	0.20	

Vivien RUDE

Cryomodule and top plate measurement

Deformation of the top plate between installation on cryomodule and hanging

Deformation of the cryomodule with and without the top plate installed on the top

Difference up to 1.6 m

1.609

1.257

0.905

0.553

0.201

For the test under vacuum scheduled end of September, a special attention will be given

twist

Conclusion

The RFD prototype is ready to go into the SPS accelerator !

Many thanks to STFC team :

- Nik
- Ed
- Luke
- Ryan
- Carlos
- Andy
- . . .

Many thanks to CERN team :

- Teddy
- Marco
- Kurt
- Simon
- Raphael
- Luca
- Nuria
- Katarzyna
- Rama
- Ofelia
- Julien

Thank you for your attention

50 FATU

Vivien RUDE

Thank you for your attention

24

25

Alignment requirements for the cryostat / cryomodule

* On main components

Alignment objectives (2023) for FRAS

- Position of the components cryostat along one side of the tunnel : +/- 0.1 mm *
- Position of the components cryostat along one side of the tunnel w.r.t the other side : +/- 0.33 mm *

Alignment requirements for the cryostat / cryomodule

* On main components

Alignment objectives (2023) for FRAS

- Position of the components cryostat along one side of the tunnel : +/- 0.1 mm *
- Position of the components cryostat along one side of the tunnel w.r.t the other side : +/- 0.33 mm *

External monitoring

Remote alignment thanks to alignment sensors and actuators:

- FRAS LSS components equipped with reference sensors
 - WPS Wire Position Sensor (Radial, Vertical position)
 - HLS Hydrostatic Reference Sensor (Vertical Leveling, roll)
 - Inclinometers (Roll)
 - Long range monitoring from UPS gallery
 - Longitudinal monitoring
- Each component equipped in motorized adapters for the remote adjustment of its position

Accuracy of each sensor in the framework of cryostat

Sensors	Technology	Largest standard uncertainties		Uncertainty on 2023	
		Calibration of WPS (if Lcable < 70 m) Calibration of WPS (if 70m < Lcable < 100 m)	5 μm 15 μm	50 um	
WPS	Capacitive	Shape of wire	10 µm	$30 \mu m$	
		Position of WPS in the framework of the vacuum vessel Position of WPS in the framework of the UPS plate	50 μm 2 μm	UPS)	
HLS		Calibration of HLS	5 µm	50 um	
	Interferometry	Shape of water	10 µm	(70 µm for HIS	
		Position of HLS in the framework of the vacuum vessel	50 µm	double)	
	Capacitive Interferometry	Calibration of inclinometer	15 µrad		
Inclinometer		Position of the inclinometer in the framework of the vacuum vessel	150 µrad	150 µrad	
Long range FSI 14 m	Interferometry	Calibration of the Long range FSI	20 µm		
		Position of the FSI in the framework of the UPS plate	2 µm	50 µm	
		Position of the target in the framework of the vacuum vessel	50 µm	•	
Longitudinal FSI	Interferometry	Calibration of Longitudinal FSI	10 µm		
		Position of Longitudinal FSI in the tunnel framework	300 µm	300 µm	
		Position of the target in the framework of the vacuum vessel	50 µm		

Position accuracy (radial) of the mechanical axis of component in R-general

- The "absolute" position of CC1 (in general coordinate system) will be known with an accuracy of 0.25 mm (1σ)
- The "absolute" position of CC2 (in general coordinate system) will be known with an accuracy of 0.25 mm (1σ).
 The "relative" position of CC1 w.r.t. CC2 will be known with a precision of few microns.
- The "relative" movement of CC1 will be known with a precision of few microns

Multi-target Frequency Scanning Interferometry (FSI)

 $D_n = c \frac{f_{beat[m]}}{2 \frac{dv}{dt} n}$ RT2

 α – is a sweep rate of the laser ($\alpha = \frac{d\nu}{dt}$ - laser frequency change in time); c – speed of light;

RT3

- n refractive index of light transmission medium;
- τ time of flight of laser to the target

from Mateusz Sosin

31

RT1